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A Letter from the Editor

H istory, illuminated by theoretical, empirical, and experimental studies,
has shown that the institutions chosen by or imposed upon a society

have a profound impact on its performance. The theory of mechanism and
institution design is about how to devise new mechanisms or institutions, or
improve existing ones, to better achieve desired economic or social outcomes.
The challenge of design lies in the fact that individuals have different prefer-
ences about how society allocates its scarce resources, and private information
must implicitly or explicitly be revealed to realize society’s goals.

The Journal of Mechanism and Institution Design seeks to provide an
independent and peer-reviewed open-access online journal that will be a natu-
ral English-language home for original analyses of mechanism and institution
design. There are three compelling reasons for founding this new Journal.
First, over the past few decades, mechanism and institution design has been
one of the most flourishing and influential research areas, and we believe that
it will continue to grow in importance. Second, we believe that mechanism
and institution design can serve as a common language to bridge fields rang-
ing from economics, politics and law, to computer science, mathematics, and
engineering, improving communication and productivity. Third, we believe
that open access journals are the future of scholarly publishing, and that an
independent, non-commercial journal such as ours has even more advantages.
The Internet has greatly enhanced the free and wide dissemination of knowl-
edge, but it is most effective when access is open.

The Journal aims to publish original articles that deal with the issues of
designing, improving, analyzing and testing economic, financial, political, or
social mechanisms and institutions. It seeks scientifically important and so-
cially relevant research, whether theoretical or applied, and whether empiri-
cal, experimental, historical, or practical. It strives to maintain a high standard
for clarity of thought and expression.

The Journal is published and owned by the Society for the Promotion of
Mechanism and Institution Design, a not-for-profit, unincorporated associa-
tion devoted solely to the development of mechanism and institution design
and the dissemination of scientific knowledge of the field. The Society tries
to be self-supporting and run the Journal at a minimum cost by requiring only
one author of each submitted paper to pay a modest membership fee of the
Society to cover the cost of running the Journal. We are committed to han-
dling every submitted paper as quickly as possible through a consistent and
fair evaluation.

Working together with our dedicated Editorial Board and professional col-
leagues, we are confident that this journal will find a secure home in the sci-
entific communities that contribute to mechanism and institution design.

Zaifu Yang, York, December 16, 2016
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ABSTRACT

We study the convergence of two price processes generated by two dynamic
double auctions (DA) and provide conditions under which the two price pro-
cesses converge to a Walrasian equilibrium in the underlying economy. When
the conditions are not satisfied, the price processes may result in a bubble or
crash.

Keywords: Double auction mechanisms, incremental subgradient methods,
network resource allocations.

JEL Classification Numbers: D44, D50.

1. INTRODUCTION

A double auction (DA) mechanism is a market-clearing system by which
dispersed private information feeds into the system sequentially through

bilateral trading. With little concentrated information about total demand and
supply of an asset or good available to all participants in the marketplace, it

Both authors declare there are no conflicts of interest. This paper supersedes the paper
“Bubbles, Crashes and Efficiency with Double Auction Mechanisms” (Ma & Li, 2011), which
has been distributed and presented in various conferences. We thank Mark Satterthwaite for
introducing us to the topic. Any errors are our own.

Copyright c© Jinpeng Ma, Qiongling Li / 1(1), 2016, 1–44.
Licensed under the Creative Commons Attribution-NonCommercial License 3.0, http://creativecommons.org.
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2 Dynamic double auction

is natural to ask whether the price process generated by this DA mechanism
converges to an equilibrium of the underlying economy or not.

Both A. Smith (1776) and Hayek (1945) raise a similar question how a mar-
ket mechanism in a laissez-faire economy, where individual participants with
little information about total demand and supply act solely in their self-interests,
is able to integrate “dispersed bits of [incomplete] information” correctly into
prices. A. Smith (1776) uses his famous “invisible hand” metaphor to describe
its magnificence of a price mechanism. Hayek (1945, p. 519) has further
explored the idea:

“The peculiar character of the problem of a rational economic
order is determined precisely by the fact that the knowledge of
the circumstances of which we must make use never exists in
concentrated or integrated form, but solely as the dispersed bits of
incomplete and frequently contradictory knowledge which all the
separate individuals possess. The economic problem of society is
thus not merely a problem of how to allocate “given” resources
[· · · ], it is rather a problem of the utilization of knowledge not
given to anyone in its totality.”

He goes on by saying: “This mechanism would have been acclaimed as one of
the greatest triumphs of the human mind” if “It were the result of deliberate
human design” (Hayek, 1945, p. 527). It should be noted that DA mechanisms
employed in real exchange markets across the world are deliberately designed
by humans.

An answer to the question is important for understanding price determina-
tion in an exchange market, since DA mechanisms have been widely used in
equity, commodity and currency markets, among others. For example, an ans-
wer to the question is vital for understanding the efficient markets hypothesis
(Fama, 1965) and the excess volatility puzzle (Shiller, 1981). Nonetheless, it
is not easy to come up with an answer. Indeed, does a DA mechanism matter
for the price determination of an asset? According to the efficient markets
hypothesis, the answer should be no since the price of an asset in an exchange
market should always follow its fundamental, with no systematic disparity
between the two that can be detected with fundamental or technical analysis.
On the other hand, excess volatility suggests that the answer may be yes, since
the price of an equity can deviate from its fundamental to a great degree and
such a deviation has been realized by a DA mechanism through a sequence of

Journal of Mechanism and Institution Design 1(1), 2016
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trading between buyer and seller pairs. But, if a DA mechanism really matters,
how is it possible for an equity with fundamental value of 100 to be traded,
say, at 300 or 50?

The main objective of this paper is to investigate if a DA mechanism can
generate a sequence of prices that converges to an equilibrium of the underlying
economy when individual demands and supplies are only privately known. To
achieve this goal, we study a benchmark model given below:

P minimize F(y) =
m

∑
i=1

fi(y)+
n

∑
j=1

g j(y)

subject to y ∈ Y , a nonempty convex subset of Rd
+, where fi and g j are

real-valued (possibly non-differentiable) convex functions defined on the d-
dimensional Euclidean space Rd . A large class of quasilinear economies with
m sellers and n buyers can be represented by this form (see Section 2.1). For
these economies, the quantity demanded and supplied at prices y for buyer
j = 1,2, · · · ,n and seller i = 1,2, · · · ,m are just subsets of the subdifferentials
−∂g j(y) and ∂ fi(y), respectively, using the Fenchel duality (Ma & Nie, 2003).
Thus, an equilibrium of the underlying economy studied in this paper is an
optimal solution to the problem P .

An Illustrative Example. For simplicity, consider an exchange economy
where there is a single object or asset with a finite number of identical copies
for sale. In a dynamic double auction, a buyer submits a bid order consisting
of a bid price and a bid size, and a seller submits an ask order consisting of an
ask price and an ask size, with the bid price at least as high as the ask price.
The bid size is the quantity the buyer is willing to buy at the bid price and the
ask size is the quantity the seller is willing to sell at the ask price. The price of
an object is a weighted average of the bid price and the ask price, with weight
α ∈ (0,1), as in a static double auction in Chatterjee & Samuelson (1983),
Myerson & Satterthwaite (1983), Wilson (1985), and Gresik (1991). Thus,
given a sequence of pairs of one buyer and one seller, a sequence of prices is
generated by a double auction. The next two questions are, at a given iteration,
who will be the buyer and the seller pair and how are bid and ask prices are
determined? We provide two specific examples of double auction to address
the two questions.

In the first double auction, we assume that the number of buyers equals the
number of sellers, and buyers and sellers form two cyclic rings: a buyer ring
and a seller ring (Figure 1). This system can be realized if the buyer and seller

Journal of Mechanism and Institution Design 1(1), 2016
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4 Dynamic double auction

rings consist of two permutations of agents. A pair of a buyer and a seller is
selected according to the two cyclic rings, one pair at a time. The process starts
with price Xk at k. Then buyer π ′(1) and seller π(1) are the first pair to submit
their bid and ask, respectively, based on the observed Xk. After the iteration of
the pair (π ′(1),π(1)), the next pair will be buyer π ′(2) and seller π(2). This
iteration process ends with the pair (π ′(m),π(m)) and the price Xk+1.

Figure 1. Iterations under a double auction, where π and π ′ are two
permutations of agents.

Sellers’ ring

Buyers’ ring

π(1) · · · π(i) · · · π(m)- - - -
?

π ′(1) · · · π ′(i) · · · π ′(m)- - - -

6

We need to determine how a buyer bids and a seller asks. A buyer’s bid
equals the newly updated price from the previous pair along the two rings plus
a price increment that equals the product of the bid step size and the bid size.
The bid step size is the price increment for one unit of the object that the buyer
is willing to buy. Thus, the more a buyer wants to buy, the higher the bid price
increment. An ask price is determined similarly. A seller’s ask price equals the
newly updated price from the previous pair along the two rings minus a price
that equals the product of the ask step size and the ask size. The ask step size
is now the price decrement for one unit of the object for sale. Thus, the more a
seller wants to sell, the lower the ask price. To be more precise, let Φi−1,k be
the price at iteration k and designate the next selected pair as (π(i),π ′(i)). The
ask price ψπ(i),k and the bid price ϕπ ′(i),k are determined by, respectively,

ψπ(i),k =Φi−1,k−ak ·Sπ(i)(Φi−1,k), ϕπ ′(i),k =Φi−1,k+bk ·Dπ ′(i)(Φi−1,k), (1)

where Sπ(i)(Φi−1,k) and Dπ ′(i)(Φi−1,k) are the quantity supplied (i.e. the
ask size) and demanded (i.e. the bid size) at price Φi−1,k, respectively. If
Sπ(i)(Φi−1,k) and Dπ ′(i)(Φi−1,k) are set-valued maps, equation (1) should be

Journal of Mechanism and Institution Design 1(1), 2016
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understood with two selections from the demand and supply. {ak} and {bk} are
the ask and bid step sizes, respectively. The price Φi,k, which is communicated
to the next pair, is determined by a weighted average of the bid and ask prices,
with weight α ∈ (0,1):

Φi,k = αψπ(i),k +(1−α)ϕπ ′(i),k. (2)

Equations (1) and (2) provide the rule on how the price at an iteration evolves
from one pair to the other along the two rings. The price process starts at
Φ0,k = Xk and ends with Xk+1 = Φm,k at time k. Then this process repeats
with two different permutations of agents. Thus, a sequence of prices Xk, k =
0,1,2, · · · , is generated. Note that we consider the case where m is potentially
a large number.

In our second randomized double auction a pair made up of a buyer and a
seller is independently selected. Here we do not need the condition that the
number of buyers equals the number of sellers because such an auction can be
seen as a special case, in which the buyer ring and the seller ring in Figure 1
each consist of a single agent. Thus, equations (1) and (2) provide a sequence
of prices {Xk} once again.

Results. Assume that the underlying economy has a Walrasian equilibrium
and the limit limk→∞

bk
ak

exists for two diminishing step sizes {ak} and {bk}.
Suppose there is a positive scalar λ such that (see Assumption 3.2)

∞

∑
k=0
|bk

n
−λ

ak

m
|<+∞. (3)

Then we show that λ must be limk→∞
bk
ak

.1 Our first main result Theorem
4.4 demonstrates that the price process {Xk} must converge to a Walrasian
equilibrium price vector of the underlying economy as long as the weight α
satisfies the equality α = λ

1+λ . Beyond the existence of Walrasian equilibrium,
this convergence result does not depend on privately known demands and
supplies. Instead it depends on the two parameters α and λ related to the
auction form. If the weight α does not satisfy the equality α = λ

1+λ , then
the price process {Xk} still converges to a price but it may be higher or lower
than the equilibrium price(s). A higher than equilibrium price (i.e. bubble)
is obtained when α < λ

1+λ and a lower than equilibrium price (i.e. crash) is

1 The converse of this claim is not true. See Example 4.9.

Journal of Mechanism and Institution Design 1(1), 2016
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obtained when α > λ
1+λ by the double auction. For example, α must be right

at 1
2 for λ = 1 in order for the auction to arrive at a Walrasian equilibrium.
For our randomized double auction, our second major result Theorem 4.7

shows that the above result still holds when λ is defined by λ = m
n limk→∞

bk
ak

,
where n is the number of buyers (or agents) and m is the number of sellers (or
objects), under Assumption 3.3. For example, if limk→∞

bk
ak

= 1 and m = 2n,
then α must be right at 2

3 for the auction to arrive at a Walrasian equilibrium.
Once again, this conclusion does not depend on fi and g j, which are unknown
to the mechanism designer.

The above two results are proved for a general case where there are multiple
heterogeneous objects, with each object having a finite number of identical
copies. In the general case, {Xk} is a sequence of price vectors rather than a
sequence of prices. The condition on λ is also stated for the case where the
limit limk→∞

bk
ak

may not exist.
Noises are identified as a key factor in the formation of bubbles and crashes

(Shleifer, 1999). So it is of interest to see how noises may change our results.
To examine this issue, we follow Ram et al. (2009) to introduce stochastic
noises into buy and sell orders under the two DA mechanisms. Interestingly,
our main results still hold for certain noises. This means that not all noises
can affect the informational efficiency of a DA mechanism. The relationship
between α and λ is still the key for the convergence of the price processes
under the two DA mechanisms with stochastic noises.

Literature. The benchmark model is the dual problem of the linear pro-
gramming relaxation in Bikhchandani & Mamer (1997) that can be reformula-
ted as a convex optimization problem in the price space without constraints
by P . An optimal solution to this dual P (i.e., a minimizer) is a Walrasian
equilibrium price vector of the original economy if the zero duality gap con-
dition holds.2 They also mention that the ascending price auction designed
in Kelso & Crawford (1982) for a noted many-to-one job matching market
can be used to achieve a Walrasian equilibrium price vector for their economy
under the gross substitutes condition. A salient feature of the English auction
in Kelso & Crawford (1982) is the constant increase (i.e. step size) of prices
for those workers in excess demand at each iteration. Milgrom (2000) studies

2 This dual approach and its related gradient method in search for an equilibrium in games can
be traced back to Arrow & Hurwicz (1957). Beyond its applications in economics and game
theory, the dual approach has many applications in other areas (see, e.g., Bertsekas, 2009;
Nedić & Ozdaglar, 2009).

Journal of Mechanism and Institution Design 1(1), 2016
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an economy similar to that in Bikhchandani & Mamer (1997) and provides an
English auction that uses a larger constant price increment in the beginning
and a smaller constant price increment near the end for an object in excess
demand; the price process generated by such an auction can approach a Walra-
sian equilibrium at a faster speed when the auction begins, with approximation
errors caused by the discrete price increment being reduced near the end of
the auction. Xu et al. (2015) provide a subsequent analysis of the two double
auctions presented in this paper with constant step sizes and obtain several
approximation error bounds, under a more general information communication
structure than Figure 1, when α is at random with unknown distributions.

It is often a challenging task to design an efficient auction when the gross
substitutes condition is not satisfied and agents have private reservation values
over bundles. Sun & Yang (2009, 2014) develop new auction mechanisms
that can approach an efficient allocation when goods are substitutes and com-
plements. There are several other auction mechanisms in the literature, see,
e.g., Ausubel (2004), Gul & Stacchetti (2000), and references in both Milgrom
(2000) and in Sun & Yang (2014).

An English auction is an ascending format of auction in which the price of
an item is gradually increased and adjusted in each round according to reported
total demand for the given total supply. When the scale of the market is small,
this may not cause a problem. However, when it is large, it can be difficult to
know the total demand at each round or iteration. A double auction is different,
since the process involves pairs of buyers and sellers at each moment in time.
A question arises as to whether such an auction process can always achieve
a Walrasian equilibrium outcome as is the case with an English auction. The
question is a challenge because an equilibrium must be defined with respect to
the true demand and supply in totality. But, there is no way to know the total
demand and supply in a double auction at any moment in time.

Our double auctions are largely motivated by incremental subgradient met-
hods such as those studied in Kibardin (1980), Nedić & Bertsekas (2001), Ram
et al. (2009), and Solodov & Zavriev (1998). In an incremental subgradient
method, a single sequence of step sizes is used. They are effective in a uni-
lateral market where one single agent updates her information into the price
process. However, they are not as useful in a bilateral market situation using
double auctions, where there are two sequences of step sizes, one for the buyers
and the other for the sellers. A coordination (or “steering”) condition between
the two step sizes, such as the one on λ , is required for the convergence of

Journal of Mechanism and Institution Design 1(1), 2016
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the price process. If the λ condition fails to hold, our convergence results
also fail, as shown in Xu et al. (2015, 2016) using numerical simulations.
Following the current study, Xu et al. (2014, 2015, 2016) also demonstrate
several convergence results for the two double auctions when agents form
some Markovian chains in the iteration process. Moreover, Xu et al. (2015)
study the convergence of price processes under the two double auctions when
the weight α and two step sizes are independently drawn at random, with
unknown distributions.

A major issue with double auctions is proving the existence of a Nash equi-
librium; see, e.g., Satterthwaite & Williams (1989) and Jackson & Swinkels
(2005). However, interdependent reservation values over bundles, assuming
unit demand or supply,3 are not a major concern for a Nash equilibrium. Our
two dynamic double auctions are designed for an environment in which such
values play an important role, in a model such as the many-to-one job mat-
ching in Kelso & Crawford (1982) and the multiple unit demand economy
in Bikhchandani & Mamer (1997). These models may also be used for sol-
ving resource allocation problems in large scale distributional networks where
agents hold dispersed private information; see Subsection 2.2 and e.g., Kelly
et al. (1998), Nedić & Ozdaglar (2009), Ram et al. (2009). This analysis has
the potential to provide solutions to real world problems such as the business
to business trading in a marketplace or in multiagent coordination systems in
artificial intelligence (Xia et al., 2005).

The rest of the paper is organized as follows. Section 2 introduces the
model. Section 3 presents the two DA mechanisms and the main assumptions.
Section 4 discusses the main results with DA mechanisms without stochastic
noises. Section 5 establishes the main results with stochastic noises. Section 6
concludes.

2. MODEL

We consider the following general problem (see also Bertsekas, 2012):

P minimize F(y)≡ f (y)+g(y)

subject to y ∈ Y,

3 Kojima & Yamashita (2016) offer a latest noted exception along the line of Myerson &
Satterthwaite (1983).

Journal of Mechanism and Institution Design 1(1), 2016
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where

f =
m

∑
i=1

fi and g =
n

∑
j=1

g j.

For all i = 1,2, · · · ,m and j = 1,2, · · · ,n, fi : Rd → R and g j : Rd → R are
convex functions and Y is a nonempty convex subset of Rd

+. As Bertsekas
(2012) has demonstrated, such a form covers a large class of problems in
the literature: a). least squares and related inference problems; b). dual
optimization in separable problem; c). problems with many constraints; d).
minimization of an expected value - stochastic programming; e). Weber
problem in location theory; f). distributed incremental optimization-sensor
networks. Here we focus on an application of the problem P to exchange
economies with indivisible assets or goods. Thus we may assume that the
price space Y is compact. Since every convex function ϕ on a compact set
Y is regular Lipschitzian, the set of subgradients ∂ϕ(y) for every y ∈ Y is a
nonempty, compact, and convex set, where ∂ϕ(y) is defined by

∂ϕ(y) = {η | ϕ(y)+ 〈η ,w− y〉 ≤ ϕ(w),∀w};

see e.g., Clarke et al. (1988). For any two regular functions ϕ and ψ at y, the
sum ϕ +ψ is regular at y and

∂ (ϕ +ψ)(y) = ∂ϕ(y)+∂ψ(y).

We use the following notation

F∗ = inf
y∈Y

F(y), Y ∗ = {y ∈ Y | F(y) = F∗}, dist(y,Y ∗) = inf
y∗∈Y ∗

‖y− y∗‖

where ‖ · ‖ denotes the Euclidean norm.

2.1. Benchmark Economies with Multiple Indivisible Objects

We now show how the problem P naturally captures a large class of economies
or markets typified by the many-to-one job matching model of Kelso & Craw-
ford (1982) and its related economy with indivisible objects in Bikhchandani
& Mamer (1997).

Let M = {1,2, · · · ,m} denote the set of objects and N = {1,2, · · · ,n} de-
note the set of agents. An agent j’s reservation value function u j : 2M→ R+ is
defined over bundles of objects in M such that u j( /0) = 0. A feasible allocation

Journal of Mechanism and Institution Design 1(1), 2016
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Z is a partition (Z0,Z1, · · · ,Zn) of all objects in M, in which agent j is allocated
with the bundle Z j and Z0 is the unsold bundle. Let Z̄ denote the set of all
feasible allocations. A feasible allocation Z∗ is Pareto optimal or efficient if

V ≡
n

∑
j=1

u j(Z∗j )≥
n

∑
j=1

u j(Z j), ∀Z ∈ Z̄.

Given a price vetor p ∈ Rm
+, agent j’s demand D j(p) consists of all bundles

of M that maximize his surplus, i.e., D j(p) = {S ⊂ M | u j(S)−∑i∈S pi ≥
u j(T )−∑t∈T pt , ∀T ⊂M}. A pair (Z, p) of a feasible allocation Z ∈ Z̄ and
a price vector p ∈ Rm

+ is a Walrasian equilibrium if pz = 0 for all z ∈ Z0
and Z j ∈ D j(p) for all j ∈ N. It is well-known that a Walrasian equilibrium
allocation is efficient. Even though an efficient allocation always exists, a
Walrasian equilibrium may not exist, due to the nature of interdependent
reservation values. Objects that are complement often cause the problem. Two
goods satisfy the gross substitutes (GS) condition if a good that is in demand
and whose price is not raised will still be in demand if the price of the other
good arises. The GS condition of Kelso & Crawford (1982) is a sufficient
condition for existence of a Walrasian equilibrium (Bikhchandani & Mamer,
1997; Gul & Stacchetti, 1999). Extensive studies of this condition can be found
in Fujishige & Yang (2003), Hatfield & Kojima (2010), Hatfield & Milgrom
(2005) among others. Economies that include complementary goods have been
studied by Sun & Yang (2006, 2008, 2014).

Given p ∈ Rm
+, define π j(p) = u j(S)−∑i∈S pi for S ∈ D j(p). Note that

π j(p) is convex. Then the dual of the linear programming relaxation of the
integer programming in Bikhchandani and Mamer can be seen as a convex
minimization problem without constraints:

V ′′ = min
p∈Rm

+

V (p)≡
m

∑
i=1

pi +
n

∑
j=1

π j(p). (4)

Then, we have V (p)≥V for all p ∈ Rm
+.

Define e : 2M→ Rm by ei(S) = 1 for i ∈ S and ei(S) = 0 otherwise. We can
write the demand correspondence D̂ j : Y →Rm by D̂ j(p) = {e(S) | S∈D j(p)}.

Define g j(p) = π j(p) for all j = 1,2, · · · ,n and fi : Rn
+→ R by fi(p) = pi

for all i = 1,2, · · · ,m. Thus we obtain the general form F(p) = f (p)+g(p)
subject to p ∈ Y ⊂ Rm

+. Note that the supply of an asset is the interval [0,1]
at zero price. It follows from the Fenchel duality that c̄oŜi(p) = ∂ fi(p) and
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∂g j(p) =−c̄oD̂ j(p) for all p ∈ Y , where c̄oC denotes the closed convex hull
of the set C (Ma & Nie, 2003). A vector y is an optimal solution in Y ∗ if and
only if

0 ∈
n

∑
i=1

c̄oŜi(y)−
m

∑
j=1

c̄oD̂ j(y).

Thus, a price vector p ∈ Y is at an equilibrium only if 0 ∈ ∂ ( f +g)(p).
Because P is a dual of the linear programming relaxation of the primal

integer programming in Bikhchandani & Mamer (1997) for finding an efficient
allocation, a solution y to P is a Walrasian equilibrium if and only if the
duality gap is zero, i.e., V (y) =V (Bikhchandani & Mamer, 1997; Ma & Nie,
2003). Note that the duality gap approaches zero for a large scale economy (as
m and n go to infinite) (Bertsekas, 2009).

2.2. A Congestion Control Problem with Production

We introduce a data transmission or congestion control problem on a given
network with each link a production function (see, e.g., Kelly et al., 1998).
Let N = {1,2, · · · ,n} denote the set of sources and L = {1,2, · · · ,L} the
set of all undirected links. Each link l ∈ L has an increasing and convex
cost function cl : [0,∞)→ [0,∞) such that cl(0) = 0, i.e., it costs a link l
the amount cl(q) to produce capacity q≥ 0. Let L(i)⊂L denote the set of
links used by source i ∈N . The utility function for a source i is defined
by ui : [0,∞)→ [0,∞), which is assumed to be increasing and concave. That
is, source i gains a utility ui(xi) when it sends data at a transmission rate xi.
Let N(l) = {i ∈N | l ∈ L(i)} denote the set of sources that use link l. Let
p ∈ RL

+ denote a price vector, i.e., a link charges pl per unit rate (e.g., packets
per second) of data transmission (Kelly et al., 1998). Define e : 2L → RL

by el(S) = 1 if l ∈ S and el(S) = 0 otherwise. Define the supply function
Sl : RL

+ → [0,∞) by Sl(p) = {q | plq− cl(q) ≥ plz− cl(z),∀z ≥ 0} and the
demand function Di : RL

+→ RL
+ by Di(p) = {e(L(i))xi | ui(xi)−xi ∑l∈L(i) pl ≥

ui(z)− z∑l∈L(i) pl,∀z ≥ 0}. A triplet (p;x,q) ∈ RL
+×Rn

+×RL
+ is a network

equilibrium if a). e(L(i))xi ∈Di(p) for all i ∈N ; b). ql ∈ Sl(p) for all l ∈L ;
c). ∑i∈N(l) xi ≤ ql for all l ∈L . Define fl(p) = plq− cl(q),q ∈ Sl(p) for all
l ∈L , and gi(p) = ui(xi)− xi ∑l∈L(i) pl,e(L(i))xi ∈ Di(p) for all i ∈N . Let
f (p)=∑l∈L fl(p) and g(p)=∑i∈N gi(p). We obtain the problem P , subject
to p∈RL

+. Thus, one can show that (p;x,q) is an equilibrium iff p is an optimal
solution to the problem P . Note that Y ∗ is nonempty. So an equilibrium always
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exists with transmission rates that are divisible. The problem P formalized
this way is in fact the dual problem of a utility maximization problem on
networks. See Kelly et al. (1998), and the examples discussed in Nedić &
Ozdaglar (2009) and Ram et al. (2009), where each link is given with a fixed
capacity, no production available. A flexible capacity network is often needed
in practice. Under some mild assumptions, the first social welfare theorem
holds (i.e., the duality gap is zero). Thus, finding an equilibrium under the
problem P is one way to solve the primal utility maximization problem.

3. TWO DOUBLE AUCTIONS

We introduce two new dynamic double auctions. One double auction is desig-
ned based on the bilateral cyclic structure presented in Figure 1. The other one
is based on a random match between the sellers and the buyers.

3.1. A Cyclic Double Auction (CDA)

Assume that m = n, which holds if the initial endowments are owned by the n
agents, who act as both sellers and buyers.

CDA Mechanism: Let Φ0,k = Xk. For i = 1,2, · · · ,m, let

ψi,k = Φi−1,k−ak5 fi(Φi−1,k), (5)
ϕi,k = Φi−1,k−bk5gi(Φi−1,k), (6)
Φi,k = PY (αψi,k +(1−α)ϕi,k), α ∈ (0,1), (7)

where 5 fi(Φi−1,k) ∈ ∂ fi(Φi−1,k) and 5gi(Φi−1,k) ∈ ∂gi(Φi−1,k). PY is the
Euclidean projection onto Y because the weighted average of the bid and ask
prices may be out of Y in the process. Let

Xk+1 = Φm,k. (8)

Our explanation of this auction is as follows. Xk is the initial price vector for
time k. We want to obtain Xk+1 with a round of m iterations. To accomplish the
task, the m sellers and m buyers form a cyclic seller ring and a cyclic buyer ring
in two random orders, i.e., two random permutations of the m agents. Then we
rename these agents in the two rings with i = 1,2, · · · ,m. Based on the initial
price vector Φ0,k = Xk, seller 1 and buyer 1 are the first pair to submit an ask

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 13 — #17

“p˙01” — 2016/12/18 — 10:04 — page 13 — #13

Jinpeng Ma, Qiongling Li 13

order and a bid order to determine Φ1,k, which is then communicated to the
next pair, seller 2 and buyer 2. This process continues until it reaches the last
pair, seller m and buyer m, to obtain Φm,k. The price vector Xk+1 is set to be
Φm,k to end the m iterations in the cycle. After obtaining Xk+1, the m agents
are reshuffled and renamed with two new random permutations and the process
proceeds with Xk+1 in the same manner as with Xk. The auction starts with a
given X0 ∈ Y ⊂ Rd

++, and generates a sequence of price vectors {Xk}, k ≥ 0.
The ask order for seller i at k consists of a vector of ask prices ψi,k and an

ask size 5 fi(Φi−1,k), where 5 fi(Φi−1,k) is on the supply curve ∂ fi(Φi−1,k).
The relationship between ask prices and sizes is given by equation (14), where
ak is the ask step size at round k, which is the price decrement for one unit of
object for sale. The ask prices are lower than Φi−1,k, the newly updated prices
from the previous pair. The more the seller wants to sell an object, the lower
the ask prices.

Similarly, the bid order for buyer i at k consists of a vector of bid prices
ϕi,k and a bid size 5gi(Φi−1,k), where 5gi(Φi−1,k) is on the demand curve
−∂gi(Φi−1,k). The relationship between bid prices and sizes is given by
equation (15), where bk is the bid step size at round k, which is the price
increment for one unit of object to buy. The bid prices are higher than Φi−1,k,
the newly updated prices from the previous pair. The more the buyer wants to
buy an object, the higher the bid prices. The prices Φi,k are a weighted average
of the ask and bid prices, with a weight in (0,1), as in Chatterjee & Samuelson
(1983).

We provide conditions on the weight α and the two step sizes {ak} and
{bk} so that the price process {Xk} converges to an optimal solution in Y ∗.

It may be useful to compare CDA with the noted cyclic incremental subgra-
dient method (e.g., Nedić & Bertsekas, 2001).

Incremental Subgradient Method: Assume m = n and X0 ∈ Y . Let
Φ0,k = Xk. For i = 1,2, · · · ,m, let

Φi,k = PY (Φi−1,k−ak5 ( fi +gi)(Φi−1,k)),

where 5( fi + gi)(Φi−1,k) ∈ ∂ ( fi + gi)(Φi−1,k). Let Xk+1 = Φm,k. PY is the
Euclidean projection onto the set Y .

In the incremental subgradient method, m agents form a single ring in an
arbitrary order (Figure 2). Prices are iterated along the ring one agent at a
time. At each iteration, only one agent i reveals his buy size in −∂gi(Φi−1,k)
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Figure 2. An Iteration under the Incremental Subgradient Method.

f1 +g1 · · · fi +gi · · · fm +gm- - - -

?

together with his sell size in ∂ fi(Φi−1,k) at prices Φi−1,k. A key feature of
their algorithm is that adjustment in prices at each iteration depends on the
chosen step size ak and the individual excess supply5( fi +gi)(Φi−1,k). They
show that if the step size {ak} is diminishing, their algorithm generates a
sequence of prices that converges to an equilibrium in Y ∗. CDA is different
from the incremental subgradient method in two ways. First, the buyer and
seller cyclic rings are different. We consider f and g as two different sides
of the market. Second, there are two sequences of step sizes {ak} and {bk}
in CDA. This makes the convergence results for the incremental subgradient
method inapplicable to CDA because there is a new λ condition. Even if the
λ condition is satisfied, the weight α and the parameter λ must be in a right
combination so that the process {Xk} can converge to an optimal solution in Y ∗.
We need to consider two step sizes because the market using double auctions is
bilateral, in contrast to the unilateral market under the incremental subgradient
method.

3.2. A Randomized Double Auction (RDA)

Let wk be a random variable taking equiprobable values from the set {1,2, · · · ,m}
and w′k be a random variable taking equiprobable values from the set {1,2, · · · ,n}.
Let5 fwk(Xk)∈ ∂ fwk(Xk) and5gw′k

(Xk)∈ ∂gw′k
(Xk), where if wk takes a value

i, then the vector ∂ fwk(Xk) is ∂ fi(Xk), similarly for g. Here we do not need to
assume that m = n.

Our sequence {Xk} is generated by RDA mechanism as below.

RDA Mechanism: Given Xk, let

ψwk,k+1 = Xk−ak5 fwk(Xk), (9)
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ϕw′k,k+1 = Xk−bk5gw′k
(Xk). (10)

Let
Xk+1 = PY (αψwk,k+1 +(1−α)ϕw′k,k+1), (11)

where α ∈ (0,1) and PY is the Euclidean projection onto Y .

Our explanation of this auction is as follows. Xk is the price vector at time
k. We want to obtain Xk+1 by incorporating individual demand and supply
information from a pair of buyer and seller, with the seller randomly selected
from the set of sellers and the buyer randomly selected from the set of buyers.
The bid prices and bid size as well as the ask price and ask bid are determined
in the same way as in CDA. This is equivalent to the case where a seller
randomly matches with a buyer. Again, the auction starts with X0 ∈ Y . Then
(9)-(11) generate a sequence of prices Xk, k = 1,2, · · · .

We are interested in the convergence of {Xk} and the conditions under
which {Xk} converges to an optimal solution in Y ∗. Because f and g are
privately known to agents, not to the mechanism designer, our conditions
cannot be imposed on f and g. This provides a challenge because information
about f and g has never been revealed in totality in the two auction processes.
The two auction forms are in spirit close to the decentralized market mechanism
as stated in A. Smith (1776) and Hayek (1945), in contrast to a centralized
market mechanism.

3.3. Key Assumptions

We assume that the step sizes satisfy the following diminishing conditions
in Assumption 3.1, which is standard for many convergence results in the
literature. Assumptions 3.2 and 3.3 are the two new assumptions for two
double auctions CDA and RDA. To achieve an equilibrium in Y ∗, we must
have a right combination of α and λ .

Assumption 3.1 (Diminishing step sizes). Assume that the two sequences {ak}
and {bk} of step sizes are such that (i). ak > 0 and bk > 0; (ii). ∑∞

k=0 ak =+∞
and ∑∞

k=0 bk =+∞; (iii). ∑∞
k=0 a2

k <+∞ and ∑∞
k=0 b2

k <+∞.

Assumption 3.2. Assume that the two sequences {ak} and {bk} of step sizes
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are such that there exists some positive λ to ensure

∞

∑
k=0
|bk−λak|<+∞. (12)

Assumption 3.3. Assume that the two sequences {ak} and {bk} of step-sizes
are such that there exists some positive λ to ensure

∞

∑
k=0
|bk

n
−λ

ak

m
|<+∞. (13)

Note the difference between Assumptions 3.2 and 3.3. Assumption 3.2
is for CDA where m = n, while Assumption 3.3 is for RDA where m may
be different from n. These λ conditions (12) and (13) will be discussed in
Subsection 4.4.

4. MAIN RESULTS

In this section we prove our two main results for CDA (5)-(8) and RDA (9)-(11).
Lemma 4.1 below is the key for both mechanisms.

4.1. Main Result: CDA

Since Y is compact, there exist scalars C1,C2, · · · ,Cm and D1,D2, · · · ,Dm such
that

‖h‖ ≤Ci, ∀h ∈ ∂ fi(Xk)∪∂ fi(Φi−1,k), i = 1,2, · · · ,m,k = 0,1,2, · · ·

and

‖`‖ ≤ Di, ∀` ∈ ∂gi(Xk)∪∂gi(Φi−1,k), i = 1,2, · · · ,m,k = 0,1,2, · · · .

Note that m = n.

Lemma 4.1. Let {Xk} be the sequence generated by CDA (5)-(8). Then for
all y ∈ Y and k ≥ 0, we have

‖Xk+1− y‖2 ≤ ‖Xk− y‖2−2akα( f (Xk)− f (y))−2bk(1−α)(g(Xk)−g(y))
+ (αakC+(1−α)bkD)2,

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 17 — #21

“p˙01” — 2016/12/18 — 10:04 — page 17 — #17

Jinpeng Ma, Qiongling Li 17

where C = ∑m
i=1Ci and D = ∑m

i=1 Di.
Remark. This lemma shows that the quadratic distance of the price

process {Xk} to an equilibrium in Y ∗ can be bounded and that it is possi-
ble for the price process to approach an equilibrium in Y ∗. Nonetheless, a
naive choice y in Y ∗ does not work because of this term [akα f (Xk)+bk(1−
α)g(Xk)]− [akα f (y) + bk(1− α)g(y)], which is not a sum form f + g as
defined in P . For a choice y in Y ∗, there is no guarantee that the term
[akα f (Xk)+ bk(1−α)g(Xk)]− [akα f (y)+ bk(1−α)g(y)] is always nonne-
gative. This is why the convergence results for the incremental subgradient
method with diminishing step sizes in Nedić & Bertsekas (2001) does not
apply to CDA.

Proof. Denote hi,k =5 fi(Φi−1,k) and `i,k =5gi(Φi−1,k) for all i= 1,2, · · · ,m.
By the non-expansive property of projection, we have

‖Φi,k− y‖2 ≤ ‖αψi,k +(1−α)ϕi,k− y‖2

= ‖α(ψi,k− y)+(1−α)(ϕi,k− y)‖2

= α2‖ψi,k− y‖2 +(1−α)2‖ϕi,k− y‖2

+2α(1−α)〈(ψi,k− y),(ϕi,k− y)〉
= α2‖Φi−1,k− y−akhi,k‖2 +(1−α)2‖Φi−1,k− y−bk`i,k‖2

+2α(1−α)〈(Φi−1,k− y−akhi,k),(Φi−1,k− y−bk`i,k)〉
= α2‖Φi−1,k− y‖2−2akα2〈hi,k,(Φi−1,k− y)〉+α2a2

k‖hi,k‖2

+(1−α)2‖Φi−1,k− y‖2−2bk(1−α)2〈`i,k,(Φi−1,k− y)〉
+(1−α)2b2

k‖`i,k‖2 +2α(1−α)‖Φi−1,k− y‖2

−2α(1−α)ak〈hi,k,(Φi−1,k− y)〉
−2α(1−α)bk〈`i,k,(Φi−1,k− y)〉
+2α(1−α)akbk〈hi,k, `i,k〉

= ‖Φi−1,k− y‖2−2(1−α)bk〈`i,k,(Φi−1,k− y)〉
+‖αakhi,k +(1−α)bk`i,k‖2−2αak〈hi,k,(Φi−1,k− y)〉

Since we have ‖hi,k‖ ≤Ci,‖`i,k‖ ≤ Di for all k = 0,1,2, · · · , we obtain

‖Φi,k− y‖2 ≤ ‖Φi−1,k− y‖2 +(αakCi +(1−α)bkDi)
2

−2〈(αakhi,k +(1−α)bk`i,k),(Φi−1,k− y)〉
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Summing over i = 1,2, · · · ,m, we get

m

∑
i=1
‖Φi,k− y‖2 ≤

m

∑
i=1
‖Φi−1,k− y‖2 +

m

∑
i=1

(αakCi +(1−α)bkDi)
2

−2
m

∑
i=1
〈(αakhi,k +(1−α)bk`i,k),(Φi−1,k− y)〉

So we have

‖Xk+1− y‖2 ≤ ‖Xk− y‖2 +
m

∑
i=1

(αakCi +(1−α)bkDi)
2

−2
m

∑
i=1
〈(αakhi,k +(1−α)bk`i,k),(Φi−1,k− y)〉

By the definition of subgradients hi,k and `i,k,

〈hi,k,(y−Φi−1,k)〉 ≤ fi(y)− fi(Φi−1,k)

and
〈`i,k,(y−Φi−1,k)〉 ≤ gi(y)−gi(Φi−1,k).

Then

‖Xk+1− y‖2 ≤ ‖Xk− y‖2−2(1−α)bk

m

∑
i=1

(gi(Φi−1,k)−gi(y))

+
m

∑
i=1

(αakCi +(1−α)bkDi)
2−2αak

m

∑
i=1

( fi(Φi−1,k)− fi(y))

So

‖Xk+1− y‖2 ≤ ‖Xk− y‖2−2αak( f (Xk)− f (y))−2(1−α)bk(g(Xk)−g(y))

−2αak

m

∑
i=1

( fi(Φi−1,k)− fi(Xk))+
m

∑
i=1

(αakCi +(1−α)bkDi)
2

−2(1−α)bk

m

∑
i=1

(gi(Φi−1,k)−gi(Xk))

Next we need to estimate fi(Φi−1,k)− fi(Xk) and gi(Φi−1,k)−gi(Xk).

Lemma 4.1.1. ‖Φi−1,k−Xk‖ ≤ ∑i−1
j=1(αakC j +(1−α)bkD j).
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Proof. We show Lemma 4.1.1 by induction. Note that Φ0,k−Xk = 0. Assume
that it holds for i−1. Then

‖Φi,k−Xk‖ = ‖(αψi,k +(1−α)ϕi,k)−Xk‖
≤ α‖ψi,k−Xk‖+(1−α)‖ϕi,k−Xk‖
≤ α‖Φi−1,k−akhi,k−Xk‖+(1−α)‖Φi−1,k−bk`i,k−Xk‖
≤ ‖Φi−1,k−Xk‖+αakCi +(1−α)bkDi by induction hypothesis

≤
i−1

∑
j=1

(αakC j +(1−α)bkD j)+αakCi +(1−α)bkDi.

This completes the proof of Lemma 4.1.1.

So

‖ fi(Φi−1,k)− fi(Xk)‖ ≤
i−1

∑
j=1

Ci(αakC j +(1−α)bkD j)

and

‖gi(Φi−1,k)−gi(Xk)‖ ≤
i−1

∑
j=1

Di(αakC j +(1−α)bkD j).

Plugging into (14), we have

‖Xk+1− y‖2 ≤ ‖Xk− y‖2−2αak( f (Xk)− f (y))−2(1−α)bk(g(Xk)−g(y))

+2
m

∑
i=1

(αakCi +(1−α)bkDi)
i−1

∑
j=1

(αakC j +(1−α)bkD j)

+
m

∑
i=1

(αakCi +(1−α)bkDi)
2

= ‖Xk− y‖2−2αak( f (Xk)− f (y))−2(1−α)bk(g(Xk)−g(y))

+(
m

∑
i=1

(αakCi +(1−α)bkDi))
2

= ‖Xk− y‖2−2αak( f (Xk)− f (y))−2(1−α)bk(g(Xk)−g(y))

+(αakC+(1−α)bkD)2.

This completes the proof of Lemma 4.1.
Remark. To apply Lemma 4.1, we must choose a right y for CDA. To do

so, we need to define the following P(α,λ ):

P(α,λ ) minimizey∈Y F(y,α,λ )≡ (α f +λ (1−α)g)(y)
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where α ∈ (0,1). The parameter λ is some positive scalar. Then we introduce
the following notation

F∗(α,λ ) = inf
y∈Y

F(y,α,λ ), Y ∗(α,λ ) = {y ∈ Y | F(y,α,λ ) = F∗(α,λ )},

and dist(x,Y ∗(α,λ )), the Euclidean distance. Note that Y ∗ and Y ∗(α,λ ) are
related but they are not the same, depending on α and λ .

Proposition 4.2. Let Assumptions 3.1 and 3.2 hold. Let {Xk} be the price
sequence generated by CDA (5)-(8). Then

liminf
k→∞

dist(Xk,Y ∗(α,λ )) = 0.

Proof. From Lemma 4.1, we obtain for all y∗ ∈ Y ∗(α,λ ) and k ≥ 0,

‖Xk+1− y∗‖2 ≤ ‖Xk− y∗‖2−2(bk−λak)(1−α)(g(Xk)−g(y∗))
−2ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)]
+(αakC+(1−α)bkD)2.

Since Y is compact, g is continuous, image (g(Y )) is bounded. That means
there exists M > 0 such that |g(y)| ≤ M for all y ∈ Y . Hence, for any N =
1,2, · · · ,

0 ≤ ‖XN+1− y∗‖2 ≤ ‖X0− y∗‖2 +
N

∑
k=0

(αakC+(1−α)bkD)2

−2
N

∑
k=0

ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)]

+2(
N

∑
k=0
|bk−λak|) · (1−α) ·2M

= I− II + III + IV.

I is a constant. When N goes to infinity, III <+∞ since ∑∞
k=0 |bk−λak|<+∞

and

IV ≤ 2(α2C2
∞

∑
k=0

a2
k +(1−α)2D2

∞

∑
k=0

b2
k)<+∞.
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Thus, II <+∞. We obtain

liminf
k→∞

[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)] = 0.

Otherwise, ∃δ > 0 such that for any natural number k

(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)> δ .

And then II > δ ∑∞
k=0 ak =+∞, a contradiction.

Now take a subsequence {Xnk} of {Xk} such that

0≤ (α f +(1−α)λg)(Xnk)− (α f +(1−α)λg)(y∗)<
1
k
.

By the fact that Y is compact, {Xnk} has at least one accumulation point y0,
say, and since α f +(1−α)λg is continuous, we have that

lim
k→∞

(α f +(1−α)λg)(Xnk) = (α f +(1−α)λg)(y0).

By the definition of {Xnk}, we know that

lim
k→∞

(α f +(1−α)λg)(Xnk) = (α f +(1−α)λg)(y∗), y∗ ∈ Y ∗(α,λ ).

Hence, y0 ∈ Y ∗(α,λ ). So

liminf
k→∞

dist(Xk,Y ∗(α,λ )) = 0.

This completes the proof.

Proposition 4.3. Let Assumptions 3.1 and 3.2 hold. Then the sequence {Xk}
in Proposition 4.2 converges to an optimal solution y0 ∈ Y ∗(α,λ ).

Proof. Let

δk = 2ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y0)]

+2(|bk−λak|) · (1−α) ·2M+(αakC+(1−α)bkD)2 > 0.
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22 Dynamic double auction

Then ∑∞
k=0 δk = II + III + IV < +∞ (see the proof of Proposition 4.2). We

also have that

‖Xk+1− y0‖2 ≤ ‖Xk− y0‖2 +(αakC+(1−α)bkD)2

−2ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y0)]

+2(|bk−λak|) · (1−α) ·2M
≤ ‖Xk− y0‖2 +δk.

Then applying Proposition 1.3 in Correa & Lemaréchal (1993) to the result in
Proposition 4.2, we have that

lim
k→∞

Xk = y0.

Theorem 4.4. Let Assumptions 3.1 and 3.2 hold. Assume that α = λ
1+λ and

α ∈ (0,1). Then the sequence {Xk} generated by CDA (5)-(8) converges to an
optimal solution in Y ∗.

Proof. It follows from Proposition 4.3 and the definition of Y ∗(α,λ ), which
is the same as Y ∗ when (1−α)λ = α holds. This completes the proof.

Remark. Suppose the limit limk→∞
bk
ak

exists and Assumptions 3.1 and

3.2 hold. Then we will see in Section 4.4 that λ = limk→∞
bk
ak

. Assume that
λ = 1. Then Theorem 4.4 shows that the price process {Xk} converges to a
Walrasian equilibrium of the underlying economy if α = 1

2 . Once λ changes,
we must also change α accordingly in order to achieve a Walrasian equilibrium.
Otherwise the price process {Xk} still converges but it may not converge to
a Walrasian equilibrium of the original economy. In particular, Theorem 4.4
fails if Assumption 3.2 does not hold, as shown in Xu et al. (2015, 2016) by
numerical simulations.

4.2. Main Result for RDA

Assumption 4.5. The sequence {wk}({w′k}) is a sequence of independent
random variables, each uniformly distributed over the set {1,2, · · · ,m} ({1,2, · · · ,n}).
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Furthermore, the two sequences {wk} and {w′k} are independent of the se-
quence {Xk}.

Since Y is compact, f and g are regular, we have that the two sets of
subgradients {5 fwk(Xk),k = 0,1,2, · · ·} and {5gw′k

(Xk),k = 0,1,2, · · ·} are
bounded. That is, there exist some positive constants C0 and D0 such that, with
probability 1, ‖5 fwk(Xk)‖ ≤C0 and ‖5gw′k

(Xk)‖ ≤ D0,∀k ≥ 0.

Proposition 4.6. Let Assumptions 3.1, 3.3, and 4.5 hold. Then the sequence
{Xk} generated by RDA (9)-(11) converges to an optimal solution in Y ∗(α,λ )
with probability 1.

Proof. Since Y is compact and g is continuous, there exists M such that
|g(y)| ≤M for all y ∈ Y . We obtain for all k and y ∈ Y ∗(α,λ ), as in the proof
of Proposition 4.2, by applying Lemma 4.1 to the case with m = 1:

E{‖Xk+1− y‖2|Fk} ≤ ‖Xk− y‖2−2(1−α)
bk

n
(g(Xk)−g(y))

+(αakC0 +(1−α)bkD0)
2−2α

ak

m
( f (Xk)− f (y))

≤ ‖Xk− y‖2 +(αakC0 +(1−α)bkD0)
2

−2ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)]

+2|bk

n
−λ

ak

m
| · |g(Xk)−g(y)|

≤ ‖Xk− y‖2 +4M|bk

n
−λ

ak

m
|+(αakC0 +(1−α)bkD0)

2

−2ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)]

where Fk = {X0,X1, · · · ,Xk}.
Two definitions are in order. A sample path is a sequence of {Xk}. For

each y∗ ∈ Y ∗(α,λ ), let Ωy∗ denote the set containing all sample paths {Xk}
such that

2
∞

∑
k=0

ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y∗)]≤ K <+∞,

and that {‖Xk− y∗‖} converges. We need the following.
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24 Dynamic double auction

Supermartingale Convergence Theorem (Theorem 3.1 in Nedić & Bertse-
kas, 2001). Let Xk,Zk and Wk, k = 0,1,2, · · · , be three sequences of random
variables and let Fk, k = 0,1,2, · · · , be sets of random variables such that
Fk ⊂Fk+1 for all k. Suppose that:

(a) The random variables Xk, Zk, and Wk are nonnegative, and are functions
of the random variables in Fk.

(b) For each k, we have E{Xk+1|Fk} ≤ Xk−Zk +Wk.
(c) There holds ∑∞

k=0Wk < ∞.
Then, we have ∑∞

k=0 Zk < ∞, and the sequence Xk converges to a nonnega-
tive random variable X , with probability 1.

By the supermartingale convergence theorem, for each y∗ ∈ Y ∗(α,λ ),
we have that Ωy∗ is a set of probability 1. Let {νi} be a countable subset
of the relative interior relint(Y ∗(α,λ )) that is dense in Y ∗(α,λ ). Define
Ω =

⋂∞
i=1 Ωνi . Then Ω has probability 1 since

Prob(
∞⋃

i

Ω̄νi)≤
∞

∑
i=1

Prob(Ω̄νi) = 0.

For each sample path in Ω, the sequence ‖Xk−νi‖ converges so that {Xk} is
bounded. By

2
∞

∑
k=0

ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)]≤ K <+∞,

we have

lim
k→∞

[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)] = 0.

Otherwise, if there exist δ > 0 such that for all k,

(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)> δ ,

then we have

2
∞

∑
k=0

ak

m
[(α f +λ (1−α)g)(Xk)− (α f +λ (1−α)g)(y)]>

δ
m

∞

∑
k=0

ak =+∞,

which is impossible.
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Continuity of α f +λ (1−α)g implies that all the limit points of {Xk} are
belong to Y ∗(α,λ ). Since {νi} is a dense subset of Y ∗ and ‖Xk−vi‖ converges,
it follows that {Xk} cannot have more than one limit point, so it must converge
to some vector y ∈ Y ∗(α,λ ). This completes the proof of Proposition 4.6.

Remark. In the proof above, we choose y∗ in Y ∗(α,λ ). With such a
choice, there is no guarantee that the term

2α
ak

m
( f (Xk)− f (y∗))−2(1−α)

bk

n
(g(Xk)−g(y∗))

is nonnegative for all k, as required in supermartingale convergence theo-
rem. This is why we need Assumption 3.3 because we need to take the term
4M|bk

n −λ ak
m | out of it.

Theorem 4.7. Let Assumptions 3.1, 3.3 and 4.5 hold. Assume that (1−α)λ =
α and α ∈ (0,1). Then the sequence {Xk} generated by RDA (9)-(11) conver-
ges to an optimal solution in Y ∗ with probability 1.

Proof. It follows from Proposition 4.6 and the definition of Y ∗(α,λ ), which
coincides with Y ∗ when the condition (1−α)λ = α holds. This completes the
proof.

Remark. Under the assumptions in Theorem 4.7, and also assume that
the limit limk→∞

bk
ak

exists and equals 1. Moreover, assume that m = 2n. Then

λ = 2 because λ = m
n limk→∞

bk
ak

, by Proposition 4.10 in Section 4.4. Theorem
4.7 shows that the price process {Xk} converges to a Walrasian equilibrium of
the underlying economy, with probability 1, if α = 2

3 . Once λ , n or m has a
change, we must also change α accordingly in order to achieve a Walrasian
equilibrium. Otherwise the price process {Xk} still converges but it may not
converge to a Walrasian equilibrium of the underlying economy. Once again,
Assumption 3.3 is the key. If it does not hold, then Theorem 4.7 fails again, as
shown in Xu et al. (2015, 2016).

4.3. A Numerical Example

The following example has been also studied by Xu et al. (2014, 2015, 2016).
Now we use this example to illustrate why Theorems 4.4 and 4.7 may fail to
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26 Dynamic double auction

converge to a Walrasian equilibrium of the underlying economy if the condition
λ = α

1−α does not hold. There are three sellers, i = 1,2,3, with each seller
i = 1,2,3 an initial endowment of (i+1) units of an identical (divisible) good.
There are five buyers j = 1,2, · · · ,5, each buyer j’s consumer’s surplus or
profit function g j : R+→ R is obtained from

g j(y) = max
q≥0

u j(q)−qy,

where u j : [0,∞) → R+ is j’s utility function given by u j(q) = ( j + 1) +
2
√

( j+1)q. The supply curve for each seller is Si(y) = [0, i+ 1] for y = 0
and Si(y) = i+1 for y > 0, i = 1,2,3. The demand curve D j(y) = q∗j , where
u′i(q

∗
j) = y for y >> 0, j = 1,2, · · · ,5. In this example, we can set fi(y) =

(i+1)y for i∈ I = {1,2,3} and g j(y) = ( j+1)+ j+1
y for j ∈ J = {1,2, · · · ,5}

so that D j(y) = q∗j =
j+1
y2 . Thus, the equilibrium price equals y∗=

√
20
9 = 1.49.

Note that the three sellers and five buyers have no knowledge where the
equilibrium price 1.49 is. Neither do they know the total demand and supply.
Each of them just submits their bid and ask based on their own private informa-
tion. The two double auctions acting as a clearinghouse integrate individually
“dispersed and incomplete information” (Hayek, 1945) into prices. While the
equilibrium price equals y∗ = 1.49, the price, to which the price process under

RDA converges, is
√

λ (1−α)
α y∗. Thus, if α = 0.1 and λ = 1, the price process

under RDA converges to the price 3y∗, 200% higher than the original Walrasian
equilibrium price y∗. If α = 0.5 while λ = 9, the price process converges to
3y∗ as well. A crash price is also possible. For example, with α = 0.8 and
λ = 1, the price process converges to 1

2y∗, 50% lower than the equilibrium
price of the original economy. Xu et al. (2015, 2016) provide simulations that
are consistent with these theoretical predictions under Theorem 4.7.

For Theorem 4.4, we may assume that there are five sellers to the above
example. Now the original Walrasian equilibrium becomes y∗ = 1. With
α = 0.1 and λ = 1, the CDA generates a sequence of prices that converges to
3, 200% higher than the original equilibrium price y∗ = 1. Note that the initial
distribution of endowments among the five agents is not that important.

Assume that limk
bk
ak

exists and equals 1. There are some λ such that
the λ conditions in Assumptions 3.2 and 3.3 hold. Then we know that λ =
limk

bk
ak

= 1 for CDA and RDA for five sellers and five buyers economy, the
two auctions generate price sequences that converge to the equilibrium price 1

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 27 — #31

“p˙01” — 2016/12/18 — 10:04 — page 27 — #27

Jinpeng Ma, Qiongling Li 27

when α = 1
2 . Any other α can result in a price that is either higher or lower

than the equilibrium price 1.
Consider the three sellers and five buyers economy with RDA again. Also

assume that limk
bk
ak

exists and equals 1 and there are some λ such that As-
sumption 3.3 holds. Then λ = 3

5 . In order for RAD to achieve the equilibrium
price 1.49, one must have α equal 3

8 . Any other α will result in a price that is
either higher or lower than the equilibrium price 1.49. Therefore, whether DA
can achieve an equilibrium depends on a combination of α and λ and the λ
condition.

4.4. A Discussion about the λ Condition

We have seen that λ plays a key role. In Assumption 3.2, we need λ to satisfy
the condition such that ∑∞

k=0 |bk−λak|<+∞. Is there such a λ for any two
sequences {ak} and {bk} that satisfy Assumption 3.1? Unfortunately the ans-
wer is not always affirmative. The relative strength between ask and bid step
sizes is quite subtle for CDA or RDA mechanism.

Example 4.8. Let

ak =





1
k , k is odd

1
k2 , k is even

bk =





1
k2 , k is odd

1
k , k is even

Then

∞

∑
k=0
|ak−λbk| ≥ ∑

k≥[λ ]+1

k is odd

|ak−λbk|

= ∑
k≥[λ ]+1

k is odd

ak−λ ∑
k≥[λ ]+1

k is odd

bk

= ∑
k≥[λ ]+1

k is odd

1
k
−λ ∑

k≥[λ ]+1

k is odd

1
k2 =+∞
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28 Dynamic double auction

for any λ .

The next example shows that even if the limit limk→∞
bk
ak

exits and equals 1,
there may not exist λ that satisfies Assumption 3.2.

Example 4.9. Let ak =
1

k
3
4

and bk = ak(1+a
1
3
k ). Then

lim
k→∞

bk

ak
= lim

k→∞
(1+

1

k
1
4
) = 1.

But
∞

∑
k=0
|bk−ak|=

∞

∑
k=0

a
4
3
k =

∞

∑
k=0

1
k
=+∞.

Note that, by Proposition 4.10 below, if there exists a λ that satisfies Assump-
tion 3.2, it can only be 1. Hence, no λ exists and satisfies Assumption 3.2 here.

The following answers what λ must be.

Proposition 4.10. Let Assumption 3.1 hold. If ∑∞
k=0 |bk− λak| < +∞ for

some λ , then the following must hold

liminf
k→∞

bk

ak
≤ λ ≤ limsup

k→∞

bk

ak
.

Proof. If there exist δ > 0 and k0 such that bk
ak
−λ > δ for all k ≥ k0, then

∞

∑
k=k0

|bk−λak| ≥ δ
∞

∑
k=k0

ak =+∞, a contradiction.

Hence, liminfk→∞
bk
ak
≤ λ is one necessary condition for ∑∞

k=0 |bk−λak|<+∞.

Similarly, limsupk→∞
bk
ak
≥ λ . This completes the proof.

Proposition 4.11. Let Assumption 3.1 hold. If there exists a λ such that
∑∞

k=0 |bk−λak|<+∞, then it must be unique.
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Proof. Suppose, on the contrary, that there are two λ and λ ′ such that

∞

∑
k=0
|bk−λak|<+∞ and

∞

∑
k=0
|bk−λ ′ak|<+∞.

Then

|λ −λ ′|
∞

∑
k=0

ak ≤
∞

∑
k=0
|bk−λak|+

∞

∑
k=0
|bk−λ ′ak|<+∞.

But ∑∞
k=0 ak =+∞, a contradiction. This completes the proof.

Thus, there exists at most one λ that satisfies Assumption 3.2 for any two
given sequences {ak} and {bk} satisfying Assumption 3.1. But for any given
λ , there are a family of step sizes {ak} and {bk} that satisfy Assumptions 3.1
and 3.2. Let ak =

1
k and bk = 2ak + ca2

k . Then Assumption 3.2 is satisfied with
λ = 2 for any positive finite number c and any {ak} that satisfies Assumption
3.1.

5. DA MECHANISM WITH STOCHASTIC NOISES

Let f = ∑m
i=1 fi and g = ∑m

i=1 gi. Assume X0 is a random initial vector. Let εi,k
and δi,k denote two independent random noise vectors. (DA) mechanism with
stochastic noises is defined as follows.

Let Φ0,k = Xk. For i = 1,2, · · · ,m, let

ψi,k = Φi−1,k−ak(hi,k + εi,k), hi,k ∈ ∂ fi(Φi−1,k) (14)
ϕi,k = Φi−1,k−bk(`i,k +δi,k), `i,k ∈ ∂gi(Φi−1,k) (15)
Φi,k = PY (αψi,k +(1−α)ϕi,k), α ∈ [0,1]. (16)

Let
Xk+1 = Φm,k. (17)

PY is the Euclidean projection onto Y .
We define F i

k to be the σ -algebra generated by the sequence

Φ0,0,Φ1,0, · · · ,Φm,0, · · · ,Φi,k.

Note that F 0
k is also denoted as Fk.
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Assumption 5.1. There exist deterministic scalar sequences {µk}, {νk}, {τk}
and {σk} that satisfy the following inequalities for all i and k:

‖E[εi,k|F i−1
k ]‖ ≤ µk, ‖E[δi,k|F i−1

k ]‖ ≤ τk;

E[‖εi,k‖2|F i−1
k ]≤ ν2

k , E[‖δi,k‖2|F i−1
k ]≤ σ2

k .

Note that µk ≤ νk and τk ≤ σk for all k = 0,1, · · · . The noise terms in the
assumption above are similar to those in Ram et al. (2009). Their results,
however, do not apply to (DA) mechanism (14)-(17) because there are two
sequences of step-sizes that interact together to determine the price iteration
process {Xk}.

The following lemma is the key and its proof is provided in the Appendix.

Lemma 5.2. Let Assumption 5.1 hold. Then the sequence {Xk} generate by
(DA) mechanism with stochastic noises (14)-(17) is such that for any step-size
rule and any y ∈ Y ,

E[‖Xk+1− y‖2|F m
k−1] ≤ ‖Xk− y‖2−2αak( f (Xk)− f (y))

−2(1−α)bk(g(Xk)−g(y))

+2(αakµk +(1−α)bkτk)
m

∑
i=1

E[‖Φi−1,k− y‖|F m
k−1]

+(αakC+(1−α)bkD+αmakνk +(1−α)mbkσk)
2,

Note that F m
k−1 = F 0

k .

5.1. Main Result with Stochastic Noises

Assumption 5.3. The following holds:

∞

∑
k=0

akµk < ∞,
∞

∑
k=0

bkτk < ∞,
∞

∑
k=0

a2
kν2

k < ∞,
∞

∑
k=0

b2
kσ2

k < ∞.

Proposition 5.4. Let Assumptions 3.1, 3.2, 5.1 and 5.3 hold. Then the se-
quence {Xk} generated by (DA) mechanism with stochastic noises (14)-(17)
converges to an optimal solution y∗ ∈ Y ∗(α,λ ), with probability 1.
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Proof. By Lemma 5.2, for any y∗ ∈ Y ∗(α,λ ), we have that

E[‖Xk+1− y∗‖2|F m
k−1]≤ ‖Xk− y∗‖2 +Mk

−2αak( f (Xk)− f (y∗))−2(1−α)bk(g(Xk)−g(y∗))

+2(αakµk +(1−α)bkτk)
m

∑
i=1

E[‖Φi−1,k− y∗‖|F m
k−1],

where Mk = (αakC+(1−α)bkD+mαakνk +m(1−α)bkσk)
2.

Since

E[‖Φi−1,k− y∗‖|F m
k−1] ≤ E[‖Φi−1,k−Xk‖|F m

k−1]+‖Xk− y∗‖

≤
i−1

∑
j=1

(αakC j +(1−α)bkD j +αakνk

+(1−α)bkσk)+‖Xk− y∗‖.

In the second inequality above we have used Lemma 5.2.1 in the Appendix
and Assumption 5.1.

Hence,

2(αakµk + (1−α)bkτk)
m

∑
i=1

E[‖Φi−1,k− y∗‖|F m
k−1]

≤ 2(αakµk +(1−α)bkτk)
m

∑
i=1
{

i−1

∑
j=1

(αakC j

+(1−α)bkD j +αakνk +(1−α)bkσk)+‖Xk− y∗‖}

≤ 2(αakµk +(1−α)bkτk)
m

∑
i=1

i−1

∑
j=1
{αakC j

+(1−α)bkD j +αakνk +(1−α)bkσk}
+m(αakµk +(1−α)bkτk)(‖Xk− y∗‖2 +1).

In the last inequality above we have used the inequality a2 +1≥ 2a.
And then

E[‖Xk+1− y∗‖2|F m
k−1] ≤ (1+m(αakµk +(1−α)bkτk))‖Xk− y∗‖2

+(Mk +Nk)−2αak( f (Xk)− f (y∗))
−2(1−α)bk(g(Xk)−g(y∗)),

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 32 — #36

“p˙01” — 2016/12/18 — 10:04 — page 32 — #32

32 Dynamic double auction

where

Nk = 2(αakµk +(1−α)bkτk)
m

∑
i=1

i−1

∑
j=1
{αakC j +(1−α)bkD j

+αakνk +(1−α)bkσk}+m(αakµk +(1−α)bkτk).

We need the following lemma in our proof below.

Lemma 3.2 in Ram et al. (2009): Let (Ω,F ,P) be a probability space and
let F0 ⊂F1 ⊂ ·· · be a sequence of sub σ -fields of F . Let uk,vk and wk,
k = 0,1,2, · · · , be non-negative Fk-measurable random variables and let {qk}
be a deterministic sequence. Assume that ∑∞

k=0 qk < ∞, ∑∞
k=0 wk < ∞, and

E{uk+1|Fk} ≤ (1+qk)uk− vk +wk

hold with probability 1. Then, with probability 1, the sequence {uk} converges
to a non-negative random variable and ∑∞

k=0 vk < ∞.

To apply Lemma 3.2 in Ram et al. (2009), let qk =m(αakµk+(1−α)bkτk)
and Wk = Mk +Nk.

Then

∞

∑
k=0

qk = mα
∞

∑
k=0

akµk +m(1−α)
∞

∑
k=0

bkτk <+∞

∞

∑
k=0

Wk =
∞

∑
k=0

(Mk +Nk).

Since, using a2 +b2 ≥ 2ab and Assumption 5.3,

∞

∑
k=0

Mk =
∞

∑
k=0

(αakC+(1−α)bkD+mαakνk +m(1−α)bkσk)
2

≤ 4
∞

∑
k=0

[(αakC)2 +((1−α)bkD)2 +(mαakνk)
2 +(m(1−α)bkσk)

2]

< ∞
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and, by µk ≤ νk and τk ≤ σk in Assumption 5.1,

∞

∑
k=0

Nk =
∞

∑
k=0

2(αakµk +(1−α)bkτk)
m

∑
i=1

i−1

∑
j=1
{αakC j

+(1−α)bkD j +αakνk +(1−α)bkσk}+
∞

∑
k=0

qk

≤
∞

∑
k=0

[
m

∑
i=1

(αakνk +(1−α)bkσk +αakCi +(1−α)bkDi)]
2 +

∞

∑
k=0

qk

≤
∞

∑
k=0

Mk +
∞

∑
k=0

qk < ∞,

we have that ∑∞
k=0Wk < ∞.

Therefore, we get, with probability 1, the sequence ‖Xk− y∗‖2 converges
to some non-negative random variable for every y∗ ∈ Y (α,λ ). Also with
probability 1, we have

∞

∑
k=0

(αak( f (Xk)− f (y∗))+(1−α)bk(g(Xk)−g(y∗)))<+∞,

which implies that
∞

∑
k=0

ak[(α f +(1−α)λg)(Xk)− (α f +(1−α)λg)(y∗)]

≤
∞

∑
k=0

(αak( f (Xk)− f (y∗))+(1−α)bk(g(Xk)−g(y∗)))

+
∞

∑
k=0

(1−α)|bk−λak||g(Xk)−g(y∗)|

<+∞.

Since Y is compact and g is continuous, the image of g is bounded. Assume
∃M > 0 such that |g(y)| ≤M for all y ∈ Y . Then

∞

∑
k=0

(1−α)|bk−λak||g(Xk)−g(y∗)| ≤ 2M(1−α)
∞

∑
k=0
|bk−λak|<+∞.

Since ∑∞
k=0 ak =+∞, then

liminf
k→∞

(α f +(1−α)λg)(Xk) = (α f +(1−α)λg)(y∗),
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with probability 1.
By considering a sample path for which

liminf
k→∞

(α f +(1−α)λg)(Xk) = (α f +(1−α)λg)(y∗)

and ‖Xk− y∗‖2 converges for any y∗, we conclude that the sample sequence
must converge to some y∗ in view of continuity of f . Hence, the sequence
{Xk} converges to some optimal solution in Y ∗(α,λ ) with probability 1. This
completes the proof of Proposition 5.4x .

Remark. Strictly speaking, the term 2αak( f (Xk)− f (y∗))+2(1−α)bk[
g(Xk)−g(y∗)] may not be nonnegative so that we cannot directly apply Lemma
3.2. But this will not cause a problem as long as Assumptions 3.1 and 3.2 are
satisfied because we can always follow the proof of Proposition 4.6 to remove
the term 4M|bk

n −λ ak
m | from it.

Immediately we obtain from Proposition 5.4 the following.

Theorem 5.5. Let Assumptions 3.1, 3.2, 5.1 and 5.3 hold. Assume that
λ = α

1−α , α ∈ (0,1). Then the sequence {Xk} generated by the DA mecha-
nism with stochastic noises (14)-(17) converges to an optimal solution in Y ∗,
with probability 1.

5.2. RDA Mechanism with Stochastic Noises

Recall that wk is a random variable taking equiprobable values from the set
{1,2, · · · ,m} and w′k is a random variable taking equiprobable values from the
set {1,2, · · · ,n}. Also recall that hwk(Xk) ∈ ∂ fwk(Xk) and `w′k

(Xk) ∈ ∂gw′k
(Xk),

where if wk takes a value j, then the vector ∂ fwk(Xk) is ∂ f j(Xk), similarly for
g.

Our sequence {Xk} is generated by (RDA) mechanism with stochastic
noises as below.

Given Xk, let

ψk+1 = Xk−ak(hwk(Xk)+ εwk,k), hwk(Xk) ∈ ∂ fwk(Xk) (18)

and
ϕk+1 = Xk−bk(`w′k

(Xk)+δw′k,k
), `w′k

(Xk) ∈ ∂gw′k
(Xk). (19)
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And set

Xk+1 = PY (αψk+1 +(1−α)ϕk+1), α ∈ [0,1]. (20)

PY is the Euclidean projection onto Y .

We define Fk to be the σ -field generated by X0,X1, · · · ,Xk.

Assumption 5.8. The sequence {wk}({w′k}) is a sequence of independent
random variables, each uniformly distributed over the set {1,2, · · · ,m}({1,2, · · · ,n}).
Furthermore, the two sequences {wk} and {w′k} are independent of the se-
quence {Xk}.

Proposition 5.9. Let Assumptions 3.1, 3.3, 5.1, 5.3, and 5.8 hold. Then the
sequence {Xk} generated by (RDA) with randomization and stochastic noises
(18)-(20) converges to an optimal solution in Y ∗(α,λ ), with probability 1.

Proof. The proof is similar to those of Proposition 4.6 and Proposition 5.4 and
thus omitted.

The following result follows from Proposition 5.9 and the definition of
Y ∗(α,λ ), which is the same as Y ∗ when the equality λ = α

1−α holds.

Theorem 5.10. Let Assumptions 3.1, 3.3, 5.1, 5.3, and 5.8 hold. Assume that
λ = α

1−α , α ∈ (0,1). Then the sequence {Xk} generated by (RDA) mechanism
with stochastic noises (18)-(20) converges to an optimal solution in Y ∗, with
probability 1.

6. CONCLUDING REMARKS

This paper studies two dynamic double auctions and examines the question
of whether the price processes they generate can converge to a Walrasian
equilibrium of the underlying economy. We show that the weight α and the
λ condition are important for the convergence of these price processes. With
the right combinations of α and λ , the price processes generated by the two
auctions converge to a Walrasian equilibrium of the underlying economy. If
the combination is not right, the price processes may generate a bubble or
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crash. Numerical examples show that such a bubble or crash can reach an
enormous level, as shown in Xu et al. (2015, 2016), which provide extensions
of the convergence results presented in Ma & Li (2011) to more complicated
environments. Our results and those in the literature imply that the form of
double auctions does matter very much for the price determination of an asset
or a good traded in an exchange market. Because human emotion such as fear
and greed may affect the two parameters, our results also shed some important
light on how human emotion may impact the price of an asset in an exchange
market that uses double auctions as clearinghouses.

In a laissez-faire economy, private information can be successively incor-
porated into the price of a good through individual decisions of what to buy
or sell. Without knowing what may be the price at equilibrium for a good,
the market via an invisible hand can reach an equilibrium. Such a view is
the foundation for economic analyses based on equilibrium. The incremental
subgradient method in Nedić & Bertsekas (2001) can be used to show how this
may be done in theory for a quasilinear economy, with some intervention from
a central authority by setting the step size rules properly. Such an approach
is especially important for market mechanisms since every individual has a
piece of private information while the market equilibrium prices must reflect
all relevant private information. Chen et al. (2016) provide a different approach
for a totally uncoordinated and decentralized market, in which every firm and
every worker can form a matching pair randomly and seek opportunities to
improve their individual positions. They prove that without any clearinghouse
or coordination, starting with any matching and any salary scheme system,
stable or not, a natural decentralized random matching process converges to a
Walrasian equilibrium with probability one in finite time. It remains open to
question if there is a good way to integrate the two approaches.

The study of the competitive efficiency of a DA mechanism started with
experiments for an identical good in V. L. Smith (1962, 1965) where an artifi-
cial market was created with competitive equilibrium unknown to the buyers
and sellers. In these experiments the DA mechanism converged quickly to a
neighbor of the competitive equilibrium, even with a few participants. A great
number of experiments have been conducted since then and a similar result
has been obtained (Friedman & Rust, 1993). In recent years the competitive
efficiency of a DA mechanism has been retested in experiments with more
complicated environments, which are deliberately designed to be a proxy of an
exchange market. V. L. Smith et al. (1988) show that both bubbles and crashes
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can be generated by a DA mechanism under these environments. Therefore,
the allocative efficiency of a DA mechanism is a complicated issue. We show
in this paper that the efficiency of our two DA mechanisms depends on the
relative strength of the two step-sizes of the bid and the ask through a parameter
λ and the weight how these bids and asks enter the price process. The two
parameters may be considered as two “steering” factors because they act just
like a steering in a vehicle; a different combination of the two directs the price
process to different places.

Our study of the two DA mechanisms is applicable to a market where there
are potentially a large number of agents and a large number of assets. The
primary task of our paper is to provide an explanation of the price determination
of a good. Our results are closely related to those obtained with the incremental
subgradient method in Nedić & Bertsekas (2001) and Ram et al. (2009).
Because the problem P has so many other applications (Bertsekas, 2009,
2012), our DA mechanisms provide an alternative explanation of how an
optimal solution can be approached for those environments (e.g., distributed
and neural networks).
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7. APPENDIX

This appendix contains the proof of Lemma 5.2 which is divided into several steps.

Proof of Lemma 5.2. By non-expansive property of projection,

‖Φi,k− y‖2 ≤ ‖αψi,k +(1−α)ϕi,k− y‖2

= ‖α(ψi,k− y)+(1−α)(ϕi,k− y)‖2

= α2‖ψi,k− y‖2 +(1−α)2‖ϕi,k− y‖2 +2α(1−α)〈ψi,k− y,ϕi,k− y〉
= α2‖Φi−1,k− y−akhi,k−akεi,k‖2

+(1−α)2‖Φi−1,k− y−bk`i,k−bkδi,k‖2

+2α(1−α)〈Φi−1,k− y−akhi,k−akεi,k,Φi−1,k− y−bk`i,k−bkδi,k〉
= α2‖Φi−1,k− y−akhi,k‖2 +α2a2

k‖εi,k‖2

−2α2〈Φi−1,k− y−akhi,k,akεi,k〉+2α(1−α)akbk〈εi,k,δi,k〉
+(1−α)2‖Φi−1,k− y−bk`i,k‖2 +(1−α)2b2

k‖δi,k‖2

−2(1−α)2〈Φi−1,k− y−bk`i,k,bkδi,k〉
+2α(1−α)〈Φi−1,k− y−akhi,k,Φi−1,k− y−bk`i,k〉
−2α(1−α)〈Φi−1,k− y−akhi,k,bkδi,k〉
−2α(1−α)〈Φi−1,k− y−bk`i,k,akεi,k〉

= ‖α(Φi−1,k− y−akhi,k)+(1−α)(Φi−1,k− y−bk`i,k)‖2

+‖αakεi,k +(1−α)bkδi,k‖2

−2α〈Φi−1,k− y−akhi,k,αakεi,k +(1−α)bkδi,k〉
−2(1−α)〈Φi−1,k− y−bk`i,k,αakεi,k +(1−α)bkδi,k〉

= ‖Φi−1,k− y‖2−2αak〈hi,k,(Φi−1,k− y)〉
−2(1−α)bk〈`i,k,(Φi−1,k− y)〉
+‖αakhi,k +(1−α)bk`i,k‖2 +‖αakεi,k +(1−α)bkδi,k‖2

−2α〈Φi−1,k− y−akhi,k,αakεi,k +(1−α)bkδi,k〉
−2(1−α)〈Φi−1,k− y−bk`i,k,αakεi,k +(1−α)bkδi,k〉

Taking conditional expectations with respect to the σ -field F i−1
k leads to
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E[‖Φi,k− y‖2|F i−1
k ] ≤ {‖Φi−1,k− y‖2−2αak〈hi,k,(Φi−1,k− y)〉

−2(1−α)bk〈`i,k,(Φi−1,k− y)〉+‖αakhi,k +(1−α)bk`i,k‖2}
+{E[‖αakεi,k +(1−α)bkδi,k‖2|F i−1

k ]

−2α〈Φi−1,k− y−akhi,k,E[αakεi,k +(1−α)bkδi,k|F i−1
k ]〉

−2(1−α)〈Φi−1,k− y−bk`i,k,

E[αakεi,k +(1−α)bkδi,k|F i−1
k ]〉}

= I + II.

Consider II first. We have that, by Assumption 5.1,

II ≤ (αakνk +(1−α)bkσk)
2 +2α(‖Φi−1,k− y‖+ak‖hi,k‖)(αakµk +(1−α)bkτk)

+2(1−α)(‖Φi−1,k− y‖+bk‖`i,k‖)(αakµk +(1−α)bkτk)

= (αakνk +(1−α)bkσk)
2 +2‖Φi−1,k− y‖(αakµk +(1−α)bkτk)

+2αakCi(αakµk +(1−α)bkτk)+2(1−α)bkDi(αakµk +(1−α)bkτk).

Now consider I. Since hi,k ∈ ∂ fi(Φi−1,k) and `i,k ∈ ∂gi(Φi−1,k) so that

〈hi,k,(y−Φi−1,k)〉 ≤ fi(y)− fi(Φi−1,k)

and
〈`i,k,(y−Φi−1,k)〉 ≤ gi(y)−gi(Φi−1,k),

we have that

I ≤ ‖Φi−1,k− y‖2−2αak( fi(Φi−1,k)− fi(y))−2(1−α)bk(gi(Φi−1,k)−gi(y))

+‖αakCi +(1−α)bkDi‖2.

Taking the expectations conditional on F m
k−1 = F 0

k , we obtain from I + II that

E[‖Φi,k− y‖2|F m
k−1] ≤ E[‖Φi−1,k− y‖2|F m

k−1]−2αak( fi(Xk)− fi(y))

−2(1−α)bk(gi(Xk)−gi(y))

+2E[‖Φi−1,k− y‖|F m
k−1](αakµk +(1−α)bkτk)+Mi,k,

where

Mi,k = (αakCi +(1−α)bkDi)
2 +(αakνk +(1−α)bkσk)

2

+2αakCi(αakµk +(1−α)bkτk)+2(1−α)bkDi(αakµk +(1−α)bkτk)

+2αakE[‖ fi(Φi−1,k)− fi(Xk)‖|F m
k−1]

+2(1−α)bkE[‖gi(Φi−1,k)−gi(Xk)‖|F m
k−1].
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Note that Φ0,k = Xk and Φm,k = Xk+1. Taking sum over i = 1,2, · · · ,m, we have that

E[‖Xk+1− y‖2|F m
k−1] ≤ ‖Xk− y‖2−2αak( f (Xk)− f (y))

−2(1−α)bk(g(Xk)−g(y))+
m

∑
i=1

Mi,k

+2(αakµk +(1−α)bkτk)
m

∑
i=1

E[‖Φi−1,k− y‖|F m
k−1].

Next we consider ∑m
i=1 Mi,k.

Lemma 5.2.1. We claim that

‖Φi−1,k−Xk‖ ≤
i−1

∑
j=1

[αakC j +(1−α)bkD j +αak‖ε j,k‖+(1−α)bk‖δ j,k‖].

Proof of Lemma 5.2.1. We prove by induction.

‖Φi,k−Xk‖ ≤ ‖(αψi,k +(1−α)ϕi,k)−Xk‖
≤ α‖ψi,k−Xk‖+(1−α)‖ϕi,k−Xk‖
= α‖Φi−1,k−akhi,k−akεi,k−Xk‖

+(1−α)‖Φi−1,k−bk`i,k−bkδi,k−Xk‖
≤ ‖Φi−1,k−Xk‖+αak‖hi,k‖+(1−α)bk‖li,k‖

+αak‖εi,k‖+(1−α)bk‖δi,k‖.

By induction, we get that

‖Φi,k−Xk‖ ≤
i

∑
j=1

[αakC j +(1−α)bkD j +αak‖ε j,k‖+(1−α)bk‖δ j,k‖].

This completes the proof of Lemma 5.2.1.
We now continue the proof of Lemma 5.2 and have

E[‖ fi(Φi−1,k)− fi(Xk)‖|F m
k−1] ≤ E[Ci

i−1

∑
j=1

(αakC j +(1−α)bkD j +αak‖ε j,k‖

+(1−α)bk‖δ j,k‖)|F m
k−1]

≤ Ci

i−1

∑
j=1
{αakC j +(1−α)bkD j +αakνk

+(1−α)bkσk};
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and

E[‖gi(Φi−1,k)−gi(Xk)‖|F m
k−1] ≤ E[Di

i−1

∑
j=1
{αakC j +(1−α)bkD j +αak‖ε j,k‖

+(1−α)bk‖δ j,k‖}|F m
k−1]

≤ Di

i−1

∑
j=1
{αakC j +(1−α)bkD j +αakνk

+(1−α)bkσk}.

Then
m

∑
i=1

Mi,k ≤
m

∑
i=1

(αakCi +(1−α)bkDi)
2 +m(αakνk +(1−α)bkσk)

2

+2
m

∑
i=1

(αakCi +(1−α)bkDi)(αakµk +(1−α)bkτk)

+2
m

∑
i=1

(αakCi +(1−α)bkDi)
i−1

∑
j=1
{αakC j +(1−α)bkD j

+αakνk +(1−α)bkσk} (since µk ≤ νk and τk ≤ σk)

≤
m

∑
i=1

(αakCi +(1−α)bkDi +αakνk +(1−α)bkσk)
2

+2
m

∑
i=1

(αakCi +(1−α)bkDi +αakνk +(1−α)bkσk)×

i−1

∑
j=1

(αakC j +(1−α)bkD j +αakνk +(1−α)bkσk)

= (
m

∑
i=1

(αakCi +(1−α)bkDi +αakνk +(1−α)bkσk))
2

= (αakC+(1−α)bkD+αmakνk +(1−α)mbkσk)
2.

This completes the proof of Lemma 5.2.
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1. INTRODUCTION

S chool choice mechanisms affect the educational experiences and outcomes
of many students around the world. The past two decades have witnessed

major reforms in this domain. In designing practical markets, institutions have
relied on economic theory, computation, and controlled laboratory experiments
(Roth, 2002). For example, shortly after the publication of Abdulkadiroğlu
& Sönmez (2003), New York City high schools replaced their previous me-
chanism with a variant of the student-proposing deferred-acceptance (DA)
mechanism (Gale & Shapley, 1962; Abdulkadiroğlu, Pathak, & Roth, 2005).
In the school choice reforms in Boston, matching theorists directly influenced
the adoption of the DA mechanism (Abdulkadiroğlu, Pathak, Roth, & Sönmez,
2005). In this case, experimental data helped persuade the Boston public
school authorities to switch from the Boston immediate acceptance mechanism
(BOS) to DA (Chen & Sönmez, 2006). In parallel with these reforms, policy
makers in Chicago and in New England independently abandoned the Boston
mechanism and adopted versions of the DA (Pathak & Sönmez, 2013). Labo-
ratory experiments provide the first data for institutional redesigns when field
data is not yet available. Even when field data is available, lab experiments
compare the performance of different mechanisms at a level of detail that
cannot be obtained from field data.

In an incomplete information setting, Chen & Sönmez (2006) present
the first experimental study of three well-known school choice mechanisms,
BOS, DA and the top trading cycles (TTC). They find that DA outperforms
TTC in truthful preference revelation, despite the strategy-proofness of both
mechanisms. Furthermore, they show that TTC does not outperform DA in
efficiency, although theoretically it is efficient whereas DA is not. Among the
three mechanisms, BOS performs the worst in terms of truthful preference
revelation and efficiency. While a stability comparison is not presented in
Chen & Sönmez (2006), using the same experimental setting, Calsamiglia et
al. (2010) find that DA is more stable than TTC, which in turn is weakly more
stable than BOS.

In this paper, we ask two questions. First, how do the three school choice
mechanisms perform in a complete information setting? Second, how does
information provision affect the performance of each mechanism?

To answer these questions, we run an experiment under the complete infor-
mation setting, using the same set of parameters as in the designed environment
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in Chen & Sönmez (2006), which enables us to compare our results with their
earlier study. Our results show that, in the complete information setting, TTC
outperforms DA, which in turn outperforms BOS in truth-telling. Consistent
with theory, TTC outperforms both DA and BOS in efficiency, whereas DA and
BOS generate similar efficiency levels. In terms of stability, DA outperforms
TTC and BOS by a large margin, whereas BOS and TTC achieve the same
level of stability. In summary, information affects the performance of the three
mechanisms in different ways. More information improves the performance of
both TTC and BOS, but does not change either efficiency or stability under
DA.

Our findings have clear policy implications. A market designer who values
efficiency over stability should adopt TTC and encourage information provi-
sion. In comparison, a market designer who values stability over efficiency
should adopt DA.

The rest of the paper is organized as follows. Section 2 reviews the ex-
perimental school choice literature. Section 3 introduces the school choice
problem and summarizes the theoretical properties of the three mechanisms.
Section 4 presents the experimental design. Section 5 summarizes the main
results. Section 6 concludes the paper. Instructions for experiment are given in
the Supplement before references.

2. LITERATURE REVIEW

With the development of matching theory in the school choice domain (Abdul-
kadiroğlu & Sönmez, 2003), a growing number of laboratory experiments have
tested the performance of school choice mechanisms as well as participant
behavior under different incentives.

In the first experimental study of school choice mechanisms, Chen &
Sönmez (2006) deploy a setting with 36 students and 7 schools per match.
Schools differ in their capacity, location, quality and strength. Student pre-
ferences are induced in two different environments. One is the designed
environment, where student preferences are generated based on their distance
to the school and their interests. To provide a robustness check, a random
environment is used where student preferences are randomly generated. They
use an incomplete information setting, where students only know their own
preference, their district schools, and school capacities. They find that DA
outperforms TTC in truthful preference revelation, whereas TTC does not
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outperform DA in efficiency. Of the three mechanisms, BOS performs the
worst in truthful preference revelation and efficiency. We use the same set of
parameters as in their designed environment but with complete information.

Closely related to our study, Pais & Pintér (2008) investigate the impact of
different information conditions on the performance of the same three school
choice mechanisms, but with a relatively small group size (five students and
three schools per match). They find that under complete information, TTC
outperforms both BOS and DA in terms of truthful preference revelation and
efficiency, while the three mechanisms perform similarly in stability. Overall,
they find that TTC is less sensitive to the amount of information provided to
the participants.

Subsequent experimental studies have examined the impact of a limit on the
number of schools in the rank order list (Calsamiglia et al., 2010), participant
risk attitude and preference intensities (Klijn et al., 2013), peer information
sharing in networks (Ding & Schotter, 2016) and intergenerational advice
(Ding & Schotter, 2015) on participant behavior.

Two other studies investigate the effects of information conditions on indi-
vidual behavior and mechanism performance. In an interim Bayesian setting,
Featherstone & Niederle (2013) observe that BOS achieves higher efficiency
than DA when school priorities involve ties which are broken randomly. More
recently, Chen & He (2016) study endogenous information acquisition under
BOS and DA in the school choice setting. They find that information provision
of students’ own and other’s preferences improves efficiency.

3. THREE SCHOOL CHOICE MECHANISMS

In this section, we introduce the school choice problem and the three mecha-
nisms. In a school choice problem, there are a number of students, and a
number of schools. Each student has strict preference over all schools, whe-
reas each school has a maximum capacity and a strict priority ordering of all
students. School priorities are imposed by the school district based on state
and local laws (Abdulkadiroğlu & Sönmez, 2003).

The outcome of a school choice problem is referred to as a matching, which
is an assignment of school seats to students such that each student is assigned
one seat and no school assigns more seats than its capacity. A matching is
Pareto efficient if there is no matching which assigns each student a weakly
better school and at least one student a strictly better school. A blocking pair
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consists of a student-school pair (i,s) such that: (1) student i prefers school s
to her assignment under µ and (2) student i has higher priority at school s than
some other student who is assigned a seat at school s under µ . A matching µ
eliminates justified envy if there is no blocking pair.

Finally, a student assignment mechanism is a systematic procedure that
selects a matching for each school choice problem. A mechanism is Pareto
efficient if it always selects a Pareto efficient matching; it is stable if it always
selects a matching which eliminates justified envy; it is strategy-proof if no
student can possibly benefit by unilaterally misrepresenting her preferences.

In the school choice literature, three mechanisms have been studied ex-
tensively: the Boston immediate acceptance mechanism, the Gale-Shapley
deferred acceptance mechanism and the top trading cycle mechanism. We now
briefly describe each mechanism and summarize their theoretical properties.

The Boston immediate acceptance mechanism (BOS) asks students to
submit rank order lists (ROL) of schools. Together with the pre-announced
capacity of each school, BOS uses pre-defined rules to determine the school
priority ranking over students and consists of the following rounds:

Round 1. Each school considers all students who rank it first and assigns
its seats in order of their priority at that school until either there is no seat left
at that school or no such student left.

Generally, in:
Round (k > 1). The kth choice of the students who have not yet been

assigned is considered. Each school that still has available seats assigns the
remaining seats to students who rank it as their kth choice in order of their
priority at that school until either there is no seat left at that school or no such
student left.

The process terminates after any round k when either every student is
assigned a seat at some school, or the only students who remain unassigned
have listed no more than k choices.

Ergin & Sönmez (2006) characterize the Nash equilibria of the BOS me-
chanism, showing that its equilibria are either equal to or Pareto inferior to
the dominant strategy outcome of DA. The BOS mechanism was adopted for
student assignment to public schools in Boston from 1999 to 2005, when it
was replaced by DA (Abdulkadiroğlu & Sönmez, 2003; Abdulkadiroğlu et al.,
2006). It has been widely used in other regions as well, including Cambridge,
Denver, Minneapolis, Seattle, St. Petersburg-Tampa (Chen & Sönmez, 2006)
and Beijing (He, 2014). Despite its popularity, BOS is neither strategy-proof
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nor stable. BOS also tends to favor strategically sophisticated students (Pathak
& Sönmez, 2008). Because of these shortcomings, Abdulkadiroğlu & Sönmez
(2003) propose two strategy-proof alternatives, DA and TTC.

The Gale-Shapley deferred acceptance mechanism (DA) is proposed by
Gale & Shapley (1962) in the college admission context. It is then analyzed in
the school choice context by Abdulkadiroğlu & Sönmez (2003). Specifically,
the mechanism collects school capacities and student ROLs for schools. With
strict rankings of schools over students that are determined by pre-specified
rules, it proceeds as follows:

Round 1. Every student applies to her first choice. Each school rejects the
least ranked students in excess of its capacity and temporarily holds the others.

Generally, in:
Round (k > 1). Every student who is rejected in Round (k−1) applies to

the kth choice on her list. Each school pools together new applicants and those
on hold from Round (k−1). It then rejects the least ranked students in excess
of its capacity. Those who are not rejected are temporarily held.

The process terminates after any Round k when no rejections are issued.
Each school is then matched with those students whom it is currently holding.

DA is strategy-proof and stable. Though it is not efficient, it Pareto domi-
nates any other mechanism that eliminates justified envy (Dubins & Freedman,
1981; Roth, 1982). As mentioned in the introduction, various versions of the
DA has been adopted to replace BOS in Boston and New York City for school
choice, throughout England for public school assignment (Pathak & Sönmez,
2013), and by many provinces in Chinese college admissions (Chen & Kesten,
2017).

While DA preserves stability at the cost of Pareto efficiency, the top trading
cycles mechanism (TTC) preserves efficiency at the cost of stability (Abdul-
kadiroğlu & Sönmez, 2003). In what follows, we adopt the description of the
TTC from Chen & Sönmez (2006). In our experimental setting, each student
has a high priority at her district school and low priority at other schools. At
each school, the priority among high priority students, as well as the priority
among low priority students, is determined with a single tie-breaking lottery.
In this case, the TTC mechanism works as follows:

1. For each school, a priority ordering of students is determined.

2. Each student submits a preference ranking of the schools.

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 51 — #55

“p˙02” — 2016/12/18 — 18:12 — page 51 — #7

Yan Chen, Yingzhi Liang, Tayfun Sönmez 51

3. Based on the submitted preferences and priorities, the student assignment
is determined as follows:

(a) Each participant is tentatively assigned a seat at her district school.

(b) All participants are lined up in an initial queue based on the tie-
breaking lottery.

(c) An application to the highest-ranked school is made on behalf of
the participant at the top of the queue.

• If the application is made to her district school, then her ten-
tative assignment is finalized. The participant and her assig-
nment are removed from the system. The process continues
with the next participant in line.
• If the application is made to another school, say school s, then

the first participant in the queue who tentatively holds a seat
at school s is moved to the top of the queue directly in front of
the requester.

(d) Whenever the queue is modified, the process continues similarly:
an application to the highest ranked school with still available seats
is made on behalf of the participant at the top of the queue.

• If the application is made to her district school, then her ten-
tative assignment is finalized. The participant and her assig-
nment are removed from the system. The process continues
with the next participant in line.
• If the application is made to another school, say school s, then

the first participant in the queue who tentatively holds a seat
at school s is moved to the top of the queue directly in front of
the requester.

(e) A mutually-beneficial exchange is obtained when a cycle of appli-
cations is made in sequence (e.g., I apply to John’s district school,
John applies to your district school and you apply to my district
school). In this case, the Pareto-improving exchange is carried
out and the participants, as well as their assignments, are removed
from the system.

(f) The process continues until all participants are assigned a school
seat.
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TTC has been adopted by the city of New Orleans in its school choice
program implemented since 2012 (Vanacore, 2012). In theory, the TTC mecha-
nism has an efficiency advantage over both BOS and DA. The DA mechanism,
on the other hand, is stable, whereas neither BOS or TTC is. In terms of
preference manipulation, we expect a high (low) proportion of truth-telling
under both the DA and TTC (BOS), based on the strategy-proofness of DA
and TTC. We will summarize the theoretical properties of each mechanism as
hypotheses in Section 5.

4. EXPERIMENTAL DESIGN

We use the same set of parameters as the designed environment in Chen &
Sönmez (2006). There are 36 students and 7 schools per match. Schools have
different capacities. Schools A and B are small and high quality schools, with
3 seats each, whereas school C to G are lower quality schools with 6 seats
each. Each student has a district school where she has the highest priority.

The induced student preferences over schools is generated by a utility
function, which depends on the school quality, proximity, and a random factor.
The utility function of each student has three components, ui(S) = ui

p(S)+
ui

q(S) + ui
r(S). Here ui

p(S) represents the proximity utility for student i at
school S. This utility is 10 if student i lives within the walk zone of school
S and zero otherwise. The second component, ui

q(S), represents the quality
utility for student i at school S. For odd-labelled students (i.e., for students
who are gifted in sciences), ui

q(A) = 20, ui
q(B) = 40, and ui

q(S) = 10 for
S ∈ {C,D,E,F,G}. For even-labelled students (i.e., for students who are
gifted in arts), ui

q(A) = 40, ui
q(B) = 20, and ui

q(S) = 10 for S ∈ {C,D,E,F,G}.
Lastly, the third component, ui

r(S), represents a random utility (uniform in the
range 0-40) which captures diversity in tastes.

Table 1 presents the monetary payoff of each student for being matched
with each school. Boldfaced numbers indicate that the student lives within the
school district of that school. For example, participant with ID #1 lives in the
school district of school A. She will get $13 dollars if she gets admitted to
school A, $16 dollars if she gets admitted to school B, and so on.

Our design differs from Chen & Sönmez (2006) in the amount of informa-
tion provided to our participants. While a student knows only her own row
of the payoff table, her own district school and school capacities in Chen &
Sönmez (2006), we implement a complete information setting, where students
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Table 1: Payoff Table

Schools
Student ID A B C D E F G

1 13 16 9 2 5 11 7
2 16 13 11 7 2 5 9
3 11 13 7 16 2 9 5
4 16 13 11 5 2 7 9
5 11 16 2 5 13 7 9
6 16 13 7 9 11 2 5
7 13 16 9 5 11 7 2
8 16 9 11 2 13 7 5
9 16 13 2 5 9 7 11

10 16 7 9 5 2 11 13
11 7 16 11 9 5 2 13
12 13 16 9 11 2 7 5
13 9 16 2 13 11 5 7
14 16 5 2 9 7 13 11
15 13 16 9 11 2 7 5
16 16 13 11 5 9 7 2
17 13 16 5 7 2 9 11
18 16 13 5 9 7 11 2
19 11 16 7 5 13 9 2
20 16 13 7 9 5 2 11
21 13 16 2 7 9 11 5
22 16 11 7 2 9 5 13
23 16 13 7 2 5 11 9
24 16 13 11 5 9 2 7
25 13 16 2 5 11 9 7
26 16 13 5 9 7 2 11
27 7 11 5 2 13 9 16
28 16 13 7 2 11 5 9
29 7 11 16 13 2 9 5
30 16 9 7 2 5 11 13
31 11 16 7 2 5 9 13
32 13 9 16 2 5 7 11
33 13 16 11 9 7 5 2
34 16 11 2 7 5 13 9
35 7 16 2 5 11 13 9
36 16 13 5 7 9 2 11
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know every student’s preference, i.e., the entire payoff table, school priority
and capacity for every school, and every student’s position in the randomly
generated tie-breaker before making a decision.

In the experiment, each subject is randomly assigned an ID number and is
seated in a chair in a classroom. All sessions are conducted by hand. At the
beginning of the first session, participants are asked to volunteer to generate
the random tie-breaker. One volunteer is asked to come to the front of the
classroom and draw ping pong balls (labelled 1-36), one at a time, from an
urn. The volunteer announces the number on each ball, which is recorded on a
transparency in public by the experimenter. This tie-breaker is then used in
all subsequent sessions. The random tie-breaker used in our experiment is as
follows:

[6,19,15,10,33,24,1,28,30,32,4,25,21,14,23,16,5,35,29,8,22,2,13,12,
18,9,20,17,7,34,11,31,3,36,27,26].

This means that participant with ID #6 has the highest priority, participant with
ID #19 has the second highest priority, and so on.

At the beginning of each session, after subjects are seated in a classroom,
the experimenter reads the instructions aloud. Subjects are then given fifteen
minutes to read the instructions at their own pace and to make their decisions.
At the end of fifteen minutes, the experimenter collects the decision sheets.
The session ends after the decision sheets are collected. The experimenter then
puts the subject decisions and the lottery into a computer program to generate
the allocations, announces the allocations by email and pays the subjects after
the email announcement.

Table 2: Features of experimental sessions

Mechanism Subjects per session # of sessions Total # of subjects

BOSc 36 2 72
DAc 36 2 72
TTCc 36 2 72

Table 2 summarizes features of experimental sessions. We conduct two
independent sessions for each mechanism in spring 2004 at the University
of Michigan. Subjects are undergraduate students from the University of
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Michigan. Each sessions has 36 subjects. This gives us 72 subjects for
each mechanism and 216 subjects in total. Each session consists of one
round only. The session lasts between 45-60 minutes, with the first 20-25
minutes being used for instructions. The average payment (including a $3
participation fee) is $14.73. No subject participates in more than one session.
In addition, when we compare subject behavior under complete information to
that under incomplete information, we re-use the data from the 216 subjects in
the designed environment in Chen & Sönmez (2006). Thus, we use data from
a total of 432 subjects in our analysis. Experimental instructions are included
in the Appendix. Data are available from the authors upon request.

5. RESULTS

Several questions are important in evaluating the mechanisms. The first is
whether individuals report their preferences truthfully. The second is the
rankings of mechanisms in terms of efficiency or stability. The third is whether
the experimental results are robust to changes in the information condition.

In presenting the results, we introduce some shorthand notations. Let x > y
denote that a measure under mechanism x is greater than the corresponding
measure under mechanism y at the 5% significance level. Let x ≥ y denote
that a measure under mechanism x is greater than the corresponding measure
under mechanism y at the 10% significance level. Let x∼ y denote that a mea-
sure under mechanism x is not significantly different from the corresponding
measure under mechanism y at the 10% significance level.

We first examine whether individuals reveal their preferences truthfully,
and if not, how they manipulate their preferences under each of the three
mechanisms. We then report how information affects truth-telling. Based on
their theoretical properties, we formulate the following hypothesis:

Hypothesis 1 (Truth-telling). (a) Under DA or TTC, participants will be more
likely to reveal their preferences truthfully than under BOS. (b) Participants
will be equally likely to reveal their preferences truthfully under either DA or
TTC. (c) The likelihood of truth-telling under either DA or TTC remains the
same when more information is provided.

Note that in Hypothesis 1(c), we are silent about whether the proportion
of truth-telling under BOS might change when more information is provided.
This is due to the fact that the extent to which information might influence
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school choice strategies depends on the environment (Ergin & Sönmez, 2006;
Abdulkadiroğlu et al., 2011). Following the experimental school choice lite-
rature (Chen & Sönmez, 2006; Pais & Pintér, 2008; Calsamiglia et al., 2010;
Pais et al., 2011), we separate participant strategies into three categories: truth-
telling, district school bias (DSB), and other strategies. Formally, district
school bias is defined as putting one’s district school into a higher position
than that in one’s true preference order. Under TTC and DA, the ranking of
schools below one’s district school does not matter. Therefore, under these
two mechanisms, we code a ROL as truthful as long as the list from one’s first
choice to one’s district school is truthful. In comparison, under BOS, we use
the complete ROL to measure truth-telling.

Table 3: Proportion of truth-telling and misrepresentations

Complete Information Incomplete Information (CS 2006)

Mechanism Truth-telling DSB Other Mechanism Truth-telling DSB Other
BOSc 0.194 0.611 0.194 BOSi 0.111 0.750 0.139
DAc 0.542 0.153 0.306 DAi 0.722 0.083 0.194
T TCc 0.708 0.083 0.208 T TCi 0.500 0.292 0.208

Table 3 reports the proportion of each strategy category. The summary
of statistics in the incomplete information setting is generated from the data
in the designed environment in Chen & Sönmez (2006) (shortened as CS
2006). Compared to the earlier study, we combine the small school bias and
similar preference bias into the “other” category. Table 4 reports results from
proportion of t-tests for each pair of comparison across mechanisms as well as
information conditions. We summarize the results below.

Table 4: Comparing proportion of truth-telling across mechanisms and infor-
mation conditions

Complete Information Incomplete Information Complete vs. Incomplete

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Hypotheses z-stat p-value Hypotheses z-stat p-value Hypotheses z-stat p-value

DAc > BOSc 4.320 0.000 DAi > BOSi 7.437 0.000 BOSc 6= BOSi 1.390 0.165
T TCc > BOSc 6.196 0.000 T TCi > BOSi 5.065 0.000 DAc 6= DAi 2.246 0.025
T TCc 6= DAc 2.066 0.039 DAi 6= T TCi 2.735 0.006 T TCc 6= T TCi 2.556 0.011

Notes: Z-statistics and p-values are from proportion of t-tests.
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Result 1 (Truth-telling). In the complete information setting, the proportion
of truth-telling follows T TCc > DAc > BOSc. Comparing each mechanism
across information conditions, we find that truth-telling under TTC (BOS)
increases (weakly increases) with more information, whereas truth-telling
under DA decreases with more information.

Support. Table 4 reports proportion of t-tests for each pair of comparison
across mechanisms under complete information (column 3), incomplete infor-
mation (column 6), and across information conditions (column 9).

By Result 1, we reject the null in favor of Hypothesis 1(a) under both com-
plete and incomplete information. That is, the two strategy-proof mechanisms
each induce greater proportion of truth-telling than the non-strategy-proof BOS.
While we do not anticipate any difference in truth-telling between the two
strategy-proof mechanisms, we do find surprisingly significant differences un-
der both complete (T TCc > DAc) and incomplete information (DAi > T TCi),
albeit in opposite directions, leading us to reject Hypothesis 1(b). As a result of
these unexpected differences, we also reject Hypothesis 1(c) that information
has no effect on the likelihood of truth-telling for the strategy-proof mecha-
nisms. Specifically, we find that truth-telling under TTC (BOS) increases
(weakly increases) with more information, whereas truth-telling under DA
decreases with more information.

Compared to prior literature, our complete (incomplete) information setting
corresponds to the full (partial) information setting in Pais & Pintér (2008),
respectively. Our mechanism ranking for truth-telling under complete infor-
mation is consistent with that under full information in Pais & Pintér (2008).
Furthermore, both studies find an increase in truth-telling under TTC from
incomplete to complete information, although Pais & Pintér (2008) find no
change in truth-telling under BOS or DA between these two information
conditions.

Next, we report aggregate performance of the mechanisms, including effi-
ciency and stability. Following Chen & Sönmez (2006) and Calsamiglia et al.
(2010), we take advantage of the one-shot implementation in our experiments
and use the recombinant estimation technique (Mullin & Reiley, 2006). Ba-
sed on the theoretical properties of the three mechanisms, we formulate the
following hypothesis:
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Hypothesis 2 (Efficiency). (a) The expected per capita payoff will be greater
under TTC than under either BOS or DA. (b) The expected per capita payoff
under either DA or TTC remains the same when more information is provided.

Again, we are agnostic about the extent to which efficiency under BOS
might be affected by changes in information conditions, as it might be context
dependent. Nor do we make predictions regarding the efficiency compari-
sons between BOS and DA. Table 5 reports the recombinant estimation of
expected per capita payoffs in the complete (upper panel) and incomplete in-
formation setting (lower panel). The recombinant estimation in the incomplete
information setting is generated from the CS 2006 data using the same single
tie-breaker as that in our complete information treatment. Table 6 presents
the t-statistics and p-values from t-tests for efficiency comparisons across
mechanisms and information conditions.

Table 5: Recombinant estimation of expected per capita payoffs

Mechanism Mean (µ̂) Var. (σ2) Covar. (φ ) Asym. Var. (var(µ̂)) St. dev.

BOSc 11.742 0.045 0.001 0.017 0.129
DAc 11.759 0.060 0.001 0.023 0.152
T TCc 12.255 0.029 0.001 0.014 0.120
BOSi 11.150 0.034 0.001 0.011 0.104
DAi 11.820 0.060 0.002 0.029 0.170
T TCi 11.379 0.058 0.001 0.025 0.159

Notes: For a given player, the number of recombination is 200,000. Therefore, the sample size is 14,400,000
after recombinations. The recombinant estimations for both the complete and incomplete information settings are
generated using the same single tie-breaker used in our experiment.

Table 6: Comparing expected per capita payoffs across mechanisms and
information conditions

Complete Information Incomplete Information Complete vs. Incomplete

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Hypotheses t-stat p-value Hypotheses t-stat p-value Hypotheses t-stat p-value

T TCc > BOSc 2.921 0.002 T TCi > BOSi 1.207 0.114 BOSc 6= BOSi 3.580 0.000
T TCc > DAc 2.566 0.005 T TCi > DAi -1.893 0.971 DAc 6= DAi 0.270 0.787
BOSc 6= DAc 0.084 0.933 BOSi 6= DAi 3.364 0.001 T TCc 6= T TCi 4.400 0.000

Notes: T-statistics and p-values are from t-tests.
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Result 2 (Efficiency). Under complete information, the expected per capita
payoff follows T TCc >DAc∼ BOSc. Comparing each mechanism across infor-
mation conditions, we find that efficiency under both TTC and BOS increases
with more information, whereas efficiency under DA remains unchanged.

Support. Table 6 reports t-tests for each pair of comparison across mecha-
nisms under complete information (column 3), incomplete information (column
6), and across information conditions (column 9). We report one-sided (two-
sided) p-values for one-sided (two-sided) hypotheses, respectively.

By Result 2, we reject the null in favor of Hypothesis 2(a) under complete
information; however, we fail to reject the null under incomplete information.
That is, under complete information, TTC achieves greater efficiency than
either DA or BOS, whereas under incomplete information, it fails to outperform
DA or BOS. Furthermore, we reject Hypothesis 2(b) under TTC but not under
DA. In sum, we find that efficiency under both TTC and BOS increases with
more information, which is consistent with Result 1 where participants are
more likely to tell the truth under complete information. In contrast, additional
information has no effect on efficiency under DA.

Our efficiency ranking under complete information is consistent with that
under full information in Pais & Pintér (2008) (T TCc > DAc ∼ BOSc). Ho-
wever, they do not find any statistically significant change in efficiency from
partial to full information conditions.

In addition to efficiency, we measure mechanism stability by computing
the number of students who have the possibility to block per group, again
using recombinant estimation. For simplicity, we call this measure the average
number of blocking pairs. Based on the theoretical properties of the three
mechanisms, we formulate the following hypothesis:

Hypothesis 3 (Stability). (a) The average number of blocking pairs per group
will be lower under DA than under either TTC or BOS. (b) The average number
of blocking pairs per group under either DA or TTC remains the same when
more information is provided.

In this case, we are silent on the comparison between TTC and BOS, as well
as stability under BOS across information conditions, as these comparisons
depends on the specific environment. Table 7 reports the results of recombinant
estimation in the number of justified envy per group under complete (upper
panel) and incomplete information (lower panel). The results under incomplete
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information is generated from the CS 2006 data, using the same single tie-
breaker as in our complete information setting.

Table 7: Recombinant estimation of average number of blocking pairs per
group

Mechanism Mean (µ̂) Var. (σ2) Covar. (φ ) Asym. Var. (var(µ̂)) St. dev.

BOSc 9.354 4.935 0.088 1.589 1.261
DAc 2.906 0.523 0.012 0.210 0.459
T TCc 10.624 3.737 0.085 1.524 1.234
BOSi 14.323 4.449 0.098 1.757 1.326
DAi 2.500 1.250 0.035 0.629 0.793
T TCi 12.461 5.839 0.095 1.718 1.311

Notes: For a given player, the number of recombination is 200,000. Therefore, the sample size is 14,400,000
after recombinations. The recombinant estimations for both the complete and incomplete information settings are
generated using the same single tie-breaker used in our experiment.

Result 3 (Stability). Under both complete and incomplete information, the
average number of blocking pairs per group follows DA < BOS∼ T TC. Com-
paring each mechanism across information conditions, we find that the average
number of blocking pairs per group under BOS decreases with more informa-
tion, whereas that under either DA or TTC is largely unchanged.

Support. Table 8 reports t-tests for each pair of comparison across mecha-
nisms under complete information (column 3), incomplete information (column
6), and across information conditions (column 9). We report one-sided (two-
sided) p-values for one-sided (two-sided) hypotheses, respectively.

Table 8: Comparing average number of blocking pairs per group across me-
chanisms and information conditions

Complete Information Incomplete Information Complete vs. Incomplete

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Hypotheses t-stat p-value Hypotheses t-stat p-value Hypotheses t-stat p-value

BOSc > DAc 4.807 0.000 BOSi > DAi 7.655 0.000 BOSc 6= BOSi 2.716 0.007
T TCc > DAc 5.861 0.000 T TCi > DAi 6.503 0.000 DAc 6= DAi 0.444 0.657

T TCc 6= BOSc 0.720 0.472 T TCi 6= BOSi 0.999 0.318 T TCc 6= T TCi 1.020 0.308

Notes: T-statistics and p-values are from t-tests.
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By Result 3, we reject the null in favor of Hypothesis 3(a). That is, DA is
more stable than either TTC or BOS under both complete and incomplete infor-
mation. However, we fail to reject Hypothesis 3(b) that the two strategy-proof
mechanisms generate the same number of blocking pairs across information
conditions. Lastly, unpredicted by theory, we find that BOS becomes more
stable with more information.

Compared to the prior experimental literature on school choice, our stability
ranking among the three mechanisms under incomplete information is identical
to that in the untruncated treatment in Calsamiglia et al. (2010) as well as that
in the partial information treatment in Pais & Pintér (2008). In comparison, our
stability ranking among the three mechanisms under complete information is
directionally consistent with the corresponding ranking under full information
(DA ≥ TTC) in Pais & Pintér (2008), although the latter is not statistically
significant. Lastly, our finding that the stability of BOS improves with more
information is again directionally consistent with the corresponding result
in Pais & Pintér (2008), who report a 33 percentage point increase in the
proportion of stable outcomes under BOS from partial to full information, but
this difference is statistically insignificant in their study.

6. CONCLUSION

In this paper, we investigate the performance of three influential school choice
mechanisms under complete information, and compare that with the perfor-
mance of the same three mechanisms under incomplete information (Chen &
Sönmez, 2006). Overall, we find that information has significant effects on the
performance of school choice mechanisms.

Specifically, we find that, under complete information, TTC outperforms
both DA and BOS in terms of truth-telling and efficiency, whereas DA is more
stable than either TTC or BOS regardless of information conditions. Compared
to the incomplete information setting in Chen & Sönmez (2006), of the two
strategy-proof mechanisms, more information increases both truth-telling and
efficiency under TTC, and reduces truth-telling under DA. In comparison, more
information increases truthful preference revelation, stability and efficiency
under BOS.

Findings from this paper and prior school choice experiments point to
several policy implications. First, in real life implementations, truth-telling is
not verifiable. However, a designer can advise students and parents to reveal
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their preferences truthfully if the mechanism is strategy-proof. We also see that,
regardless of the information condition, a strategy-proof mechanism always
outperforms the manipulable BOS in truth-telling, stability or efficiency. The-
refore, a strategy-proof mechanism, such as DA or TTC, should be preferred
to the manipulable BOS.

Second, of the two strategy-proof mechanisms, which one should be cho-
sen? Our results suggest that the answer depends on whether the policy-makers
put more weight on stability or efficiency. If stability is valued above efficiency,
DA should be chosen. Otherwise, TTC is the clear choice. In practice, we see
that both mechanisms have been chosen as a replacement for BOS.

Lastly, unpredicted by theory, we find that information provision improves
the aggregate performance of both TTC and BOS. In real life, information
acquisition is likely to be costly. Under this more realistic scenario, informa-
tion provision by education authorities is likely to have even greater welfare
gains (Chen & He, 2016). Therefore, our results suggest that education aut-
horities should provide more information about the environment to improve
the performance of either the manipulable BOS or a strategy-proof alternative,
such as the TTC.

Supplement: Experimental Instructions

The complete instructions for subject #1 under BOS (Mechanism B) are shown here. In-
structions for all other subjects are identical except the individual portion of the payoff table.
Instructions for DA (Mechanism G) and TTC (Mechanism T) are identical to those for BOS
except the “Allocation Method” and “An Example” sections, hence only those sections are
shown here.

Instructions - Mechanism B

This is an experiment in the economics of decision making. The instructions are simple,
and if you follow them carefully and make good decisions, you might earn a considerable
amount of money. In this experiment, we simulate a procedure to allocate students to schools.
The procedure, payment rules, and student allocation method are described below. Do not
communicate with each other during the experiment. If you have questions at any point during
the experiment, raise your hand and the experimenter will help you.

Procedure

• There are 36 participants in this experiment. You are participant #1.
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• In this simulation, 36 school slots are available across seven schools. These schools
differ in size, geographic location, specialty, and quality of instruction in each specialty.
Each school slot is allocated to one participant. There are three slots each at schools A
and B, and six slots each at schools C, D, E, F and G.

• Your payoff amount depends on the school slot you hold at the end of the experi-
ment. Payoff amounts are outlined in the following table. These amounts reflect the
desirability of the school in terms of location, specialty and quality of instruction.

Slot received at School: A B C D E F G
Payoff to Participant #1 (in dollars) 13 16 9 2 5 11 7

The table is explained as follows:

– You will be paid $13 if you hold a slot at school A at the end of the experiment.

– You will be paid $16 if you hold a slot at school B at the end of the experiment.

– You will be paid $9 if you hold a slot at school C at the end of the experiment.

– You will be paid $2 if you hold a slot at school D at the end of the experiment.

– You will be paid $5 if you hold a slot at school E at the end of the experiment.

– You will be paid $11 if you hold a slot at school F at the end of the experiment.

– You will be paid $7 if you hold a slot at school G at the end of the experiment.

*NOTE* different participants have different payoff tables. That is, payoff by
school is different for different participants.

• During the experiment, each participant first completes the Decision Sheet by indicating
school preferences. Note that you need to rank all seven schools in order to indicate
your preferences.

• After all participants have completed their Decision Sheets, the experimenter collects
the Sheets and starts the allocation process.

• Once the allocations are determined, the experimenter informs each participants of
his/her allocation slot and respective payoff.

The payoff table for all 36 students:
Allocation Method

• In this experiment, participants are defined as belonging to the following school
districts.

Participants #1 – #3 live within the school district of school A,
Participants #4 – #6 live within the school district of school B,
Participants #7 – #12 live within the school district of school C,
Participants #13 – #18 live within the school district of school D,
Participants #19 – #24 live within the school district of school E,
Participants #25 – #30 live within the school district of school F,
Participants #31 – #36 live within the school district of school G.
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Schools
Student ID A B C D E F G

1 13 16 9 2 5 11 7
2 16 13 11 7 2 5 9
3 11 13 7 16 2 9 5
4 16 13 11 5 2 7 9
5 11 16 2 5 13 7 9
6 16 13 7 9 11 2 5
7 13 16 9 5 11 7 2
8 16 9 11 2 13 7 5
9 16 13 2 5 9 7 11

10 16 7 9 5 2 11 13
11 7 16 11 9 5 2 13
12 13 16 9 11 2 7 5
13 9 16 2 13 11 5 7
14 16 5 2 9 7 13 11
15 13 16 9 11 2 7 5
16 16 13 11 5 9 7 2
17 13 16 5 7 2 9 11
18 16 13 5 9 7 11 2
19 11 16 7 5 13 9 2
20 16 13 7 9 5 2 11
21 13 16 2 7 9 11 5
22 16 11 7 2 9 5 13
23 16 13 7 2 5 11 9
24 16 13 11 5 9 2 7
25 13 16 2 5 11 9 7
26 16 13 5 9 7 2 11
27 7 11 5 2 13 9 16
28 16 13 7 2 11 5 9
29 7 11 16 13 2 9 5
30 16 9 7 2 5 11 13
31 11 16 7 2 5 9 13
32 13 9 16 2 5 7 11
33 13 16 11 9 7 5 2
34 16 11 2 7 5 13 9
35 7 16 2 5 11 13 9
36 16 13 5 7 9 2 11
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• In addition, for each school, a separate priority order of the students is deter-
mined as follows:

– Highest Priority Level: Participants who rank the school as their first
choice AND who also live within the school district.

– 2nd Priority Level: Participants who rank the school as their first choice
BUT who do not live within the school district.

– 3rd Priority Level: Participants who rank the school as their second
choice AND who also live within the school district.

– 4th Priority Level: Participants who rank the school as their second
choice BUT who do not live within the school district.

...
...

– 13th Priority Level: Participants who rank the school as their seventh
choice AND who also live within the school district.

– Lowest Priority Level: Participants who rank the school as their seventh
choice BUT who do not live within the school district.

• The ties between participants at the same priority level are broken using a fair
lottery. This means each participant has an equal chance of being the first in
the line, the second in the line, · · · , as well as the last in the line. To determine
this fair lottery, a participant will be asked to draw 36 ping pong balls from an
urn, one at a time. Each ball has a number on it, corresponding to a participant
ID number. The sequence of the draw determines the order in the lottery.

• Therefore, to determine the priority order of a student for a school:

– The first consideration is how highly the participant ranks the school in
his/her Decision Sheet,

– The second consideration is whether the participant lives within the
school district or not, and

– The last consideration is the order in the fair lottery.

• Once the priorities are determined, slots are allocated in seven rounds.

Round 1. a. An application to the first ranked school in the Decision Sheet is
sent for each participant.

b. Each school accepts the students with higher priority order until all
slots are filled. These students and their assignments are removed
from the system. The remaining applications for each respective
school are rejected.
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Round 2. a. The rejected applications are sent to his/her second ranked school in
the Decision Sheet.

b. If a school still has available slots remaining from Round 1, then
it accepts the students with higher priority order until all slots are
filled. The remaining applications are rejected.

...
...

Round 6. a. The application of each participant who is rejected by his/her top
five choices is sent to his/her sixth choice.

b. If a school still has slots available, then it accepts the students
with higher priority order until all slots are filled. The remaining
applications are rejected.

Round 7. Each remaining participant is assigned a slot at his/her last choice.

An Example:

We will go through a simple example to illustrate how the allocation method
works.

Students and Schools: In this example, there are six students, 1–6, and four schools,
Clair, Erie, Huron and Ontario.

Student ID Number: 1,2,3,4,5,6 Schools: Clair, Erie, Huron, Ontario

Slots and Residents: There are two slots each at Clair and Erie, and one slot each at
Huron and Ontario. Residents of districts are indicated in the table below.

School Slot 1 Slot 2 District Residents
Clair 1 2
Erie 3 4

Huron 5
Ontario 6

Lottery: The lottery produces the following order.

1−2−3−4−5−6

Submitted School Rankings: The students submit the following school rankings:
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1st 2nd 3rd Last
Choice Choice Choice Choice

Student 1 Huron Clair Ontario Erie

Student 2 Huron Ontario Clair Erie

Student 3 Ontario Clair Erie Huron

Student 4 Huron Clair Ontario Erie

Student 5 Ontario Huron Clair Erie

Student 6 Clair Erie Ontario Huron

Priority: School priorities depend on: (1) how highly the student ranks the school,
(2) whether the school is a district school, and (3) the lottery order.

Clair : Student 6 ranks Clair first. Students 1, 3 and 4 rank Clair second; among
them, student 1 lives within the Clair school district. Students 2 and 5 rank
Clair third. Using the lottery order to break ties, the priority order for Clair is
6-1-3-4-2-5.

1st Choice︷ ︸︸ ︷
6

2nd Choice︷ ︸︸ ︷
1︸ ︷︷ ︸

Resident

3 4︸ ︷︷ ︸
Non-Resident

3rd Choice︷ ︸︸ ︷
2 5︸ ︷︷ ︸

Non-Resident

4th Choice︷ ︸︸ ︷
None

Erie : Student 6 ranks Erie second. Student 3 ranks Erie third. Students 1, 2, 4 and
5 rank Erie fourth; among them student 4 lives within the Erie school district.
Using the lottery order to break ties, the priority for Erie is 6-3-4-1-2-5.

1st Choice︷ ︸︸ ︷
None

2nd Choice︷ ︸︸ ︷
6

3rd Choice︷ ︸︸ ︷
3

4th Choice︷ ︸︸ ︷
4︸ ︷︷ ︸

Resident

1 2 5︸ ︷︷ ︸
Non-Resident

Huron : Students 1, 2 and 4 rank Huron first. Student 5 ranks Huron second. Students
3 and 6 rank Huron fourth. Using the lottery order to break ties, the priority for
Huron is 1-2-4-5-3-6.

1st Choice︷ ︸︸ ︷
1 2 4︸ ︷︷ ︸

Non-Residents

2nd Choice︷ ︸︸ ︷
5

3rd Choice︷ ︸︸ ︷
None

4th Choice︷ ︸︸ ︷
3 6︸ ︷︷ ︸

Non-Resident
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Ontario : Students 3 and 5 rank Ontario first. Student 2 ranks Ontario second.
Students 1, 4 and 6 rank Ontario third; among them student 6 lives within the
Ontario school district. Using the lottery order to break ties, the priority for
Ontario is 3-5-2-6-1-4.

1st Choice︷ ︸︸ ︷
3 5︸ ︷︷ ︸

Non-Residents

2nd Choice︷ ︸︸ ︷
2

3rd Choice︷ ︸︸ ︷
6︸ ︷︷ ︸

Resident

1 4︸ ︷︷ ︸
Non-Resident

Allocation: This allocation method consists of the following rounds.

Round 1 : Each student applies to his/her first choice: Students 1, 2 and 4 apply to
Huron,
students 3 and 5 apply to Ontario and student 6 applies to Clair.

• School Clair accepts Student 6.

• School Huron accepts Student 1 and rejects Students 2,4.

• School Ontario accepts Student 3 and rejects Student 5.

Applicants School Accept Reject Slot 1 Slot 2
6 −→ Clair −→ 6 −→ 6

−→ Erie −→ −→
1, 2, 4 −→ Huron −→ 1 2, 4 −→ 1 —

3, 5 −→ Ontario −→ 3 5 −→ 3 —

Accepted students are removed from the subsequent process.

Round 2 : Each student who is rejected in Round 1 then applies to his/her second
choice: Student 2 applies to Ontario, student 4 applies to Clair, and student 5
applies to Huron.

• No slot is left at Ontario, so it rejects student 2.

• Clair accepts student 4 for its last slot.

• No slot is left at Huron, so it rejects student 5.

Applicants School Accept Reject Slot 1 Slot 2
4 −→ Clair −→ 4 −→ 6 4

−→ Erie −→ −→
5 −→ Huron −→ 5 −→ 1 —
2 −→ Ontario −→ 2 −→ 3 —
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Round 3 : Each student who is rejected in Rounds 1-2 applies to his/her third choice:
Students 2 and 5 apply to Clair.

• No slot is left at Clair, so it rejects students 2 and 5.

Applicants School Accept Reject Slot 1 Slot 2
2, 5 −→ Clair −→ 2, 5 −→ 6 4

−→ Erie −→ −→
−→ Huron −→ −→ 1 —
−→ Ontario −→ −→ 3 —

Round 4 : Each remaining student is assigned a slot at his/her last choice:
Students 2 and 5 receive a slot at Erie.

Applicants School Accept Reject Slot 1 Slot 2
−→ Clair −→ −→ 6 4

2, 5 −→ Erie −→ 2, 5 −→ 2 5
−→ Huron −→ −→ 1 —
−→ Ontario −→ −→ 3 —

Based on this method, the final allocations are:

Student 1 2 3 4 5 6
School Huron Erie Ontario Clair Erie Clair

You will have 15 minutes to go over the instructions at your own pace, and make your
decisions. Feel free to earn as much cash as you can. Are there any questions?

Decision Sheet - Mechanism B

• Recall: You are participant #1 and you live within the school district of School
A .

• Recall: Your payoff amount depends on the school slot you hold at the end of
the experiment. Payoff amounts are outlined in the following table.

School: A B C D E F G
Payoff in dollars 13 16 9 2 5 11 7
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You will be paid $13 if you hold a slot of School A at the end of the experiment.
You will be paid $16 if you hold a slot of School B at the end of the experiment.
You will be paid $9 if you hold a slot of School C at the end of the experiment.
You will be paid $2 if you hold a slot of School D at the end of the experiment.
You will be paid $5 if you hold a slot of School E at the end of the experiment.
You will be paid $11 if you hold a slot of School F at the end of the experiment.
You will be paid $7 if you hold a slot of School G at the end of the experiment.

Please write down your ranking of the schools (A through G) from your
first choice to your last choice. Please rank ALL seven schools.

1st 2nd 3rd 4th 5th 6th last
choice choice choice choice choice choice choice

Your I.D : #1 Your Name (print):

This is the end of the experiment for you. Please remain seated until the
experimenter collects your Decision Sheet. Thank you.

The lottery, as well as all participants’ rankings will be entered into a computer
after the experiment. The experimenter will inform each participants of his/her
allocation slot and respective payoff once it is computed.

Session Number : 1 Mechanism 1 Payoff Matrix 1

Instructions - Mechanism G

· · ·
Allocation Method
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• In this experiment, participants are defined as belonging to the following school
districts.

– Participants #1 - #3 live within the school district of school A,

– Participants #4 - #6 live within the school district of school B,

– Participants #7 - #12 live within the school district of school C,

– Participants #13 - #18 live within the school district of school D,

– Participants #19 - #24 live within the school district of school E,

– Participants #25 - #30 live within the school district of school F,

– Participants #31 - #36 live within the school district of school G.

• A priority order is determined for each school. Each participant is assigned
a slot at the best possible school reported in his/her Decision Sheet that is
consistent with the priority order below.

• The priority order for each school is separately determined as follows:

– High Priority Level: Participants who live within the school district.
Since the number of High priority participants at each school is equal
to the school capacity, each High priority participant is guaranteed an
assignment which is at least as good as his/her district school based on
the ranking indicated in his/her Decision Sheet.

– Low Priority Level: Participants who do not live within the school
district.
The priority among the Low priority students is based on their respective
order in a fair lottery. This means each participant has an equal chance of
being the first in the line, the second in the line, · · · , as well as the last in
the line. To determine this fair lottery, a participant will be asked to draw
36 ping pong balls from an urn, one at a time. Each ball has a number on
it, corresponding to a participant ID number. The sequence of the draw
determines the order in the lottery.

• Once the priorities are determined, the allocation of school slots is obtained as
follows:

– An application to the first ranked school in the Decision Sheet is sent for
each participant.
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– Throughout the allocation process, a school can hold no more applications
than its number of slots.
If a school receives more applications than its capacity, then it rejects
the students with lowest priority orders. The remaining applications are
retained.

– Whenever an applicant is rejected at a school, his application is sent to
the next highest school on his Decision Sheet.

– Whenever a school receives new applications, these applications are
considered together with the retained applications for that school. Among
the retained and new applications, the lowest priority ones in excess of
the number of the slots are rejected, while remaining applications are
retained.

– The allocation is finalized when no more applications can be rejected.
Each participant is assigned a slot at the school that holds his/her applica-
tion at the end of the process.

An Example:

We will go through a simple example to illustrate how the allocation method works.

Students and Schools: In this example, there are six students, 1-6, and four schools,
Clair, Erie, Huron and Ontario.

Student ID Number: 1,2,3,4,5,6 Schools: Clair, Erie, Huron, Ontario

Slots and Residents: There are two slots each at Clair and Erie, and one slot each at
Huron and Ontario. Residents of districts are indicated in the table below.

School Slot 1 Slot 2 District Residents
Clair 1 2
Erie 3 4

Huron 5
Ontario 6

Lottery: The lottery produces the following order.

1−2−3−4−5−6
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Submitted School Rankings: The students submit the following school rankings:

1st 2nd 3rd Last
Choice Choice Choice Choice

Student 1 Huron Clair Ontario Erie

Student 2 Huron Ontario Clair Erie

Student 3 Ontario Clair Erie Huron

Student 4 Huron Clair Ontario Erie

Student 5 Ontario Huron Clair Erie

Student 6 Clair Erie Ontario Huron

Priority : School priorities first depend on whether the school is a district school, and
next on the lottery order:

Resident︷ ︸︸ ︷ Non-Resident︷ ︸︸ ︷
Priority order at Clair: 1, 2 – 3 – 4 – 5 – 6
Priority order at Erie: 3, 4 – 1 – 2 – 5 – 6
Priority order at Huron: 5 – 1 – 2 – 3 – 4 – 6
Priority order at Ontario: 6 – 1 – 2 – 3 – 4 – 5

The allocation method consists of the following steps:

Step 1 : Each student applies to his/her first choice: students 1, 2 and 4 apply to
Huron,
students 3 and 5 apply to Ontario, and student 6 applies to Clair.

• Clair holds the application of student 6.

• Huron holds the application of student 1 and rejects students 2 and 4.

• Ontario holds the application of student 3 and rejects student 5.

Applicants School Hold Reject
6 −→ Clair −→ 6

−→ Erie −→
1, 2, 4 −→ Huron −→ 1 – 2, 4
3, 5 −→ Ontario −→ 3 – 5
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Step 2 : Each student rejected in Step 1 applies to his/her next choice: student 2
applies to Ontario, student 4 applies to Clair, and student 5 applies to Huron.

• Clair considers the application of student 4 together with the application
of student 6, which was on hold. It holds both applications.

• Huron considers the application of student 5 together with the application
of student 1, which was on hold. It holds the application of student 5 and
rejects student 1.

• Ontario considers the application of student 2 together with the applica-
tion of student 3, which was on hold. It holds the application of student 2
and rejects student 3.

Hold New applicants School Hold Reject
6 4 −→ Clair −→ 6 4

−→ Erie −→
1 – 5 −→ Huron −→ 5 – 1
3 – 2 −→ Ontario −→ 2 – 3

Step 3 : Each student rejected in Step 2 applies to his/her next choice: Students 1 and
3 apply to Clair.

• Clair considers the applications of students 1 and 3 together with the appli-
cations of students 4 and 6, which were on hold. It holds the applications
of students 1 and 3 and rejects students 4 and 6.

Hold New applicants School Hold Reject
6 4 1, 3 −→ Clair −→ 1 3 4, 6

−→ Erie −→
5 – −→ Huron −→ 5 –
2 – −→ Ontario −→ 2 –

Step 4 : Each student rejected in Step 3 applies to his/her next choice: Student 4
applies to Ontario and student 6 applies to Erie.

• Ontario considers the application of student 4 together with the applica-
tion of student 2, which was on hold. It holds the application of student 2
and rejects student 4.

• Erie holds the application of student 6.
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Hold New applicants School Hold Reject
1 3 −→ Clair −→ 1 3

6 −→ Erie −→ 6
5 – −→ Huron −→ 5 –
2 – 4 −→ Ontario −→ 2 – 4

Step 5 : Each student rejected in Step 4 applies to his/her next choice: student 4
applies to Erie.

• Erie considers the application of student 4 together with the application
of student 6, which was on hold. It holds both applications.

Hold New applicants School Hold Reject
1 3 −→ Clair −→ 1 3
6 4 −→ Erie −→ 6 4
5 – −→ Huron −→ 5 –
2 – −→ Ontario −→ 2 –

No application is rejected at Step 5. Based on this method, the final allocations are:

Student 1 2 3 4 5 6
School Clair Ontario Clair Erie Huron Erie

Instructions - Mechanism T

· · · · · ·
Allocation Method

• In this experiment, participants are defined as belonging to the following school
districts.

– Participants #1 - #3 live within the school district of school A,

– Participants #4 - #6 live within the school district of school B,

– Participants #7 - #12 live within the school district of school C,

– Participants #13 - #18 live within the school district of school D,
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– Participants #19 - #24 live within the school district of school E,

– Participants #25 - #30 live within the school district of school F,

– Participants #31 - #36 live within the school district of school G.

• Each participant is first tentatively assigned to the school within his/her re-
spective district. Next, Decision Sheet rankings are used to determine mutually
beneficial exchanges between two or more participants. The order in which
these exchanges are considered is determined by a fair lottery. This means
each participant has an equal chance of being the first in the line, the second
in the line, · · · , as well as the last in the line. To determine this fair lottery, a
participant will be asked to draw 36 ping pong balls from an urn, one at a time.
Each ball has a number on it, corresponding to a participant ID number. The
sequence of the draw determines the order in the lottery.

• The specific allocation process is explained below.

– Initially all slots are available for allocation.

– All participants are ordered in a queue based on the order in the lottery.

– Next, an application to the highest ranked school in the Decision Sheet is
submitted for the participant at the top of the queue.

∗ If the application is submitted to his district school, then his tenta-
tive assignment is finalized (thus he is assigned a slot at his district
school). The participant and his assignment are removed from sub-
sequent allocations. The process continues with the next participant
in line.

∗ If the application is submitted to another school, say school S, then
the first participant in the queue who tentatively holds a slot at
School S is moved to the top of the queue directly in front of the
requester.

– Whenever the queue is modified, the process continues similarly: An
application is submitted to the highest ranked school with available slots
for the participant at the top of the queue.

∗ If the application is submitted to his district school, then his tenta-
tive assignment is finalized. The process continues with the next
participant in line.

∗ If the application is submitted to another school, say school S, then
the first participant in the queue who tentatively holds a slot at school
S is moved to the top of the queue directly in front of the requester.
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This way, each participant is guaranteed an assignment which is
at least as good as his/her district school based on the preferences
indicated in his/her Decision Sheet.

– A mutually-beneficial exchange is obtained when a cycle of applications
are made in sequence, which benefits all affected participants, e.g., I apply
to John‘s district school, John applies to your district school, and you
apply to my district school. In this case, the exchange is completed and
the participants as well as their assignments are removed from subsequent
allocations.

– The process continues until all participants are assigned a school slot.

An Example:

We go through a simple example to illustrate how the allocation method works.

Students and Schools: In this example, there are six students, 1-6, and four schools,
Clair, Erie, Huron and Ontario.

Student ID Number: 1,2,3,4,5,6 Schools: Clair, Erie, Huron, Ontario

Slots and Residents: There are two slots each at Clair and Erie, and one slot each at
Huron and Ontario. Residents of districts are indicated in the table below.

School Slot 1 Slot 2 District Residents
Clair 1 2
Erie 3 4

Huron 5
Ontario 6

Tentative assignments: Students are tentatively assigned slots at their district schools.

School Slot 1 Slot 2

Clair 1 2 Students 1 and 2 are tentatively assigned a slot at Clair;

Erie 3 4 Students 3 and 4 are tentatively assigned a slot at Erie;

Huron 5 – Student 5 is tentatively assigned a slot at Huron;

Ontario 6 – Students 6 is tentatively assigned a slot at Ontario.

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 78 — #82

“p˙02” — 2016/12/18 — 18:12 — page 78 — #34

78 School choice

Lottery: The lottery produces the following order.

1−2−3−4−5−6

Submitted School Rankings: The students submit the following school rankings:

1st 2nd 3rd Last
Choice Choice Choice Choice

Student 1 Huron Clair Ontario Erie

Student 2 Huron Ontario Clair Erie

Student 3 Ontario Clair Erie Huron

Student 4 Huron Clair Ontario Erie

Student 5 Ontario Huron Clair Erie

Student 6 Clair Erie Ontario Huron

This allocation method consists of the following steps:

Step 1 : A fair lottery determines the following student order: 1-2-3-4-5-6. Student
1 has ranked Huron as his top choice. However, the only slot at Huron is
tentatively held by student 5. So student 5 is moved to the top of the queue.

Step 2 : The modified queue is now 5-1-2-3-4-6. Student 5 has ranked Ontario as his
top choice. However, the only slot at Ontario is tentatively held by student 6.
So student 6 is moved to the top of the queue.

Step 3 : The modified queue is now 6-5-1-2-3-4. Student 6 has ranked Clair as her
top choice. The two slots at Clair are tentatively held by students 1 and 2.
Between the two, student 1 is ahead in the queue. So student 1 is moved to the
top of the queue.

Step 4 : The modified queue is now 1-6-5-2-3-4. Remember that student 1 has ranked
Huron as his top choice. A cycle of applications is now made in sequence in
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the last three steps: student 1 applied to the tentative assignment of student 5,
student 5 applied to the tentative assignment of student 6, and student 6 applied
to the tentative assignment of student 1. These mutually beneficial exchanges
are carried out: student 1 is assigned a slot at Huron, student 5 is assigned a
slot at Ontario, and student 6 is assigned a slot at Clair. These students as well
as their assignments are removed from the system.

Step 5 : The modified queue is now 2-3-4. There is one slot left at Clair and two slots
left at Erie. Student 2 applies to Clair, which is her top choice between the two
schools with remaining slots. Since student 2 tentatively holds a slot at Clair,
her tentative assignment is finalized. Student 2 and her assignment are removed
from the system.

Step 6 : The modified queue is now 3-4. There are two slots left at Erie. Student 3
applies to Erie, which is the only school with available slots. Since Student 3
tentatively holds a slot at Erie, her tentative assignment is finalized. Student 3
and her assignment are removed from the system.

Step 7 : The only remaining student is student 4. There is one slot left at Erie. Student
4 applies to Erie for the last available slot. Since Student 4 tentatively holds a
slot at Erie, his tentative assignment is finalized. Student 4 and his assignment
are removed from the system.

Final assignment Based on this method, the final allocations are:

Student 1 2 3 4 5 6
School Huron Clair Erie Erie Ontario Clair
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Illustration

Queue Available Slots
The top student in the queue applies
to a school.

At the end of the step

Step 1 1-2-3-4-5-6
Clair Clair
Erie Erie
Huron Ontario

1 applies to her 1st choice Huron,
which is tentatively assigned to 5.

5 comes to the top.

1-2-3-4-5-6�

Step 2 5-1-2-3-4-6
Clair Clair
Erie Erie
Huron Ontario

5 applies to her 1st choice Ontario
which is tentatively assigned to 6.

6 comes to the top.

5-1-2-3-4-6�

Step 3 6-5-1-2-3-4
Clair Clair
Erie Erie
Huron Ontario

6 applies to her 1st choice Clair,
which is tentatively assigned to 1
and 2.

1 comes to the top.

6-5-1-2-3-4�

Step 4 1-6-5-2-3-4
Clair Clair
Erie Erie
Huron Ontario

A cycle happens in the last 3 steps.

1 gets a slot at Huron.
5 gets a slot at Ontario.
6 gets a slot at Clair.

Step 5 2-3-4
Clair
Erie Erie

2 applies to her 3rd choice Clair,
because her 1st and 2nd choices
(Huron and Ontario) are no longer
available.

2 gets a slot at Clair,
because she is a resident
in Clair.

Step 6 3-4 Erie Erie
3 applies to Erie which is
still available.

3 gets a slot at Erie,
because he is a
resident in Erie.

Step 7 4 Erie 4 applies to Erie.

4 gets a slot at Erie,
because she is a
resident in Erie.

Final assignment Based on this method, the final allocations are:

Student 1 2 3 4 5 6
School Huron Clair Erie Erie Ontario Clair
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Abdulkadiroğlu, A., Che, Y.-K., & Yasuda, Y. (2011). Resolving conflicting preferen-
ces in school choice: The “Boston mechanism” reconsidered. American Economic
Review, 101(1), 399–410.
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Abdulkadiroğlu, A., Pathak, P. A., Roth, A. E., & Sönmez, T. (2006). Changing the
Boston school choice mechanism: Strategy-proofness as equal access. Harvard
University, Working paper.
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1. INTRODUCTION

The complex title of this article describes precisely its contents and goals, but it
hides the enormous importance of the underlying problem of allocating justly
the available resources among a population of individual agents.

Our problem in its most simple form is the problem of fair division of some
divisible object among two persons. Here “fair” is a non-technical term whose
formal specification depends on the situation and on potential property rights
of the negotiating persons. Accordingly, either distribution or exchange may
best describe the activity to be analyzed.

Although this fundamental problem of bilateral negotiation is still at the
heart of economics and game theory, it has a very long history. This is
competently and transparently described by Dos Santos Ferreira (2002) who,
referring to Stuart (1982) and Burnet (1900), traces back modern treatments of
bilateral exchange and bargaining to Aristotle’s (ca. 335 B.C.) Nichomachean
Ethics. He argues convincingly that the underlying ideas about proportionality
and the arithmetic and geometric means of modern axiomatic bargaining
solutions can be traced back to Aristotle’s analysis.

Dos Santos Ferreira (2002, p. 568) considers “The Nichomachean Ethics
in which Aristotle presents his analysis of bilateral exchange” as “undoubtedly
one of the most influential writings in the whole history of economic thought”
that “through the commentaries of Albertus Magnus and . . . of his pupil
Thomas Aquinas . . . was one of the main sources of the Scholastic doctrine
of just prices.” He then follows this influence via Turgot (1766, 1769), Marx
(1867), Menger (1871), and Edgeworth (1881) to the modern treatments, in
particular the seminal contributions by Nash (1950, 1953) and Rubinstein
(1982) underlying our present analysis. Shubik (1985) mentions the ‘horse
market model’ of Böhm-Bawerk (1891) which became the forerunner of
assignment games, as another 19th century work concerned with bilateral
exchange. The contract curve offered by Edgeworth and the price interval of
Böhm-Bawerk reflect the problem of indeterminacy inherent in those early
approaches that was only solved by Zeuthen (1930) and Hicks (1932).

Harsanyi (1956) compared the modelling of bilateral bargaining before
and after the appearance of the theory of games (see Bishop, 1963) and found
Zeuthen’s approach, which he presented in the language of game theory, supe-
rior to that of Hicks and demonstrated that Zeuthen’s solution coincides with
the solution provided by Nash (1950, 1953), who defined and axiomatically
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characterized his bargaining solution.
The first contributions to an analysis of bilateral bargaining via strategic

non-cooperative games were independently presented by Ståhl (1972) and
Krelle (1976), who provided a model of finite horizon alternate offers con-
secutive bargaining. That model was extended to infinite horizon sequential
bargaining with discounting payoffs in the seminal article of Rubinstein (1982).

While cooperative axiomatic and non-cooperative strategic game theoretic
models are based on quite different implicit assumptions about legal and
institutional environments, an interesting question arises as to the relationship
between the solutions to the bargaining problem offered by each approach.
That question belongs to what, based on some short passages in Nash’s work,
has been termed the Nash Program in the literature (Binmore & Dasgupta,
1987a). According to Reinhard Selten in a private communication it is Robert
Aumann who first had used that expression.

A first contribution to the Nash program was provided by Nash (1953)
himself when he compared the Nash solution with the payoffs of his so called
simple demand game. The continuum of Nash equilibria of this game, however,
cannot be used as a support for the Nash solution, which corresponds to just one
of them. Therefore Nash used a sequence of increasingly less distorted smooth
games that converges to the simple demand game and whose set of infinite
Nash equilibria converges to a unique (in the words of van Damme, 1991)
essential Nash equilibrium of the simple demand game with the payoffs of the
Nash solution. This analysis provided the first approximate non-cooperative
support of the Nash solution. While Nash’s analysis underpinning this result
is vague and incomplete, later contributions including van Damme (1991)
rendered more precise arguments.

As to an exact as opposed to an approximate support, Binmore & Dasgupta
(1987b) close their article with the passage: “Finally, it is necessary to comment
on the fact that none of the non-cooperative bargaining models which have
been studied implement the Nash bargaining solution exactly. In each case, the
implementation is approximate (or exact only in the limit).”

Notice that here “implementation” is meant as a non-technical alternative
for support or foundation and is different from the more challenging concept
implementation in the mechanism design literature. Both, exact support and
exact implementation of the Nash solution will be analyzed in this paper based
on a modification of Rubinstein’s game.

In contradiction to the above quotation of Binmore & Dasgupta (1987b),
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the first exact non-cooperative support for the Nash solution to our knowledge
was provided by van Damme (1986) (see also Naeve-Steinweg, 1999) via a
unique Nash equilibrium payoff vector of a meta-bargaining game with specific
subsets of the set of bargaining solutions building the players’ strategy sets.
With slight modifications of the sets of solutions admissible as strategies, Chun
(1985) and Naeve-Steinweg (2002) proved analogous results for the Kalai-
Smorodinsky solution. Admitting all bargaining solutions as strategies, Trockel
(2002a) provided evidence in support of the Nash solution. Using a quite
different approach, i.e., a Walrasian modification of Nash’s simple demand
game, Trockel (2000) proved the existence of a unique Nash equilibrium
support for the Nash solution. An exact support for the Nash solution by a
unique subgame perfect equilibrium payoff vector can be found in Howard
(1992).

The relation between the Nash solution and the Rubinstein game was
clarified in a seminal article by Binmore et al. (1986), based on an earlier
article by Binmore (1980) published in Binmore & Dasgupta (1987a). Using
two different two-person cooperative bargaining games generated via different
types of utility functions (time discounting versus risk versus von-Neumann-
Morgenstern) each imposed on the basic dynamic model of Rubinstein (1982),
they provide approximations of the two respective Nash solution payoff vectors
by the two unique subgame perfect equilibrium outcomes.

In order to proceed from the Nash program aspect of the Nash solution
support by non-cooperative equilibria to the implementation of the Nash solu-
tion in some equilibrium, one needs to clarify the relation between the Nash
program and implementation of solutions of cooperative games (rather than
just of social choice rules)! Strictly speaking, a solution can possibly be imple-
mented in some equilibrium only if it can be identified (which already implies
a restricted domain) with some social choice rule, and in the special context of
bargaining games with traditional point-valued rather than set-valued solutions
with some social choice function.

As stated above, the Nash program has its roots in some passages of Nash’s
work. It is discussed in great detail by Serrano (2004) who notes: “Similar
to the micro-foundations of the macroeconomics, which aim to bring closer
the two branches of economic theory, the Nash program is an attempt to
bridge the gap between the two counterparts of game theory (cooperative
and non-cooperative). This is accomplished by investigating non-cooperative
procedures that yield cooperative solutions as their equilibrium outcomes.”
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He then quotes the following passage from Harsanyi (1974): “Nash (1953)
has suggested that we can obtain a clear understanding of the alternative
solution concepts proposed for cooperative games and can better identify and
evaluate the assumptions to make about the players’ bargaining behavior if we
reconstruct them as equilibrium points in suitably defined bargaining games,
treating the latter formally as non-cooperative games.”

The relation between implementation theory and the Nash program has
been analyzed and discussed in Serrano (1997, 2004), Bergin & Duggan (1999),
and Trockel (2000, 2002a,b, 2003). As our modification of the Rubinstein
game applies to diverse variants of the Rubinstein model, we will work with a
particularly simple and transparent special version that allows it to interpret
the discount factor in both ways discussed in Binmore et al. (1986), namely as
an indicator of either players’ impatience or their risk aversion. Further, we
discuss the impact of our exact and also the approximate support results on
implementability of the Nash solution. This mechanism theoretical aspect is
highly relevant for applications of axiomatic bargaining solutions as discussed
in Binmore et al. (1986) and Gerber & Upmann (2006).

The rest of this paper is organized as follows: In Section 2, some basic
notions of bargaining theory are introduced. Section 3 presents our version
of the Rubinstein game. In Section 4 we introduce a proposition on weakly
subgame perfect support of the Nash solution. In Section 5 the concept of
weakly subgame perfect equilibrium is presented. In Section 6, we establish
the existence of a subgame perfect equilibrium support for the Nash solution.
In Section 7 we discuss possible implications of our results on implementing
(a social choice function representing) the Nash solution in (weakly) subgame
perfect equilibrium.

2. BASIC CONCEPTS AND NOTATION

We use the following two different types of games, namely two-person coope-
rative bargaining games and two-person non-cooperative games in extensive
form, briefly extensive games. The definition of the latter ones is quite intricate
though their illustrations via game trees are very intuitive. We shall use this
notion as treated in Myerson (1991, chapter 2) or in Mas-Colell et al. (1995,
chapter 7).

As to cooperative bargaining games, we use the following:

Definition 1. A two-person bargaining game is a pair (U,d) where d ∈U ⊂
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R2
+ and U is non-empty, convex, compact and there exists an x ∈U such that

x >> d. The set of two-person bargaining games is denoted by B.

Definition 2. A bargaining solution is a mapping
L : B−→ R2

(U,d) 7−→ L(U,d) ∈U

If we can associate any (U,d) ∈ B with some extensive game GU,d whose
subgame perfect equilibrium payoff vectors coincide with L(U,d), then the
game GU,d supports the solution L(U,d) of (U,d) by subgame perfect equili-
brium. Such a support provides an exact non-cooperative foundation for the
solution L in the sense of the Nash program (Binmore et al., 1986; Serrano,
2004). Exact non-cooperative foundations for the Nash solution have been pro-
vided in van Damme (1986), Naeve-Steinweg (1999), Howard (1992), Naeve
(1999), Trockel (2000, 2002b).

In the present paper, we want to present an exact non-cooperative founda-
tion for the Nash Solution based on the Rubinstein game.

The relevant notion of a subgame perfect Nash equilibrium due to Selten
(1965) is defined as a Nash equilibrium of an extensive game which induces a
Nash equilibrium in any subgame.

3. THE RUBINSTEIN GAME

The Rubinstein infinite horizon strategic bargaining model with the two players’
alternating offers is concerned with how to divide a unit of some perfectly
divisible good with a resulting allocation for the two players. This game
introduced by Rubinstein (1982) was meant to analyze “what ‘will be’ the
agreed contract, assuming that both parties behave rationally?” No link to
axiomatic cooperative bargaining or even the Nash solution is indicated or, at
least it appears so, intended. Discount factors δ1, δ2 are assumed to be fixed
for both players. Possible consequences for the subgame perfect equilibrium
regarding a relation to the Nash solution if δ1, δ2 are close to 1 are not an issue.

It was Binmore (1980) who related a dynamic version of Nash’s simple
demand game that he called “modified Nash demand game II” to the (asymme-
tric) Nash solution, by approximating it by unique subgame perfect equilibrium
payoff vectors of his strategic games where the discount factors δ1,δ2 come
close to 1. There are various versions of the original model of Rubinstein
(1982) which has finite horizon predecessors in Ståhl (1972) and Krelle (1976).
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The most general version is used in Osborne & Rubinstein (1994, chapter 7)
where the set of feasible agreements X is a non-empty compact, connected
set of some Euclidean space. In the introduction of Binmore et al. (1986),
the set X represents “physical outcomes” building the two players’ “possible
agreements”. The formal model in their section 2 “strategic bargaining mo-
dels” specifies this set as X̄ = {x ∈R2

+ | x1+x2 ≤ 1}. In both cases, inefficient
feasible agreements are principally possible. Rubinstein (1982) uses X = [0,1]
where the “split the pie” assumption excludes x1+x2 < 1 and implies efficiency
of the agreements.

Binmore (1980) implicitly expresses the feasible set of alternatives as the
set of payoff vectors in the utility image of some unspecified outcome set
and explicitly assumes the set U of feasible payoff vectors to be a non-empty
compact, convex set in R2. In this framework, the feasible proposal pairs
(x1,x2) of the two players are payoff vectors and thus are directly comparable
to the Nash solution point of (U,d). Here d ∈U is the disagreement payoff
vector of the cooperative bargaining problem.

In the framework of the other approaches based on X , histories without
any agreement at any time are mapped by the players’ utility functions π1 and
π2 onto such a d ∈U , where U is π(X) = {(π1(x),π2(x)) | x ∈ X}.

As shown and in fact exploited in Binmore et al. (1986), the same under-
lying X may lead via different sets of players’ utility functions to different
sets U and accordingly different Nash solution points N(U,d). Binmore et al.
(1986) presents two detailed versions of strategic bargaining á la Rubinstein:
one with time preferences and impatient players, the other one with exoge-
nous risk of breakdown of negotiations with risk averse players who have von
Neumann-Morgenstern utility functions. In both models, the subgame perfect
equilibrium payoff vectors converge to the respective Nash solution points of
the induced utility possibility set U , where δ ∈ (0,1) converges to 1.

We shall use a particularly simple and transparent version of the strategic
bargaining that simultaneously allows both interpretations, namely impatience
or risk aversion of players as represented by δ as a discount factor as a proba-
bility of continuation of the negotiation process. This model is essentially that
of Binmore (1980) and of Example 125.1 in Osborne & Rubinstein (1994).
That will not affect the validity of our analysis for the more complex versions
mentioned above. The interpretation of the discount factors we choose will
have, however, a crucial impact on the application of our results to implemen-
tability in the mechanism theoretic sense. A reference for this model is also
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the collection of sections 6.7.1, 6.7.2 and 10.1.2 in Peters (2015).
Let X = [0,1] represent the pie to be split among the two players. The

payoff vector resulting from a division x = (x1,x2) with x1 + x2 = 1 is de-
termined by the utility functions ui : X → R with ui(xi) = xi for all i = 1,2.
Discounting utilities with δ ∈ (0,1) results in a payoff vector δ tx ∈U for an
agreement x ∈ X at time t ∈ N0 := N∪{0}. We assume U =4 := {(z1,z2) ∈
R2
+ | z1 + z2 = 1} and d = u(0,0) = 0 ∈ R2.

For notational convenience, we shall identify players’ proposals x1,y2 ∈ X
with the payoff vectors (x1,1− x1) and (1− y2,y2) ∈4=U . These identifi-
cations of4 with X via the two projections on the first and second coordinate,
respectively, allow us to speak of proposals in X or in 4 without creating
confusion.

We treat only the symmetric case with the discount factor δ being the same
for both players. The extension to the asymmetric case is possible like in the
quoted literature and is straightforward.

In contrast to the finite horizon version of Ståhl (1972), in the Rubinstein
game backward induction cannot be used for determining subgame perfect
equilibria.

In our specific “split the pie” framework, there exists a “unique (not just es-
sentially unique)” subgame perfect equilibrium (Osborne & Rubinstein, 1994,
p. 125). This unique subgame perfect Nash equilibrium σ∗δ is characterized as
follows:

σ∗δ ,1 : At t ∈ 2N0, propose x∗δ := ( 1
1+δ ,

δ
1+δ ) ∈U ; at t ∈ 2N0 +1, accept

any proposal z ∈U of player 2 if and only if z1 ≥ δx∗δ ,1.

σ∗δ ,2 : At t ∈ 2N0 +1, propose y∗δ := ( δ
1+δ ,

1
1+δ ) ∈U ; at t ∈ 2N0, accept

any proposal z ∈U of player 1 if and only if z2 ≥ δy∗δ ,2.

The parameters x∗δ and y∗δ build the unique solution of the two equations
x2 = δy2, y1 = δx1, for x,y ∈U .

The stationarity of these equilibrium strategies is a result rather than an
assumption (Osborne & Rubinstein, 1994, p. 126).

It can be easily verified that the Nash products x∗δ ,1x∗δ ,2 and y∗δ ,1y∗δ ,2 of x∗δ
and y∗δ are the same. As both points are on the efficient boundary of U, this is
also true in the more general case where the ui’s are not identity functions; see
for instance Figure 311.1 in Osborne & Rubinstein (1994) with δ converging
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to 1, both of x∗δ and y∗δ converge to z∗ := N(U,0), the Nash solution point of
(U,0).

The choice of X = [0,1] like in Rubinstein (1982) used also in Example
120.1 of Osborne & Rubinstein (1994), is less natural than the X̄ := {(x1,x2) ∈
R2
+ | x1 + x2 ≤ 1} chosen in Binmore et al. (1986), if one wants to compare

the subgame perfect equilibrium payoffs with the Nash solution of cooperative
games for classes considered usually in the literature. There U is generally a
compact, convex (often strictly convex) set with d ∈U . Our special case deals
only with the efficient boundaries of such sets and d = (0,0) does not satisfy
d1 +d2 = 1. Making a proposal in our model corresponds to making a Pareto
efficient proposal in the general case. In fact nothing relevant would change, if
we replaced (U,0) = (X ,0) by (X̄ ,0).

4. AN EXACT NON-COOPERATIVE FOUNDATION

Denote the extensive form game of Rubinstein with discount factor δ ∈ (0,1)
described in the previous section by Gδ and its subgame perfect equilibrium
payoff vector by ẑδ . Notice that the limit cases of δ = 0 and δ = 1 correspond
to the ultimatum game and the Nash simple demand game, respectively.

In G◦, the whole cake goes to the proposer in the unique subgame perfect
equilibrium. In G1, every Nash equilibrium payoff vector of the Nash simple
demand game can be realized via some subgame perfect equilibrium. This dis-
continuity of the subgame perfect equilibrium correspondence at G1 excludes
its use for an exact support of the Nash solution.

It is our goal in this article to define a game that is based on the Rubinstein
game and can play the role of a missing limiting game that turns the approxi-
mate support of the Nash solution due to Binmore et al. (1986) into an exact
one.

In order to gain some intuition for the game G to be defined, we consider
a game Gδ for an arbitrary δ ∈ (0,1) defined as follows: At stage 0, player 1
proposes some x ∈4, then player 2 either accepts, in which case the play ends
with paying out the proposed payoffs, or she rejects with her only alternative
move by which she decides that the Rubinstein game Gδ has to be played with
player 1 starting as the proposer. Obviously, Gδ has the same unique subgame
perfect equilibrium payoff vector as Gδ .

Next, we get the same result via replacing Gδ by Ĝδ which we define as
follows: At stage 0, player 1 proposes x ∈4. Player 2 then reacts by either
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accepting, which yields the end of the play and payoff vector x, or she reacts
by choosing some ρ ∈ (0,δ ] which means that Gρ has to be played. Again it
is clear that the unique subgame perfect equilibrium is ẑδ .

In all those games, the respective ẑδ can be reached in two different ways:
Either by the proposal x := ẑδ of player 1 being accepted by player 2, or by
the rejection of player 2 via the unique subgame perfect equilibrium of Gδ .

What happens if we replace the choice set (0,δ ] used in Ĝδ by (0,1)? Let
us denote the game resulting from doing so by Ĝ. The Nash equilibrium payoff
vector z∗ = limδ→1 ẑδ can be realized in Ĝ only as an accepted proposal. No
choice of ρ ∈ (0,1) prescribing the play of Ĝρ and its unique subgame perfect
equilibrium payoff vector ẑρ could possibly justify a rejection of the proposal
z∗. But unfortunately, this equilibrium fails to be subgame perfect! Off the
equilibrium path, any proposal x 6= z∗ would be to the disadvantage of player 1
or could be rejected by player 2 via a suitable choice of ρ ∈ (0,1). But as there
is no optimal way to choose such ρ , the game G does not have any subgame
perfect equilibrium.

We can establish, however, that z∗ is the unique weakly subgame perfect
equilibrium payoff vector of Ĝ. And we will argue that the use of weakly
subgame perfect equilibria secures the credibility of threats sufficiently well in
order to justify this concept.

Moreover, we shall for convenience constrain ourselves to the countable set
of δk ∈ (0,1) with δk := k/(k+1), k ∈ N. Then limk→∞ δk = 1. Accordingly,
we denote Gδk and ẑδk by Gk and ẑk, respectively.

Although our main result Theorem 1 will provide a subgame perfect equili-
brium support for the Nash solution, we believe that our Proposition 1 below
is also an interesting support result by itself. It builds a basis for proving
Theorem 1.

We shall now introduce first our extensive game G, denoted by G(= GU,d),
and then the concept of a weakly subgame perfect equilibrium that coincides
with that of a subgame perfect equilibrium on finite games.

At round 0, one of the two players of the bargaining game (U,d) is selected
randomly with probability 1/2 to make a proposal z ∈4. After the first player
makes a proposal, the other reacts by choosing an element k ∈ N0 := N∪{0}.

If she chooses 0, the proposal is accepted and the payoffs will be realized.
If she chooses k ∈ N, the proposal is rejected and the game Gk will be played,
whose unique subgame perfect equilibrium payoff vector ẑk at t = 1 results in
the discounted payoff vector δ0ẑk at t = 0. In order to simplify the notation,
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we assume, w.l.o.g., δ0 := 1.
Like the Rubinstein games Gk, k ∈ N, the game G has an infinite number

of Nash equilibria, among them the one where every player always chooses
the proposal N(U,d) and always accepts this proposal and rejects any other
one. Any other bargaining solution can be supported by Nash equilibria of G
in an analogous way. This is essentially the situation in Nash’s simple demand
game.

Our final solution in the theorem will be based on subgame perfect equi-
librium. But, as in contrast to the Gk, k ∈ N, the game G does not have any
subgame perfect equilibrium, we shall first prove a proposition where we use
the (weaker) concept of weak subgame perfectness due to Trockel (2011).

Definition 3. A Nash equilibrium of an extensive game is weakly subgame
perfect when it induces some Nash equilibrium in every subgame in which a
Nash equilibrium exists.

We shall very briefly discuss this concept in section 5. Here we will use it
in order to state and prove our first non-cooperative support result.

Proposition 1. For the bargaining game (U,d) = (U,0), the extensive game
G(= GU,d) as defined above has an infinity of weakly subgame perfect equi-
libria with identical equilibrium path and equilibrium payoff vector z∗ =
N(U,d).

Proof. The proof consists of several steps:

• One type of Nash equilibria is defined by the following rule for both
players:
As the proposer choose z∗, as the follower accept exactly those proposals
that are at least as good as z∗. In any Rubinstein subgame Gk, play
according to the unique subgame perfect equilibrium.

It is obvious that no other proposal nor any other reaction to a proposal
can constitute an advantageous unilateral deviation for any player. In
these Nash equilibria, z∗ is realized in the first round.

• There does not exist any subgame perfect equilibrium in this game.
This follows from the fact that G has subgames without Nash equilibria,
namely those that directly follow any proposal z ∈4 that offers to the
other player a payoff smaller than her coordinate of z∗. Although this
player should reject, there is no optimal k ∈ N to do so.

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 94 — #98

“p˙03” — 2016/12/18 — 9:57 — page 94 — #12

94 Implementation of the Nash solution

• The Nash equilibria described in the first step are weakly subgame per-
fect.
The trivial subgame G has Nash equilibria according to the first step.
Each of those induces on every Rubinstein subgame Gk, k ∈ N, a
(subgame perfect) Nash equilibrium. All subgames starting at proposals
that offer the other player a payoff at least as high as her coordinate of z∗

have ”acceptance” as the optimal, hence Nash equilibrium choice. Off
the equilibrium path, these equilibria induce subgame perfect equilibria
of Rubinstein games Gk, k ∈ N.

The only remaining subgames are those without equilibria described in
the second step. So the Nash equilibria described in the first step are
weakly subgame perfect.

• Any other Nash equilibrium fails to be weakly subgame perfect.
In order to establish this claim, consider a Nash equilibrium payoff
vector z̃ 6= z∗.

There are two possible ways how z̃ may have been realized:

a) as an accepted proposal in the first round,
b) as the result of a subgame Gk that started right after a first proposal
has been rejected.

W.l.o.g., let player 1 be the first proposer in the first round, and hence in
every Gk if it is played after rejection of player 2.

Case (a): If player 1 proposes z̃ with z̃2 < z∗2 and player 2 accepts, this
cannot possibly be a part of a Nash equilibrium, since player 2 could
just reject with a sufficiently large k and ensure herself ẑk

2 arbitrary close
to N2(U,d), and ẑk

2 > z̃2.

If player 1 proposes z̃ with z̃2 > z∗2 and player 2 accepts, player 1 could
have improved by proposing z∗ unless player 2 rejects z∗. So only if
player 2’s strategy contains rejection of z∗, then z̃ could possibly be a
Nash equilibrium payoff vector. But rejecting z∗ is only possible via
choosing some Gk, k ∈ N. As in each Gk, the unique subgame perfect
equilibrium payoff for player 2 would be ẑk

2 < z∗2 < z̃2, none of them
would justify rejection of z∗. Therefore, the payoff vector z̃ can possibly
result only from a Nash equilibrium that is not weakly subgame perfect
and satisfies δ0z̃2 = z̃2 > ẑk

2 = δ0ẑk
2.
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Case (b): Suppose z̃ is a weakly subgame perfect equilibrium payoff
vector of G. Then z̃ = δ0ẑk = ẑk for some k ∈N. But then player 2 could
improve by choosing k+1 with discounted payoff vector δ0ẑk+1 = ẑk+1.
This implies that z̃ is not a Nash equilibrium payoff vector of G, yielding
a contradiction.

5. REMARKS ON WEAKLY SUBGAME PERFECT EQUILIBRIA

In contrast to the games Gk, k ∈ N, the game G has an infinity of weakly
subgame perfect equilibria. How bad is this? There is no coordination problem
involved as long as both players stay on the equilibrium path and the equili-
brium payoff is uniquely determined. So the multiplicity of those equilibria
appears to be harmless, in particular as subgame perfect equilibria also may
have multiple ways of behavior off the equilibrium path.

So the criticism could only be based on the lack of credible threats to reject,
because there is no optimal way of rejecting! But from a decision theoretical
point of view, this criticism is dubious. If there is a choice between money
amounts {−50,1,2, . . . ,10}, we take it for granted that -50 is rejected (via
accepting 10). If the choice is among {−50}∪N, do we think that -50 will be
accepted just because there is no best alternative? In real life, we avoid very
bad or worst cases even if we are unable to do that in an optimal way.

But as this is a controversial point, we will provide a modified non-
cooperative support result via subgame perfect equilibria in the next section.

6. SUBGAME PERFECT EXACT SUPPORT

When attempting to base an exact subgame perfect equilibrium foundation for
the Nash solution based on Rubinstein’s games Gk, k ∈ N, the dilemma is the
appearance of those subgames starting right after an initial proposal that do
not have any Nash equilibrium. There are two possible ways that one may
consider:

1. Add a best alternative to the set N0. We did not see any natural way to
do so. We might end up with no or a multiplicity of subgame perfect
equilibria. Anyway, we did not follow this approach.
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2. Stop those subgames starting right after the first proposals from being
subgames. In order to do so, we modify our original game G in the
following way: in the beginning, the proposer is chosen randomly with
probability 1/2, but both players do not observe that random choice.
So each player has probability 1/2 that she is the chosen proposer and
1/2 that she has to react to her opponent’s proposal. Accordingly, both
players’ strategies have to contain full descriptions of what they would
propose and how they would react to any possible proposal z ∈4.

We follow that approach and define now an extensive game G̃, denoted
by G̃(= G̃(U,d)) in detail.

In the beginning, the referee throws a fair coin in order to decide who of the
two players starts with a proposal z ∈4. But the result of this random choice
is not observed by the players. Then, not knowing whether they will start
with a proposal or a rejection to the proposal, but knowing that any Rubinstein
game played after a rejection starts with another proposal of the proposer,
both players simultaneously and independently choose a pair consisting of a
proposal and a reaction function on the set of possible proposals.

On this basis, we define now the extensive game G̃ as follows:
At stage 0, the following things happen:

1. The referee throws a fair coin in order to randomly but privately deter-
mine which player will act as the proposer.

2. Both players, not knowing which of them will act as the proposer,
simultaneously submit pairs (x1, f1), (x2, f2) ∈U ×NU

0 to the referee,
where xi are their proposals, f1 and f2 are reaction functions to their
opponent’s proposal.

3. The referee informs both players on their randomly determined roles.
The proposer whose role is now common knowledge is w.l.o.g. player 1.

At stage 1, the game either ends if f2(x1) = 0 or continues with stage 2 if
f2(x1) = k ∈ N. In this case, player 1 starts at stage 2 with a proposal x1 ∈U
in the Rubinstein game Gk. The rest of the game is just playing this Rubinstein
game Gk.

The specific structure of G̃ at stage 0 has two consequences that are crucial
for our Theorem:
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First, it guarantees that the players’ choices of proposals together with
their reaction functions build actions at t = 0 in non-singleton information sets.
Therefore, no subgame starts with such actions. Secondly, the full information
of both players about their respective roles as proposer and reactor before the
start of actions at stage 2 prevents the annoying situation that all Gk, k ∈ N
would start only at non-singleton information sets. In that case, the only
subgame of G̃ would be G̃ itself.

Clearly, N(U,d) would still be a subgame perfect equilibrium payoff vector.
But the whole plethora of Nash equilibria would become subgame perfect
ones, too!

Under the aspect of trying to support the Nash solution, we would essenti-
ally be back to Nash’s simple demand game. Notice that in G̃, the Rubinstein
subgames Gk of G, k ∈ N will reappear twice: once via a rejection of player 2
and once as a rejection of player 1 in that part of G̃ that follows the non-realized
choice of player 2 as the proposer. Only those Gk, k ∈ N following a rejection
by player 2 are potentially effective for the outcome of the game. But also in
the other (now irrelevant) Rubinstein games, following rejections by player
1 of proposals by player 2, subgame perfectness of G̃ requires the players to
play subgame perfect equilibria.

It is impossible to just cancel that at stage 1 irrelevant part of the game tree
as it is relevant for the players’ choices at stage 0 before they are informed
about their respective later roles.

This modification of our original game G is illustrated in the following two
figures. Figure 1 and 2 are equivalent stylized illustrations of stages 0 and 1 of
G̃.

Notice that these figures are only schematic illustrations of the game G̃ in
its first stages t = 0,1 rather than complete game trees. The infinite action sets
for both players are represented in these figures only by one typical action for
each player, namely (x1, f1), (x2, f2). In the figures G0 is the degenerate game
consisting of the singleton set {0} representing acceptance of a proposal.

The construction in Figure 2 is similar to the way in which Sudhölter et al.
(2000) define the canonical extensive form for the battle of sexes game. It has
precisely the intended effect in our present context. The one-player subgames
without optimal actions in the reduced game have vanished now.

The only remaining subgames of the modified game G̃ are G̃ itself and the
Rubinstein games Gk, k ∈ N.

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 98 — #102

“p˙03” — 2016/12/18 — 9:57 — page 98 — #16

98 Implementation of the Nash solution
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In G̃, any subgame perfect equilibrium is a pair (x1, f1,k1;x2, f2,k2) with
(x1,x2) = z∗ and fi,ki : U → N0 such that

fi,ki(x) =
{

0 : xi ≥ z∗i
ki : xi < z∗i

and ki ∈ {k ∈ N | ẑk
i > xi}, i = 1,2.

After the first moves of both players, the game ends either in its equilibrium
with payoff vector z∗ or, else, in some game Gk, k ∈ N, where the unique
subgame perfect equilibrium is induced. The multiplicity of subgame perfect
equilibria arises from the various ki that may be chosen for fi,ki , i = 1,2. But
the equilibrium path is unique.

We can formulate the modified version of our support result now as follows:
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Theorem 1. For the bargaining game (U,d) = (U,0), the extensive game
G̃(= G̃(U,d)) as defined above has an infinity of subgame perfect equilibria
with identical equilibrium path and equilibrium payoff vector z∗.

Proof. This theorem is in fact a corollary to the Proposition.
All Rubinstein games Gk, k ∈ N occur as subgames in G̃. There is no

subgame anymore however, that starts after a proposal with actions k∈N0. The
k chosen after a proposal x1 of player 1 is now determined by the simultaneous
choice (x2, f2) of player 2 at both points of her information set at t = 0 via
k := f2(x1). k′ := f1(x2) has been eliminated from further consideration by
the referee’s random choice of player 1 as the proposer. Accordingly, a lack of
an optimal way of rejecting a proposal cannot destroy the subgame perfectness
of a weakly subgame perfect Nash equilibrium. As at t = 0, there do not exist
singleton information sets for the players, the games G̃ and Gk, k ∈ N build all
subgames of G̃.

Now, we define a Nash equilibrium of G̃ literally as in the first step of
the proof of our Proposition. Any weakly subgame perfect equilibrium of G
becomes (or corresponds to) subgame perfect equilibria of G̃. Any other Nash
equilibrium payoff vector could in G only result from non weakly subgame
perfect behavior in some Gk, thus in G̃ only from violating subgame perfectness
in that Gk. This proves our Theorem.

Remark 1. The subgame perfect Nash equilibria of G̃ are in fact even se-
quential Nash equilibria! The beliefs of both players can be expressed by
probabilities on their non-singleton information sets. Whatever probabilities
there may be, however, they do not have any influence on their decisions at
these information sets, as every choice (xi, fi), i = 1,2 is intended to be optimal
at each point of the information set, respectively. Only the parts of those pairs
(xi, fi), i = 1,2, relevant at the different points of the information sets differ.

7. FROM SUPPORT TO IMPLEMENTATION

The step from a non-cooperative support of a cooperative solution to a mecha-
nism theoretic implementation is not trivial and requires some care and in fact
certain assumptions. In Serrano (1997), we find the following passage:

“The Nash Program and the abstract theory of implementation are
often regarded as unrelated research agendas. Indeed, their goals
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are quite different: while the former attempts to gain additional
support for cooperative solutions based on the specification of
certain non-cooperative games, the latter tries to help an incom-
pletely informed designer implement certain desirable outcomes.
However, it is misleading to think that their methodologies can-
not be reconciled. A common critics that is raised against the
mechanisms in the Nash program is that they are not performing
real ‘implementations’ since their rules depend on the data of
the underlying problem (say the characteristic function) that the
designer is not supposed to know.”

Bergin & Duggan (1999) also emphasize the importance of independence
of the game rules expressed by a mechanism of the players’ preference profiles.
And it is crucial now that payoffs are in utilities representing preferences rather
than in money.

The very fact that the presence of an outcome space is an additional
ingredient in mechanism theory as compared to the Nash program indicates
that these two can hardly be considered “equivalent”, as claimed, for instance
in Dagan & Serrano (1998)(abstract). Detailed treatments of the relation
between the Nash program and the implementation theory can be found in
Bergin & Duggan (1999), Trockel (2000, 2002a) and Serrano (2004).

The conditions which are necessary in order to have a non-cooperative
support that automatically provides an implementation in some equilibrium
concepts are often satisfied in models in the literature (Moulin, 1984; Howard,
1992). However, strictly speaking, there solution based social choice rules are
implemented (Trockel, 2003).

This holds also true in principle for the model of Rubinstein (1982), as
used in Binmore et al. (1986) and Osborne & Rubinstein (1994). However,
the situation there is different. In a strict sense, these results do not provide a
non-cooperative implementation for the Nash solution on a given prespecified
class of two person cooperative bargaining games. They rather just define such
an implementation for the classes of those bargaining games generated by their
game forms together with their different types of utility functions. From a
puristic point of view, there is missing an axiomatization of the Nash solution
on those classes. Clearly, this solution is still well defined as the maximizer of
the Nash product. In fact, the section 3 in Binmore et al. (1986) has the heading
Nash solution as an approximation to the equilibria. This terminology differs
from the one prevailing in the literature on non-cooperative foundation where
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one thinks of supporting the Nash solution by equilibria of non-cooperative
games, exactly or by approximation. In fact, the equilibria do approximate the
Nash solution.

The Nash program is based on two passages in Nash (1951) and Nash
(1953). While the first one may be interpreted as giving a higher priority to
the strategic than to the axiomatic approach to bargaining, the second one
from the introduction in Nash (1953) emphasizes the equal importance of both
approaches:

“We give two independent derivations of our solution of the two-
person cooperative game. In the first, the cooperative game is
reduced to a non-cooperative game. To do this, one makes the
players’ steps of negotiation in the cooperative game become mo-
ves in the non-cooperative model. Of course, one cannot represent
all possible bargaining devices as moves in the non-cooperative
game. The negotiation process must be formalized and restricted,
but in such a way that each participant is still able to utilize all the
essential strengths of his position.

The second approach is by the axiomatic method. One states as ax-
ioms several properties that it would seem natural for the solution
to have and then one discovers that the axioms actually determine
the solution uniquely. The two approaches to the problem, via the
negotiation model or via the axioms, are complementary; each
helps to justify and clarify the other.”

A justification in Nash’s sense of the Nash bargaining solution concept on
a specified whole class of bargaining games via the non-cooperative approach
as opposed to just as the Nash solution point of one specific bargaining game
requires intuitively that each game in that class can be generated or represented
by a game in a family of “similar” strategic games. Such kind of uniform
support for a whole class leads naturally to a common game form underlying
that family of strategic games which is already an important step towards
implementation.

Binmore et al. (1986) by using the terms time-preference Nash solution
and von Neumann-Morgenstern Nash solution stresses the fact that their two
models provide approximate supports for the Nash solution on different sets of
bargaining games.
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The other direction of the Nash program, namely justification and clarifica-
tion of the Rubinstein approach, is not so obvious. This model is defined with
discount factors as important ingredients, technically and conceptually. But as
soon as the discounting is taken serious rather than almost neglected the Nash
solution of the induced cooperative bargaining games may differ significantly
from the subgame perfect equilibrium payoff vectors of the strategic games.

As far as implementation is concerned, this fact is not disturbing, however.
What in implementation theory has to be implemented is a social choice rule.
And the implementation is not conceived as a justification or clarification
like in the Nash program. Rather the social choice rule is the inherently
justified solution method for a social choice problem with a specified outcome
set. Its implementation in a strategic equilibrium concept represents the idea
of realizing something already accepted as socially desirable via strategic
interaction in the society according to certain rules, namely a mechanism or
game form.

In situations where solutions of certain games can be identified with social
choice rules, or as Hurwicz (1994) termed them, desirability correspondences,
non-cooperative foundation may extend to implementation.

In our context, the Nash solution has to play the role of the social choice
rule. One can easily see that the search for a natural and adequate outcome set
needed for implementation leads to different results for the various versions of
sequential bargaining in Binmore (1980), Binmore et al. (1986) or Osborne &
Rubinstein (1994). Consequently, the generated utility spaces or cooperative
bargaining games may be quite different.

In this context, it is important to notice that our use of the payoff set U
(identified with the underlying X = [0,1]) in this paper on which the nego-
tiation is modeled rather than on the set X̄ = {x ∈ R2

+|x1 + x2 ≤ 1} is just
for convenience and simplicity of presentation, like the treatment in Binmore
(1980). It could as well have been formulated via the models in Binmore et al.
(1986) like for instance in Osborne & Rubinstein (1994, Proposition 310.3).

From the conceptual point of view, there is a fundamental difference
between the two models in Binmore et al. (1986) and therefore also in the two
interpretations of the factor δ in the results of our present paper as far as the
implementability problem is concerned.

If the Nash solution should be implemented on a class of bargaining games
resulting from players who are really impatient then the time preference Nash
solution cannot even approximately be implemented because the discounting
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factor cannot be made close to 1 by the designer. So the time preference
Rubinstein approach could lead to implementation of the Nash solution only
on a class of bargaining games generated by the strategic games with players
whose idiosyncratic discount factors would have to be close enough to 1.
Moreover, because of symmetry of the Nash solution, these discount factors
would have to be the same for any pair of players negotiating. That means that
practically we can forget about approximate implementation in that context.

A similar argumentation holds for those bargaining games in the second
model of Binmore et al. (1986) that are generated when players are strongly risk
averse. Only uniform weak enough risk aversion would allow implementation
of the Nash solution for that induced class of bargaining games.

A third possibility is to think of a pool of risk neutral perfectly patient
players. In that case, the second model of Binmore et al. (1986) allows to
give the breakdown probabilities as instruments into the hands of the designer.
This fits well the structure of our games G and G̃. Only then we would get
arbitrarily close to implementation of the Nash solution on the induced class of
cooperative bargaining games. Only in that case our two present results could
be transformed into conceptually meaningful implementation results. Yet, this
domain of the Nash social choice rule would be very specific and very small.

Our exact non-cooperative foundation results for the Nash bargaining
solution that we have presented in this article are, as we mentioned earlier, not
the only ones in the literature.

An approximate support via a modification of Rubinstein’s game works
also for n > 2; see Moulin (1984).

As to the tasks of clarification and justification, it is interesting to point out
to the similarity of insights into the meaning of the Nash solution provided by
the Rubinstein alternating offer approach and by the non-cooperative strategic
unique Nash equilibrium support and implementation in Trockel (2000) based
on Walrasian payoff functions.

In the latter one, this Walrasian property of the Nash solution (Trockel,
1996) represents perfect competition that simulates an abundance of outside
options for both players in a game protecting them from exploitation by their
respective opponents. In the Rubinstein game with almost negligible discoun-
ting and in our modified games, it is the infinity of future options, (almost)
equally valuable, that creates the same effect. That suggests the interpreta-
tion of implementing the Nash solution as a sort of surrogate for sufficient
competitive pressure.
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When the implementation is not an issue but only a non-cooperative foun-
dation that helps to justify the Nash bargaining solution and to clarify its
meaning then our results will work equally well (but as we think not better) as
the approximate results based on the Rubinstein game. The advantage of our
modified Rubinstein game forms lies in the fact that they somehow make the
subgame perfect equilibrium payoff function continuous at δ = 1.

While the Rubinstein games with δ converging to 1 induce a limit for
the associated sequence of subgame perfect equilibrium payoffs, there is no
associate limit model whose subgame perfect payoff equilibrium vectors would
confirm this result. As we have shown in section 4, our game G is the limiting
game for a sequence of modified versions of Rubinstein games having the
same subgame perfect equilibrium outcomes as these.

We would like to conclude the paper with one remark: Totally analogous
results to our Proposition and our Theorem can be proved via using Ståhl’s
rather than Rubinstein’s model. In the games Gk, k would have to be replaced
by a double index (k, l), where k represents the discount factor δ , and l
represents the number of stages of a (finite horizon!) Ståhl game.
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Böhm-Bawerk, E. v. (1891). Positive Theory of Capital. New York: Steckert.
Burnet, J. (1900). The Ethics of Aristotle. London: Methuen.
Chun, Y. (1985). Note on ‘The Nash bargaining solution is optimal’. University of

Rochester, unpublished manuscript.

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 105 — #109

“p˙03” — 2016/12/18 — 9:57 — page 105 — #23

Papatya Duman, Walter Trockel 105

Dagan, N., & Serrano, R. (1998). Invariance and randomness in the Nash program for
coalitional games. Economics Letters, 58, 43–49.

Dos Santos Ferreira, R. (2002). Aristotle’s analysis of bilateral exchange: An
early formal approach to the bargaining problem. European Journal of History of
Economic Thought, 9, 568–590.

Edgeworth, F. Y. (1881). Mathematical Psychics: An Essay on the Application of
Mathematics to the Moral Sciences. New York: A.M. Kelley.

Gerber, A., & Upmann, T. (2006). Bargaining solutions at work: Qualitative differen-
ces in policy implications. Mathematical Social Sciences, 52, 162–175.

Harsanyi, J. C. (1956). Approaches to the bargaining problem before and after the
theory of games: A critical discussion of Zeuthen’s, Hicks’ and Nash’s theories.
Econometrica, 24, 144–157.

Harsanyi, J. C. (1974). An equilibrium-point interpretation of stable sets and a
proposed alternative definition. Management Science, 20, 1472–1495.

Hicks, J. R. (1932). The Theory of Wages. New York: Macmillan.
Howard, J. V. (1992). A social choice rule and its implementation in perfect equili-

brium. Journal of Economic Theory, 56, 142–159.
Hurwicz, L. (1994). Economic design, adjustment processes, mechanisms, and

institutions. Review of Economic Design, 1, 1–14.
Krelle, W. (1976). Preistheorie (part 2). Tübingen: JCB Mohr (Paul Siebeck).
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ABSTRACT
Several heterogeneous items are to be sold to a group of potentially budget-
constrained bidders. Every bidder has private knowledge of his own valuation
of the items and his own budget. Due to budget constraints, bidders may
not be able to pay up to their values and typically no Walrasian equilibrium
exists. To deal with such markets, we propose the notion of ‘equilibrium under
allotment’ and develop an ascending auction mechanism that always finds
such an equilibrium assignment and a corresponding system of prices in finite
time. The auction can be viewed as a novel generalization of the ascending
auction of Demange et al. (1986) from settings without financial constraints to
settings with financial constraints. We examine various strategic and efficiency
properties of the auction and its outcome.
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1. INTRODUCTION

A uctions are typically the most efficient mechanism for the allocation of
private goods and have been used since antiquity for the sale of a variety
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of items. The academic study of auctions grew out of the pioneering work
of Vickrey (1961) and has blossomed into an enormously important area of
economic research over the last few decades. Standard auction theory assumes
that all potential bidders are able to pay up to their values on the items for
sale. However in reality buyers may face budget constraints for a variety of
reasons and therefore may be unable to afford what the items are worth to
them. As stressed by Maskin (2000) in his Marshall lecture, the consideration
of financial constraints on buyers is particularly relevant and important in
many developing countries, where auctions are used to privatize state assets for
the promotion of efficiency, competition and development, but entrepreneurs
may often be financially constrained. Financial constraints not only occur
in developing countries but also in developed nations. In particular, Che &
Gale (1998) have discussed a variety of situations where financial constraints
may arise, ranging from an agent’s moral hazard problem, business downturns
and financial crises, to the acquisition decisions in many organizations which
delegate to their purchasing units but impose budget constraints to control their
spending, and to the case of salary caps in many professions where budget
constraints are used to relax competition.

Financial constraints can pose a serious obstacle to the efficient allocation
of resources. For instance, financial constraints seem to have played an impor-
tant role in the outcome of auctions for selling spectrum licenses conducted in
US (see McMillan, 1994; Salant, 1997) and in European countries (see Illing
& Klüh, 2003). In this paper, we study a general model in which a number of
(indivisible) items are sold to a group of financially constrained bidders. Each
bidder wants to consume at most one item. When no bidder faces a financial
constraint, the model reduces to the well-known assignment model as studied
by Koopmans & Beckmann (1957), Shapley & Shubik (1972), Crawford &
Knoer (1981), Leonard (1983), and Demange et al. (1986) among others. Each
bidder has private information about his values for the items and his budget
and is unwilling to reveal such information for strategic reasons. In particular
the auctioneer (seller) does not know the values and budgets of the bidders.
It is well-known that even when a single item is auctioned, it is generally
impossible to specify a mechanism which achieves full market efficiency when
bidders face budget constraints. Of course, this observation also holds when
there are multiple items for sale. Even worse, when bidders face financial
constraints, a Walrasian equilibrium typically fails to exist,1 and allocation

1 Besides budget constraints, price rigidities or fixed prices can also cause the failure of Walrasian
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mechanisms that perform well when no bidders face budget constraints, if
applied, often result in highly inefficient outcomes.

A natural question is therefore whether an allocation mechanism can be
designed that yields a reasonably efficient assignment of the items and a
corresponding price system that supports the assignment.2 In this paper we
propose a general solution concept of equilibrium under allotment that gives
a sufficiently efficient assignment of items and a supporting system of prices.
More importantly we develop a dynamic auction mechanism that yields an
equilibrium under allotment in finite time. The proposed auction can be seen
as a novel generalization of the well-known ascending auction of Demange et
al. (1986) (DGS auction in short) from settings without financial constraints to
settings with financial constraints. It works as follows: the auctioneer starts
with the seller’s reservation price vector, that specifies the lowest admissible
price for each item, and each bidder responds with the set of items demanded
at those prices. The auctioneer adjusts prices upwards for a minimal set of
overdemanded items until a system of prices is reached for which either a set
of items is underdemanded or there is neither underdemand nor overdemand.
In the first case precisely one item is assigned to a bidder that demanded that
item at the previous price system. This bidder with item leaves the auction,
while the remaining bidders are requested to report their demands for the
remaining items at the previous prices of these items. We will show that at
these prices either there is overdemand for some of the remaining items or
there are a set of prices with neither overdemand nor underdemand. In the first
situation the auctioneer continues by adjusting prices upwards for a minimal
set of overdemanded items, until again a system of prices is reached for which
either a set of items is underdemanded or there is neither underdemand nor
overdemand. In case of underdemand again one item is assigned and the
auction continues with the remaining bidders and items. As soon as there is
neither underdemand nor overdemand, an equilibrium has been reached for all
the remaining items.

An attractive feature of the auction is that it only requires the bidders to
report their demands at price vectors along a finite path rather than their values
or budgets. This property is very useful and practical, because businessmen

equilibrium; see for instance Talman & Yang (2008), Hatfield et al. (2012, 2016), Andersson
& Svensson (2014, 2016), Andersson et al. (2015), and Herings (2015).

2 It is impossible to achieve a Pareto-optimal outcome, because Walrasian equilibria simply may
not exist due to budget constraints.
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are in general reluctant to reveal their values, costs, or budgets. This also
gives an explanation of why dynamic auctions like English and Dutch auctions
are more popular than sealed-bid auctions like the Vickrey auction; see e.g.,
Rothkopf et al. (1990), Perry & Reny (2005), and Bergemann & Morris (2007).
We show that when bidders face no budget constraints, the proposed auction
reduces to the well-known DGS auction and thus maintains the DGS auction’s
strategic properties. In this case, the auction finds a Walrasian equilibrium and
it is in the best interest of every bidder to bid truthfully. Moreover in the case
where there are budget constraints, the auction might end up with an outcome
in which a bidder does not receive his most preferred item given the prices
at which the items are sold, because this item has been sold to some other
bidder. A bidder that does not receive his most preferred item finds himself
constrained on his ability to bid for that item. As shown in Borgs et al. (2005)
it may be impossible to design truthful-bidding multi-unit auctions in the case
of budget-constrained bidders. Indeed, a bidder that finds himself constrained
in the outcome of the auction, might be able to attain a better outcome by
misreporting his demands when he has an information advantage over other
bidders. However, in the case of at most two items we demonstrate that bidders
who receive their most preferred item will have no incentive to manipulate
the auction. This property seems similar in essence to those found in the
matching literature;3 see Dubins & Freedman (1981) and Roth & Sotomayor
(1990). Another salient feature of the auction is that when a bidder feels
himself constrained in his ability to influence the assignment of a particular
item, then the price of this item equals the budget of another bidder who is
actually assigned with this item and thus pays his full budget. We further
demonstrate that the assignment of items and a system of prices generated by
the auction yield a Pareto efficient allocation of the items and the money, when
no bidder finds himself constrained.

This paper connects directly with a number of papers concerned with
auction design under budget constraints. The existing literature concentrates
on sealed-bid auctions for selling a single item to many bidders, or two items
to two bidders. In contrast we propose a dynamic auction for selling multiple
items to many financially constrained bidders. Rothkopf (1977) is among
the first to study some issues concerning sealed-bid auctions with budget

3 In the marriage matching, men have no incentive to manipulate in the men-proposing deferred
acceptance procedure provided that women are honest, because every man is matched with his
best possible partner.
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constrained bidders. He investigates how such constraints may affect the
best bids of a bidder. Palfrey (1980) analyzes a price discriminatory sealed-
bid auction in a multiple item setting under budget constraints and gives a
complete characterization of a Nash equilibrium in the case of two items or
less and two bidders or less. Pitchik & Schotter (1988) study the equilibrium
bidding behavior in sequential auctions for the sale of two items with budget
constrained bidders. Che & Gale (1996, 1998) focus on single item auctions
with budget constraints under incomplete information. They show that when
bidders are subject to financial constraints, the well-known revenue equivalence
theorem does not hold. In particular, Che & Gale (1998) provide several
conditions under which first-price auctions yield higher expected revenue
and social surplus than second-price auctions; see also Krishna (2002) and
Klemperer (2004). Laffont & Roberts (1996) characterize an optimal sealed-
bid auction in a single item setting under financial constraints.

Maskin (2000) studies the performance of second-price auctions and all-
pay auctions and proposes a constrained-efficient sealed-bid auction for the
sale of a single item when bidders are financially constrained. Zheng (2001) ex-
amines a single-object, first-price sealed-bid auction where budget constrained
bidders have the possibility of defaulting on their bids. He shows that budget
constraints and default risk together can have a highly significant impact on
seller’s profit, bidding behavior, and the likelihood of bankruptcy. Benoı̂t &
Krishna (2001) investigate simultaneous ascending auctions and sequential
auctions for the sale of two items with budget constrained bidders. They
compare the performance of both types of auctions when the two items are
complements or substitutes; see also Krishna (2002). While concentrating
on package auctions without budget constraints, Ausubel & Milgrom (2002)
also briefly discuss the case of budget constraints and use the notion of core
as a solution under the assumption that every bidder has strict preferences
over finite choices. Quintero Jaramillo (2004) shows that a seller can benefit
from offering small credit subsidies in an auction with financially constrained
bidders. Brusco & Lopomo (2008, 2009) consider simultaneous ascending
auctions of two identical objects and two bidders and show that even the slig-
htest possibility of financial constraints may cause significant inefficiencies.
Pitchik (2009) studies a sealed-bid sequential auction for selling two items to
two bidders with budget constraints and incomplete information. Hafalir et
al. (2012) examine a sealed-bid Vickrey auction for selling a divisible good
that achieves near Pareto efficiency, weaker than Pareto efficiency. Talman
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& Yang (2015) develop a dynamic auction for the assignment market with
budget-constrained bidders that always finds a core allocation of the underlying
economy, thus resulting in a Pareto efficient outcome.

This paper is organized as follows. Section 2 presents the model. Section 3
introduces the notion of equilibrium under allotment and other basic concepts
and results. Section 4 describes and illustrates the ascending auction. Section
5 discusses the convergence of the auction process. Section 6 examines the
outcome of the auction. Section 7 derives strategic and efficiency properties.
Section 8 concludes. The appendix of the paper contains most of the proofs.

2. THE MODEL

A seller or auctioneer has n indivisible items for sale to a set of m financially
constrained bidders. Let N = {1, . . . ,n} denote the set of the items for sale and
M = {1,2, · · · ,m} the set of bidders. In addition to the n real items there is a
dummy item, denoted by 0. The dummy item 0 can be assigned to any number
of bidders simultaneously, any real item j ∈ N can be assigned to at most one
bidder. The seller has for each real item j ∈ N a nonnegative reservation price
c( j) below which the item will not be sold. By convention, the reservation
price of the dummy good is known to be c(0) = 0. A price vector p ∈ IRn+1

+

gives a price p j ≥ 0 for each item j ∈ N ∪{0}. A price vector p ∈ IRn+1
+ is

feasible if p j ≥ c( j) for every j ∈ N and p0 = 0. Every bidder i ∈M attaches
a (possibly negative) monetary value to each item in N ∪{0} given by the
valuation function V i : N ∪{0} → IR. Also by convention, the value of the
dummy item for every buyer i is known to be V i(0) = 0. It should be noted
that a set S⊆N of real items gives value V i(S) = max j∈S V i( j) to bidder i, i.e.,
bidder i can utilize only one item and thus will never buy more than one real
item. So, this is the well known assignment model as studied by Koopmans
& Beckmann (1957), Shapley & Shubik (1972), Crawford & Knoer (1981),
Leonard (1983), and Demange et al. (1986).

In this paper we generalize this standard model by considering the situation
where each bidder i is initially endowed with a nonnegative amount of mi units
of money. Bidders are not allowed to have deficits on their money balances, so
no bidder can afford an item j with a price p j higher than his initial amount
of money mi. This means that unlike in the standard assignment model, the
bidders are financially constrained by their initial money holdings mi, i ∈M.
Since a bidder i is never willing to pay more than his valuation V i( j) for any

Journal of Mechanism and Institution Design 1(1), 2016
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item j, his budget mi is never binding when mi ≥max j∈N V i( j). We say that
bidder i is financially constrained if mi < max j∈N V i( j), i.e., the valuation of
bidder i for at least one item exceeds what he can afford, and that bidder i faces
no financial constraint otherwise.

All values V i( j), j 6= 0, and mi are private information and thus only
bidder i knows his own values V i( j), j 6= 0 and his own budget mi. Further it
is assumed that all seller’s reservation prices, and all valuations and money
amounts of the bidders are integer values.

The utility of a bidder i possessing item j and money amount xi ≥ 0 is
given by

U i( j,xi) =V i( j)+ xi−mi,

i.e., the utility is equal to the value of the item j plus the difference between
his amount of money xi and his initial amount mi. So, U i(0,mi) = 0, i.e., the
utility of bidder i is normalized to zero when he gets the dummy item 0 and his
initial amount of money mi. The utility of bidder i who buys item j ∈ N∪{0}
against price p j ≤ mi is thus given by

U i( j,mi− p j) =V i( j)− p j.

A feasible assignment π assigns to every bidder i ∈M precisely one item
π(i)∈N∪{0} such that no real item j ∈N is assigned to more than one bidder.
Note that a feasible assignment may assign the dummy good to several bidders
and that a real item j ∈ N is unassigned at π if there is no bidder i such that
π(i) = j. Let Nπ = { j ∈ N | j 6= π(i) for all i ∈M}, i.e, Nπ is the set of real
items that are not assigned to any bidder in π . A feasible assignment π∗ is
socially efficient if

∑
i∈M

V i(π∗(i))+ ∑
j∈Nπ∗

c( j)≥ ∑
i∈M

V i(π(i))+ ∑
j∈Nπ

c( j)

for every feasible assignment π , so a socially efficient assignment maximizes
the total value that can be obtained from allocating the items over all agents.

For feasible price vector p ∈ IRn+1
+ , the budget set of bidder i is given by

Bi(p) = { j ∈ N∪{0} | p j ≤ mi},

i.e., the budget set of bidder i at price system p is the set of all affordable items
at p. Given a feasible price vector p ∈ IRn+1

+ , the demand set of bidder i is
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defined by

Di(p) = { j ∈ Bi(p) | V i( j)− p j = max
k∈Bi(p)

(V i(k)− pk)},

thus Di(p) is the collection of most preferred items at p by i within his budget
set, i.e., an item j ∈ N∪{0} is in the demand set Di(p) if and only if it can be
afforded at p and maximizes the surplus V i(k)− pk over all affordable items k.
When the demand set contains multiple items, then at the given prices of the
items the bidder is indifferent between any two items in his demand set. Note
that for any feasible p, the demand set Di(p) 6= /0, because p0 = 0 ≤ mi and
thus the dummy item is always in the budget set Bi(p). In fact this means that
the bidder has always the possibility not to buy any real item.

A pair (p,π) of a feasible price vector p and a feasible assignment π is
said to be admissible if pπ(i) ≤ mi for all i ∈M, i.e., every bidder i can afford
to buy the item π(i) assigned to him. Note that every admissible pair (p,π)
yields the corresponding allocation (π,x) with xi = mi− pπ(i) ≥ 0.

Definition 2.1. A Walrasian equilibrium (WE) is an admissible pair (p∗,π∗)
such that
(a) π∗(i) ∈ Di(p∗) for all i ∈M,
(b) p∗j = c( j) for every unassigned item j ∈ Nπ∗ .

If (p∗,π∗) is a WE, p∗ is called a (Walrasian) equilibrium price vector
and π∗ a (Walrasian) equilibrium assignment. Because all values and money
amounts are integer and the seller’s reservation prices are nonnegative integers,
it follows that if there exists an equilibrium price vector p∗ ∈ IRn+1

+ , there must
be an integral equilibrium price vector p ∈ Zn+1

+ . Therefore we can restrict
ourselves to the set Zn+1

+ of nonnegative integer price vectors.
From Shapley & Shubik (1972) it is well known that in a situation without

financial constraints a Walrasian equilibrium exists and every equilibrium assig-
nment is socially efficient. To find an equilibrium some revealing mechanism
is needed, because all valuations V i( j), j 6= 0, are private information. The
well-known auctions proposed by Crawford & Knoer (1981) and Demange
et al. (1986) are such mechanisms. In the remaining of this paper we call the
auction introduced in the latter paper the DGS auction. In this literature the
notion of overdemanded set of real items is used. A set S ⊆ N of real items
is overdemanded at a price vector p ∈ IRn+1 if the number of bidders who
demand goods only from this set is greater than the number of items in that set.

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 117 — #121

“p˙04” — 2016/12/16 — 21:40 — page 117 — #9

Gerard van der Laan, Zaifu Yang 117

See the Appendix for a further discussion of this notion. The DGS auction is
an ascending auction in which the auctioneer starts with the reservation price
vector p ∈ Zn+1

+ given by p0 = 0 and p j = c( j), j ∈ N. Then each bidder is
required to report his demand set Di(p). When there is an overdemanded set of
goods, the price of every item j in a minimal overdemanded set (i.e., no strict
subset of this overdemanded set is overdemanded) is increased by one and the
bidders have to resubmit their demands at this new price vector. The auction
stops as soon as there are no overdemanded sets anymore. It is well-known that
the DGS auction for the assignment model without financial constraints stops
in a finite number of price adjustments with a unique minimal equilibrium
price vector pmin ∈ Zn+1

+ , i.e., (i) there exists a feasible assignment π∗ such that
(pmin,π∗) constitutes a Walrasian equilibrium and (ii) it holds that p≥ pmin for
any other equilibrium price system p ∈ IRn+1

+ . Since the minimum Walrasian
price vector corresponds to the Vickrey-Clarke-Groves payments (see Leonard,
1983), the DGS auction has truthful bidding in equilibrium. Also note that in
the single item case, the DGS auction reduces to the English auction.

In case of financial constraints a Walrasian equilibrium is not guaranteed
to exist, and when it does exist, the equilibrium (assignment) need not be
socially efficient. The latter can be easily seen from an example with two
bidders and one item. When V 1(1)>V 2(1)> c(1) = 0, then social efficiency
requires to assign the item to bidder 1. Now, suppose that m1 <min(m2,V 2(1)).
Then there exists a Walrasian equilibrium, but at any equilibrium the item is
assigned to bidder 2 at some (integer) price p1, m1 < p1 ≤ min(m2,V 2(1)).
So, all equilibria are socially inefficient.

The following example further shows that financial constraints may cause
not only the nonexistence of a Walrasian equilibrium but also the failure of the
DGS auction.4

Example 1. Consider a market with three bidders (i = 1,2,3) and two real
items ( j = 1,2). The values of the bidders are shown in Table 1 and the seller’s
reservation price vector is C = (c(0),c(1),c(2)) = (0,0,0).

Case 1 (No Budget Constraints). Then this market has a (unique) equili-
brium assignment π = (π(1),π(2),π(3)) = (0,2,1). The set of equilibrium

4 It should be noted that the DGS auction was not designed for the current setting with budget
constraints but for the settings without budget constraints.
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prices is given by

{p ∈ IR3 | p0 = 0, 5≤ p1 ≤ 6, 4≤ p2 ≤ 5 with p1 = p2 +1}.

The two equilibrium integer price vectors (for the real items) are pmin =
(5,4) and pmax = (6,5). The DGS auction will find the equilibrium (π, pmin),
realizing a social value of 11 and a revenue of 9 to the seller.

Case 2 (Budget Constraints). Let (m1,m2,m3) = (4,3,8) be the budgets of
the bidders. Observe that all budgets are totally different across bidders. We
show that the budget constraints fail the existence of a Walrasian equilibrium.
Suppose to the contrary that there would be a Walrasian equilibrium price
vector p = (p0, p1, p2). Clearly, we should have that p1 ≤ 6 and p2 ≤ 5, since
otherwise no bidder demands a real item. When p1 = p2 + 1 we have that
D3(p) = {1,2}. Further, when p1 = p2 +1 > 4, then D1(p) = D2(p) = {0}
and there is underdemand, whereas when p1 = p2 +1 < 4, then D1(p) = {1}
and D2(p) = {2} and there is overdemand. So, there is no equilibrium with
p1 = p2 + 1. When p1 < p2 + 1, then we have that D3(p) = {1}. So, for
equilibrium we must have that p1 > 4 = m1, otherwise also bidder 1 wants to
have item 1. However, then p2 ≥ p1−1 > 3 = m2 and thus there is no demand
for item 2. So, there cannot be an equilibrium with p1 < p2 + 1. Similarly,
when p1 > p2 + 1, it holds that D3(p) = {2}, implying that p2 > 3 = m2,
otherwise also bidder 2 wants to have item 2. Then p1 > p2 +1 > 4 = m1 and
thus there is no demand for item 1. Again there is no Walrasian equilibrium
with p1 > p2 +1. Hence, a Walrasian equilibrium does not exist. When one
applies the DGS auction, first p1 is increased from 0 to 1 and then both prices
of the real items are increased simultaneously from (1,0) to (4,3). At each of
these price systems p (with p0 = 0) there is overdemand for both real items
because, D1(p) = {1}, D2(p) = {2} and D3(p) = {1,2}. However, at the next
update we have p = (0,5,4) (with p0 = 0 the price of the dummy item) and
the demand sets are D1(p) = {0}, D2(p) = {0} and D3(p) = {1,2}. So, at
prices p1 = 4, p2 = 3, each of the three bidders demands at least one of the
items. As a result, the set {1,2} is a minimal overdemanded set and, according
to the DGS auction, both prices are increased by one. However, at p1 = 5 and
p2 = 4, only bidder 3 demands just one of the items (he is indifferent between
both items). So, at these prices the seller wants to sell both items, but only one
of the items is demanded. It shows that the DGS auction fails to allocate the
items. At p = (0,3,4) there is overdemand, while at the next update there is
underdemand.
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Table 1: Bidders’ values on each item.

Items 0 1 2
Bidder 1 0 5 0
Bidder 2 0 0 5
Bidder 3 0 6 5

Example 1 demonstrates clearly why under financial constraints an equili-
brium does not need to exist. Without budget constraint, a bidder withdraws
his demand for a real item when the price of the item becomes higher than the
bidder’s valuation. However, at the price equal to the valuation, the bidder is
indifferent between the real and the dummy item (i.e., not buying an item). So,
when at this price the real item belongs to the demand set, then also the dummy
item belongs to it and the seller can choose between allocating the real item
or the dummy item to the bidder. With budget constraint, by contrast, there
are two possibilities that a bidder withdraws his demand. The first one is, as
before, because the price rises above his valuation of the item. In this case, the
dummy item is also in the demand set when the price is equal to the valuation.
However, the second possibility is that the price is going to exceed the budget.
Then, it might happen that at price equal to the budget, the bidder prefers the
real item above every other item (and so the real item is the single item is his
demand set), while the demand set does not contain the item anymore when
the price is increased by only one. In the example this happens when the price
system goes from (4,3) to (5,4). At p1 = 4 the first bidder strictly prefers the
first item to any other item (including the dummy item), while at p1 = 5 the
first item is not affordable anymore and bidder 1 only demands the dummy
item (the same holds for bidder 2 with respect to item 2). So, with budget
constraints it is possible that an overdemanded item (or set of items) becomes
underdemanded when the price (prices) rises with only one unit. Because
of this discontinuity of the demand sets, the Walrasian equilibrium fails to
exist. Note that without budget constraints the change from overdemand to
underdemand cannot happen, because then the bidder is indifferent between a
real item and the dummy item when the price is equal to the reservation value.
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The change from overdemand to underdemand in Case 2 of Example 1
is also the reason why the DGS auction fails to work properly. Rather than
follow the DGS auction precisely (the auction requires to increase the prices of
all items in a minimal overdemanded set), one might consider the possibility
to rise only one of the prices at (4,3). However, this is not of any help.
For instance, when only p1 increases from 4 to 5, then at (5,3) there is no
demand for item 1, whereas both bidders 2 and 3 demand item 2. So, item 1 is
underdemanded and item 2 is still overdemanded. Then increasing p2 from
3 to 4, gives again the situation as described in the example. Similarly, when
first p2 is increased from 3 to 4, then at (4,4) there is no demand for item 2,
whereas both bidders 1 and 3 demand item 1. So, anyway the procedure ends
up with prices (5,4) at which bidders 1 and 2 demand the dummy item and
bidder 3 is indifferent between the two real items. Of course, it is then possible
to assign either item 1 or item 2 to bidder 3. In the first case, bidder 3 pays
5 to the seller who keeps item 2, realizing a social value of 6. In the second
case, bidder 3 pays 4 to the seller who keeps item 1, realizing a social value of
5. Both assignments result in a loss of efficiency, because bidders 1 and 2 are
willing to pay for the unassigned item, but they don’t receive it. This brings
us to the central issue of this paper: the design of an auction for markets with
financially constrained bidders.

3. EQUILIBRIUM UNDER ALLOTMENT

A possible way out of market situations in which the Walrasian equilibrium
does not exist and thus the DGS auction cannot work properly is as follows:
as soon as underdemand appears, one may allot an item from the chosen
minimal overdemanded set at the previous price system to one of the bidders
who demanded that item at that price system, for instance, by having a lottery
between these bidders. The bidder to whom the item is allotted, has to pay the
price of the item at the previous price system. Of course, allotting the item
to one of these bidders implies that the item cannot be assigned to the others
who demanded also the item at the same price. So, the auctioneer can only
accept one of the bids but has to decline all other equal bids. In Case 2 of
Example 1 the auctioneer might accept one of the bids at price system with
p1 = 4 and p2 = 3, for instance, by allotting item 2 to bidder 2 against p2 = 3.
Then bidder 2 leaves the auction with item 2 and the auction continues with
the bidders 1 and 3 and item 1, resulting in a price p1 = 5 at which only bidder
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3 demands item 1. This outcome yields a social value of 11 and a revenue of
8 to the seller, resulting in a much better outcome than the one given at the
end of the previous section. However, note that this outcome can only sustain
because the bid of bidder 3 for item 2 has been declined. In summary, this
procedure generates the outcome (p∗,π∗) where p∗ = (p∗0, p∗1, p∗2) = (0,5,3)
and π∗ = (π∗(1),π∗(2),π∗(3)) = (0,2,1). Observe that at prices p∗, bidder 1
gets his best-liked item 0 and pays nothing, bidder 2 gets his best-liked item
2 and pays p∗2 = 3 equal to his budget m2 = 3, whereas bidder 3 gets item
1 (second-best) rather than his most-preferred item 2, and pays p∗1 = 5. So,
bidder 3 finds himself rationed at this outcome on item 2, and bidder 2 who
receives item 2 pays his full budget m2 = 3.

The reasoning above gives us a clue to the introduction of an equilibrium
under allotment and the design of a dynamic auction. The necessity to decline
bids of some bidders while accepting an equal bid of one bidder induces a
situation of rationing. After all, any bidder who leaves the auction with a net
surplus lower than the net surplus that could have been obtained from an item
j when paying the same price as what the bidder paid to which the item was
allotted, feels himself a posterior rationed on the demand of such an item j. To
explore this observation, we adapt the Walrasian equilibrium by incorporating
the concept of an allotment scheme R = (R1, · · · ,Rm) where, for i ∈ M, the
vector Ri ∈ {0,1}n+1 is a rationing vector yielding which goods bidder i can
demand and for which goods offers of bidder i will be declined. That is, Ri

j = 1
means that bidder i is allowed to demand good j, while Ri

j = 0 means that
bidder i is not allowed to demand good j ∈ N. When Ri

j = 0, we say that
bidder i is rationed on his demand for item j. If a bidder is not rationed on any
item, we say that he is unrationed. Since the dummy item is always available
for every bidder i, we have that Ri

0 = 1 for all i. Given a rationing vector Ri

with Ri
j = 0 for item j, the vector Ri

− j denotes the same Ri but allows bidder
i to demand item j by ignoring Ri

j = 0. At a feasible price vector p and an
allotment scheme R = (R1, · · · ,Rm), the demand set of bidder i ∈M is given
by

Di(p,Ri) = { j ∈ N | Ri
j = 1, p j ≤ mi and

V i( j)− p j = max{k∈N∪{0} | pk≤mi and Ri
k=1} (V

i(k)− pk)}.

We now introduce the notion of equilibrium under allotment for the assign-
ment model with financially constrained bidders.
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Definition 3.1. An equilibrium under allotment (p,π,R) on a market with
financially constrained bidders consists of an admissible pair (p,π) and an
allotment scheme R such that

(i) π(i) ∈ Di(p,Ri) for all i ∈M;

(ii) p j = c( j) for any unassigned item j ∈ Nπ ;

(iii) If Ri
j = 0 for some i, then (a) j ∈ Di(p,Ri

− j) and (b) there exists h ∈
M \{i} with π(h) = j and mh = p j.

Conditions (i) and (ii) correspond to Conditions (a) and (b) of the definition
of the Walrasian equilibrium and are straightforward. In (iii) conditions on the
allotment scheme are specified.5 First, (iiia) says that any rationing is binding,
i.e., a bidder that is rationed on some item, demands the item if the rationing
on that item is dropped. Second, (iiib) states that rationing on an item can
only occur if the item is sold to some other bidder and that this bidder pays
his full budget for the item and thus cannot afford a higher price. Together the
conditions imply that it is impossible to drop any of the rationings and that in
an equilibrium under allotment the seller extracts all the money from the buyer
that is assigned a rationed item. In an equilibrium under allotment the prices
of the unrationed items are fully competitive. However, the prices of items
for which some of the bidders are rationed are not competitive prices in the
sense that at these prices there is still overdemand for these items. However, as
Example 1 shows, rising these prices results in underdemand and henceforth
items with prices above the reservation prices of the seller but nevertheless
unsold. When there is no rationing in the equilibrium, i.e., Ri

j = 1 for all i ∈M
and j ∈ N, the equilibrium under allotment is simply a Walrasian equilibrium.

Parallel to the well-known equilibrium existence theorem of Shapley &
Shubik (1972) on the assignment market without financial constraints, we
can establish the following existence theorem on the assignment market with
financial constraints.

Theorem 3.2. The assignment model with financially constrained bidders
has at least one equilibrium under allotment.

5 These conditions may be seen as the counterparts of standard rationing conditions in fix-price
literature, see e.g., Drèze (1975) and van der Laan (1980).
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In the next Section we design an ascending auction that always finds an
equilibrium under allotment, thus providing a constructive proof for Theorem
3.2. To describe the auction and prove its convergence, we introduce the notions
of overdemanded and underdemanded sets and give some of its properties.

For a set of real items S⊆ N, and a price vector p ∈ IRn+1
+ , define the lower

inverse demand set of S at p by

D−S (p) = {i ∈M | Di(p)⊆ S},

i.e., this is the set of bidders who demand only items in S. Note that S is a
subset of real items, so any bidder i in the lower inverse demand set does not
demand the dummy item and thus has a strict positive surplus V i( j)− p j for
any item j in his demand set Di(p). We also define the upper inverse demand
of S at p by

D+
S (p) = {i ∈M | Di(p)∩S 6= /0},

i.e., this is the set of bidders that demand at least one of the items in S. Clearly,
the lower inverse demand set is a subset of the upper inverse demand set. Let
|A| stand for the cardinality of a finite set A.

Definition 3.3.
1. A set of real items S ⊆ N is overdemanded at price vector p ∈ IRn+1

+ if
|D−S (p)|> |S|. An overdemanded set S is said to be minimal if no strict subset
of S is overdemanded.
2. A set of real items S⊆ N is underdemanded at price vector p ∈ IRn+1

+ if (i)
S ⊆ { j ∈ N | p j > c( j)} and (ii) |D+

S (p)| < |S|. An underdemanded set S is
said to be minimal if no strict subset of S is an underdemanded set.

The notion of minimal overdemanded set is due to Demange et al. (1986)
and the notion of minimal underdemanded set can be found in Mishra &
Talman (2006) and is used in a slightly different way by Sotomayor (2002).
We further say that an item j is overpriced if { j} is a minimal underdemanded
set, i.e., no bidder has item j in his demand set. So, a minimal underdemanded
set S either contains at least two (not overpriced) items, or has an overpriced
item as its single element.

In the next three lemmas we give some properties, the proofs of the lemmas
are relegated to the Appendix. The first lemma states that for every nonempty
subset S of a minimal overdemanded set O at p, the number of bidders in the
lower inverse demand set D−O(p) that demand at least one item of S is at least
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equal to the number of items in S plus the difference between |D−O(p)| and |O|
and thus is at least one more than the number of items in S.

Lemma 3.4. Let O be a minimal overdemanded set of items at a price
vector p. Then, for every nonempty subset S of O, we have

|{i ∈ D−O(p) | Di(p)∩S 6= /0}| ≥ |S|+ |D−O(p)|− |O|.

The next corollary follows immediately.

Corollary 3.5. For every item in a minimal overdemanded set O at p, there
are at least two bidders in D−O(p) (actually the number is |D−O(p)|− |O|+1≥
2) demanding that item.

The next lemma shows that the number of bidders in the upper inverse
demand set of a minimal underdemanded set is precisely one less than the
number of items in the set and that any bidder in the upper inverse demand set
demands at least two items from the minimal underdemanded set.

Lemma 3.6. Let U be a minimal underdemanded set of items at a price
vector p. Then |D+

U (p)|= |U |−1 and the demand set Di(p) of every bidder
i ∈ D+

U (p) contains at least two elements of U.6

Mishra & Talman (2006, Th. 1) establishes the next result for the case
without financial constraints. In fact, this result holds true no matter whether
there are financial constraints or not.

Lemma 3.7. There is a Walrasian equilibrium at p ∈ IRn+1
+ if and only if

at p no set of items is overdemanded and no set of items is underdemanded.

4. AN ASCENDING AUCTION

In this section we introduce an ascending auction which extends the DGS
auction to the current setting with financial constraints. The auction starts with
p j = c( j) for each real item j ∈ N and p0 = 0. In the first round the prices
of the items in some minimal overdemanded set are increased. In the DGS

6 This lemma, the lemma and corollary above were already introduced in the first draft of this
paper (van der Laan & Yang, 2008) and have found applications elsewhere; see e.g., Andersson
et al. (2013) and Andersson et al. (2015).
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auction for the model without financial constraints this continues as long as
there is overdemand. As soon as there is no overdemand, the auction ends up
with an equilibrium price system and an assignment. However, as Example 1
has shown, in case of financial constraints it might happen that an increase of
the prices of the items in a (minimal) overdemanded set results in a situation
with underdemand. To deal with such situations, in the modified auction
precisely one item is allocated each time when a price increase results in an
underdemanded set. Roughly speaking, the auctioneer starts by announcing the
seller’s reservation prices of the real items and requires the bidders to respond
with their demand sets. If there is overdemand without any underdemanded
set of items, then the prices of the items in a minimal overdemanded set are
increased with one and the bidders are required again to report their demand
sets. This continues until a situation is reached in which there is either an
underdemanded set of items, or there is neither overdemand nor underdemand.
When the first case happens, then precisely one of the items in the chosen
minimal overdemanded set at the previous price system is sold against its price
in this system to one of the bidders who had the item in his demand set; see
Step 4 in the auction below for a detailed description. This bidder with the
item leaves the market, after which the auctioneer recalls the previous prices
for the remaining items and requires the remaining bidders to resubmit their
demands for the remaining items at these prices. This continues until either all
items are sold subsequently or a situation is reached at which there is neither
overdemand nor underdemand. Then there is an equilibrium for the remaining
items and bidders.

At each round t of the auction a new price system pt is announced with
the vector of the seller’s reservation prices p1 =C = (c(0),c(1), · · · ,c(n)) ∈
Zn+1 at the first round t = 1. During the auction process the set of bidders and
the set of items are shrinking, so accordingly these sets and also the notions of
price vector, demand set and (minimal) overdemanded and underdemanded
sets all have to be adapted. We denote by Nt and Mt the set of real items and
the set of bidders respectively that are still involved at round t, meaning that
the set of items N \Nt has been assigned to the set of bidders M \Mt before
round t. Accordingly, pt is a vector of |Nt |+1 nonnegative integer prices with
pt

0 = 0 the price of the dummy item and pt
j the price of real item j, j ∈ Nt .

Correspondingly, the budget set and the demand set of some bidder h ∈Mt at
round t are given by

Bh(pt) = { j ∈ Nt ∪{0} | pt
j ≤ mh},
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and

Dh(pt) = { j ∈ Bh(pt) | V h( j)− pt
j = max

k∈Bh(pt)
(V h(k)− pt

k)}.

Note again that 0 ∈ Bh(pt) for every pt and thus Bh(pt) is never empty.

The Ascending Auction

Step 1 (Initialization): Set t := 1, pt :=C, Nt := N and Mt := M. Go to
Step 2.

Step 2: Every bidder i ∈Mt reports his demand set Di(pt)⊆ Nt ∪{0}.
If there exists an underdemanded set at pt , go to Step 4. Otherwise, go
to Step 3.

Step 3: If there is no overdemanded set at pt , then go to step 5. Otherwise,
the auctioneer chooses a minimal overdemanded set Ot ⊆ Nt of items.
Then set pt+1

j := pt
j + 1 for every j ∈ Ot , pt+1

j := pt
j for every j ∈

(Nt \Ot)∪{0}, Mt+1 := Mt and Nt+1 := Nt . Set t := t +1 and return to
Step 2.

Step 4: Let U t ⊆ Nt be a minimal underdemanded set. Then take some
item k ∈ U t ∩Ot−1 and bidder h ∈ {i ∈ Mt | Di(pt−1) ⊆ Ot−1} such
that k ∈ Dh(pt−1) and k 6∈ Dh(pt). Assign item k to bidder h against
price pt−1

k . Set Mt+1 := Mt \ {h} and Nt+1 := Nt \ {k}. If Nt+1 = /0,
the auction stops, otherwise let pt+1

j := pt−1
j for all j ∈ Nt+1∪{0}. Set

t := t +1 and return to Step 2.

Step 5: There is a feasible assignment πt for Nt ,Mt , such that (pt ,πt) is
a Walrasian equilibrium for Nt ,Mt . Item πt(i) ∈ Nt ∪{0} is assigned to
bidder i ∈Mt against price pt

k, k = π(i), and the auction stops.

We now explain each step in more detail and then provide an example to
illustrate how the auction actually operates. In Step 1, the auctioneer announces
a set of items for sale and sets the starting prices equal to the reservation prices.

In Step 2, each bidder is asked to report his demand set for the available
items at the current prices. Based on the reported demands from the bidders,
the auctioneer checks if there is any underdemanded set of items. If so, then
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Step 4 will be performed. Otherwise, the auctioneer goes to Step 3 and checks
whether there is any overdemanded set of items. If not, the auction goes
to Step 5. In case there is overdemand, the auctioneer chooses a minimal
overdemanded set of items and goes to the next round. In this round the price
of every item in the chosen minimal overdemanded set is increased by one
unit, the price of any other item remains constant and Step 2 will be performed
again.

In Step 4, the auctioneer first chooses a minimal underdemanded set.
Then she selects precisely one item, say item k, that belonged to the minimal
overdemanded set that was chosen in Step 2 at the previous round t−1 and
that also belongs to the minimal underdemanded set at the current round t.
This item k is assigned to a bidder h satisfying (i) his demand set at t−1 was
a subset of the minimal overdemanded set, (ii) who demanded the item k at
the previous round t−1, and (iii) who does not demand item k anymore at the
current round t. This bidder h pays the price pt−1

k of item k at the previous
round and leaves the auction with the item k. When no real items are left,
the auction stops. Otherwise, the auction moves to the next round t +1 with
the remaining items and bidders and all the remaining items are set equal to
the prices in round t−1. Step 2 will be performed again. When the auction
reaches Step 5, then according to Lemma 3.7 a Walrasian equilibrium has been
reached for the remaining set of items and bidders and the auction terminates.

It should be noted that there will be at least one remaining bidder when
the auction returns to Step 2 from Step 4. Clearly, this is true when the number
of bidders m is larger than the number of items n, because in Step 4 always
precisely one bidder leaves with one item. When m≤ n, it might happen that
at certain round the auction returns from Step 4 to Step 2 with only one bidder.
Obviously then overdemand cannot occur in Step 2. In the next section we
prove that underdemand can never occur in Step 2 when the auction returned
from Step 4 in the previous round. So, when after Step 4 the auction returns to
Step 2 with precisely one bidder, then neither underdemand nor overdemand
can occur and the auction goes to Step 5.

Example 2. Consider a market with five bidders (1, 2, 3, 4, 5) and four
real items (1, 2, 3, 4). The initial endowment vector of money is given by
m = (m1,m2,m3,m4,m5) = (3,4,3,5,4) and bidders’ values are given in Ta-
ble 2. The seller’s reservation price vector is given by

C = (c(0),c(1),c(2),c(3),c(4)) = (0,2,2,2,2).
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Table 2: Bidders’ values on each item.

Items 0 1 2 3 4
Bidder 1 0 4 8 5 7
Bidder 2 0 7 6 8 3
Bidder 3 0 5 5 9 7
Bidder 4 0 9 4 6 2
Bidder 5 0 6 5 4 10

Without financial constraints this market has a unique socially efficient
assignment π∗ = (π∗(1),π∗(2),π∗(3),π∗(4),π∗(5)) = (2,0,3,1,4), yielding
total social value ∑i∈M V i(π∗(i)) = 36. The ascending DGS auction finds a
minimal equilibrium price vector p∗ = (0,7,6,8,6) and the socially efficient
allocation π∗ within a finite number of rounds. The seller’s revenue generated
by the auction is 27.

In the current situation with financial constraints, the bidders cannot
afford to buy items at these minimal equilibrium prices. To find an equilibrium
under allotment we apply the new ascending auction described above. The
price vectors, demand sets and other relevant data generated by the auction
are given in Table 3. Since pt

0 = 0 for all t, these prices are deleted from
the vectors pt in the second column of Table 3. In the first seven rounds the
auction operates in the same way as the DGS auction. Both auctions start
at round t = 1 with price vector p1 = (0,2,2,2,2) (Step 1). Then, in Step 2,
bidders report their demand sets: D1(p1) = {2}, D2(p1) = {3}, D3(p1) = {3},
D4(p1) = {1} and D5(p1) = {4}. There is no underdemand and the auction
goes to Step 3. The set S = {3} is a minimal overdemanded set and the
auctioneer adjusts p1 to p2 = (0,2,2,3,2), after which the process returns to
Step 2. Proceeding with alternating Steps 2 and 3, both auctions generate at
round 6 price vector p6 =(0,3,3,4,4). At this price vector there is overdemand
for the items 1 and 2 (there are three bidders for the two items) and, according
to Step 3, the prices of the items 1 and 2 are increased. However, at the
new price vector p7 = (0,4,4,4,4), there is no demand anymore for item
2, i.e., item 2 is overpriced. Now the DGS auction breaks down without
reaching an equilibrium. In fact, due to the financial constraints a Walrasian
equilibrium does not exist. Of course, in this final round 7 of the DGS auction
the auctioneer can still decide to allocate item 1 to the unique bidder 4 having
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1 in his demand set, item 3 to the unique bidder 2 and item 4 to the unique
bidder 5. However, item 2 is not allocated and the remaining bidders 1 and
3 don’t get any real item. The resulting allocation gives a total value of
V 2(3)+V 4(1)+V 5(4)+ c(2) = 29 and is not socially efficient. The seller’s
revenue from this ad-hoc termination of the DGS auction is only 12 and her
total revenue is 12+ c(2) = 14.

When faced with the overpriced item 2 at round 7, in the new auction
the auctioneer continues with Step 4 and assigns item 2 randomly to one of
the bidders 1 and 3. Note that both bidders demand item 2 at p6 and that their
demand sets Dh(p6), h = 1,3, are subsets of the minimal overdemanded set
O6 = {1,2}. Further both bidders do not demand item 2 at p7. Suppose item 2
is assigned to bidder 1. Then this bidder pays p6

2 = 3 and leaves the auction
with item 2. Then round 8 starts with M8 = {2,3,4,5} and N8 = {1,3,4},
the auctioneer adjusts p7 to p8 = (p0, p1, p3, p4) = (0,3,4,4) (with the same
prices as in round 6 for the three remaining real items), and the process returns
to Step 2. At p8, item 1 is (a minimal) overdemanded (set) and its price is
increased to p9

1 = 4. At round 9 there is neither overdemand nor underdemand
and the auction goes to Step 5, in which the dummy item 0 is assigned to
bidder 3 (who pays nothing) and the items 1, 3 and 4 to the bidders 4 at p9

1 = 4,
2 at p9

2 = 4, and 5 at p9
5 = 4 respectively. This assignment and these prices

form a Walrasian equilibrium for the sets N9 = {1,3,4} of real items and
M9 = {2,3,4,5} of bidders that are still available in round 9.

The final price system p∗ = (p0, p1, p2, p3, p4) = (0,4,3,4,4) and as-
signment π∗ = (π(1),π(2),π(3),π(4),π(5)) = (2,3,0,1,4) form an equili-
brium under allotment with allotment scheme R∗ = (R1,R2,R3,R4,R5), where
R∗32 = 0 and R∗ij = 1 for all (i, j) 6= (3,2). This equilibrium yields a total
value of ∑i∈M V i(π(i)) = 35, which is slightly less than the value 36 of the
Walrasian equilibrium allocation. Recall that there is no Walrasian equilibrium
at all in this example due to budget constraints. At (p∗,π∗,R∗), the bidders
1,2,4 and 5 get their most preferred item. However, bidder 3 gets the dummy
item, but prefers and can afford item 2, but this item has been allotted to bidder
1. When in round 7 item 2 should have been assigned to bidder 3 instead of
bidder 1, the auction would realize a total value of 32. In both cases the seller’s
revenue from the auction is 15, which is also her total revenue, because all
items are sold.
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5. CONVERGENCE

In this section we show that the auction is well-designed, i.e., all steps are
feasible and the auction stops in finitely many rounds. The proofs of all lemmas
of this section are given in the Appendix.

First, observe that each time when Step 4 is performed an item is
assigned to some of the bidders and both the set of bidders and the set of items
decrease by one. So, when m ≤ n, at each round t we have that |Mt | ≤ |Nt |.
We show that in this case the auction always stops in Step 5. When m > n, then
at each round t we have that |Mt |> |Nt |. In this case the auction stops either
in Step 4 when Nt+1 = /0 or in Step 5. In the first case all items are assigned
sequentially in a number of n Steps 4, in the latter case the auction reaches a
round in which there is neither overdemand nor underdemand. Then, according
to Lemma 3.7, there is a Walrasian equilibrium for the sets of remaining items
and bidders, showing the feasibility of Step 5. Clearly, also the Steps 1-3 are
feasible. So to show feasibility, we only need to consider Step 4.

The auction starts in Step 1 with all prices equal to the seller’s reserva-
tion prices. At this starting price system there is no underdemand, because by
Definition 3.3.2 an item can only be underdemanded when its price is above
its seller’s reservation price. So, at the starting price vector p1 in round t = 1,
either the auction goes to Step 5 and stops, or there is overdemand. In the
latter case, a sequence of alternating Steps 2 and Steps 3 is performed with in
each Step 3 an increase of the prices of all items in a minimal overdemanded
set, until there is neither underdemand nor overdemand and the auction goes
to Step 5, or items become underdemanded and the auction goes to Step 4.
So, when in some round t, the auction goes to Step 4 for the first time, then
in round t−1 the prices in some minimal overdemanded set, say Ot−1, were
increased. We prove that this holds in any round t in which the auction goes
to Step 4, i.e., when there is underdemand in some round t, then there was
overdemand at round t−1 and thus, when the auction reaches Step 4 in round
t, then in round t−1 the prices of the items in some minimal overdemanded set
Ot−1 were increased. In Step 4 an item k in the intersection of some minimal
underdemanded set U t and the set Ot−1 is selected and assigned to a bidder
h ∈ {i ∈ Mt | Di(pt−1) ⊆ Ot−1} satisfying k ∈ Dh(pt−1) \Dh(pt). The next
two lemmas state that there indeed exist such an item k and bidder h.

Lemma 5.1. Let U be a minimal underdemanded set at prices pt in some
round t and let O be the chosen minimal overdemanded set at the previous
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round t−1. Then U ∩O 6= /0.

Lemma 5.2. Let U be a minimal underdemanded set at prices pt in some
round t and let O be the chosen minimal overdemanded set at the previous
round t−1. Then there exist item k and bidder h satisfying the requirements of
Step 4.

In the special case of U t = {k} with k ∈ Ot−1, i.e., the single item k in
U t is overpriced at pt , we have that no bidder is demanding k at pt . Hence, any
bidder h with Dh(pt−1)⊆ Ot−1 and having item k in his demand set Dh(pt−1)
can be selected. Note that according to Corollary 3.5, there are at least two of
such bidders.

The next lemma shows that any time when in some round t + 1 the
auction enters Step 2 after in round t an item k has been assigned to some
bidder h by Step 4, there will be no underdemand of items. So, when the
auction arrives in Step 2 after Step 4, then the auction goes always to Step 3.
Then, either there is neither overdemand nor underdemand and the auction
goes to Step 5 (and stops), or there is overdemand and the prices of items in
some minimal overdemanded set are increased. This guarantees that any time
when the auction goes to Step 4, prices in some minimal overdemanded set
were increased in the previous round. Recall that when in round t +1 Step 2
is reached from Step 4, the price vector pt+1 is equal to the price vector pt−1,
except that some item k has been deleted.

Lemma 5.3. Let U be a minimal underdemanded set in round t that appears
after in round t−1 the prices of the items in a minimal overdemanded set O
were increased, and let, in Step 4, k ∈U ∩O be the item assigned to some
bidder h ∈ {i ∈Mt | Di(pt−1) ⊆ O} such that k ∈ Dh(pt−1), but k 6∈ Dh(pt).
When the auction proceeds to round t +1 and returns to Step 2, then there will
be no underdemanded set of items.

The final lemma states that when in Step 4 an item has been assigned,
the new set of bidders Mt+1 cannot become empty. This is obvious when the
number of bidders is bigger than the number of items. However, it also holds
when the set of bidders is at most equal to the number of items. The reason is
that when the auction returns from Step 4 to Step 2 with precisely one bidder,
the auction goes to Step 5 and stops.

Lemma 5.4. When in some round t an item k is assigned to some bidder
h ∈Mt at Step 4 of the auction, then |Mt+1| ≥ 1.
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Now we come to present the convergence theorem for the auction.

Theorem 5.5. The auction terminates with a feasible assignment and a
price system in a finite number of rounds.

Proof. The auction starts in Step 1 with all prices equal to the seller’s reserva-
tion prices and the auction goes to Step 2. Now, p j = c( j) for all j and thus, by
definition, there cannot be underdemand and the auction goes to Step 3. When
there is also no overdemand, the auction goes to Step 5 and stops. Otherwise,
the prices of all items in a minimal overdemanded set are increased and the
auction returns to Step 2. The auction continues with alternating Steps 2 and
3 until there is neither overdemand nor underdemand and the auction goes to
Step 5 and stops, or underdemand arises for the first time. Since the value of
any item to any bidder i is finite and any initial endowment mi is also finite,
one of these cases occurs within a finite number of rounds. When the auction
goes to Step 4 and assigns an item k to some bidder h. By Lemmas 5.1 and
5.2 this step is feasible. After that the auction either stops in Step 4 because
all items are assigned or, according to Lemma 5.4 returns to Step 2 with at
least one remaining bidder. According to Lemma 5.3 there is no underdemand
when the auction returns to Step 2 after Step 4. Hence, either there is neither
overdemand nor underdemand and the auction goes to Step 5 and stops, or
there is overdemand again. Then, similarly as above, within a finite number of
rounds again one item is assigned in Step 4, or the auction goes to Step 5 and
stops. Repeating this every time after the auction returns in Step 2 after Step
4, it follows that the auction terminates in finitely many rounds, because the
number of items is finite.

When the auction stops in Step 4, all items are assigned to different
bidders and the auction ends up with a feasible assignment and price system.
When the auction stops in Step 5 in some round t, then according to Lemma
3.7 there is a Walrasian equilibrium assignment with respect to the set of items
Nt and the set of bidders Mt . Together with the items that have been assigned
already before in Step 4, this Walrasian assignment forms a feasible assignment
for N and M. Hence the auction terminates with a feasible assignment and a
price system in finitely many rounds.
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6. THE OUTCOME OF THE AUCTION

According to Theorem 5.5 the auction finds a feasible assignment in finitely
many rounds. In this section we prove that the feasible assignment and the
resulting price system induces an equilibrium under allotment. Let π∗ be
the assignment resulting from the auction, i.e., π∗(i) = k for some k ∈ N
when bidder i was assigned an item in either Step 4 or Step 5, and π∗(i) = 0
otherwise; and let p∗ be the resulting price vector, i.e., when item k is assigned,
then p∗k is the price at which item k is assigned to some bidder h, otherwise
p∗k is the price of the item in the round t in which the auction stops in Step
5. When an item k is assigned at Step 4, then the item is underdemand and
thus pt

k > c(k); and because the auction starts with the reservation price vector
C, we have pt

k ≥ c(k) for all items k ∈ Nt when in round t the auction stops
at Step 5. Note that pt

0 = c(0) = 0 for all t. Hence p∗k = pt−1
k = pt

k−1≥ c(k)
when item k is assigned in round t by Step 4, p∗k = pt

k ≥ c(k) for any item k
that is assigned in the final round t by Step 5 and p∗0 = c(0) and thus p∗ is
feasible. Further, when a bidder gets assigned an item in either Step 4 or 5,
then the item is in his demand set and thus every bidder i can afford to buy the
item π∗(i) assigned to him. Hence (p∗,π∗) is admissible. We further define
the allotment scheme R∗ as follows. For i ∈M, define Ri∗ by

Ri∗
k =

{
0 if k ∈ Ai,
1 otherwise, (6.1)

where Ai = { j ∈ N \π∗(i) | p∗j ≤ mi and V i( j)− p∗j >V i(π∗(i))− p∗π∗(i)}.
Theorem 6.1. The admissible pair (p∗,π∗) and the allotment scheme R∗

yield an equilibrium under allotment (p∗,π∗,R∗).

Proof. We have shown above that (p∗,π∗) is an admissible pair. So, it remains
to prove that the conditions (i)-(iii) of Definition 3.1 hold. To prove (i), first
consider a bidder i that got assigned an item k in Step 4 at some round t against
price pt−1

k . Then according to Step 4,

k∈Di(pt−1)= { j∈Nt−1 | pt−1
j ≤mi, V i( j)− pt−1

j = max
`∈Bi(pt−1)

(V i(`)− pt−1
` )}

where Bi(pt−1) = {` ∈ Nt−1 ∪ {0} | pt−1
` ≤ mi}. After item k has been

assigned to bidder i in round t, the auction continues with Step 2 in round
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t + 1 with the remaining set of items Nt+1 = Nt−1 \ {k}. Since at any stage
τ ≥ t +1, pτ

j ≥ pt−1
j for all j ∈ Nt+1, it follows that

V i(k)− p∗k ≥V i( j)− p∗j , for all j ∈ Nt+1 with p∗j ≤ mi.

Further, observe that any j ∈ N \Nt−1 has been assigned in some round
τ ≤ t − 1, before in round t the item k is assigned to bidder i. According
to (6.1) we have that R∗ij = 0 for all j ∈ N \Nt−1 satisfying p∗j ≤ mi and
V i( j)− p∗j >V i(k)− p∗k . Hence k ∈ Di(p∗,R∗i). Second we consider a bidder
i who was assigned item k in Step 5 in the final round t. Such a bidder i has
item k in his demand set Di(pt) with respect to the items in Nt . Again, for
any j ∈ N \Nt that was assigned before in some round τ ≤ t−1, we have that
R∗ij = 0 when p∗j ≤ mi and V i( j)− p∗j >V i(k)− p∗k . Hence, also in this case
we have that k ∈ Di(p∗,R∗i).

To prove (ii), observe that when an item k is not assigned to a bidder
i, then k belongs to the set Nt when the auction stops in Step 5 in the final
round t. Then there is neither underdemand nor overdemand and, according
to Lemma 3.7, then the auction ends with a Walrasian equilibrium allocation
with respect to the remaining items in Nt and the remaining bidders in Mt . By
definition of the Walrasan equilibrium we then have that p∗k = pt

k = c(k) for
any unassigned item k.

Condition (iiia) immediately follows from (6.1). Further, since there
is a Walrasian equilibrium for the remaining items Nt and bidders Mt when
in the final round t the auction stops in Step 5, it also follows from (6.1) that
rationing only occurs for items that have been assigned in some Step 4 before
the final round t. To show that the bidder who is assigned a rationed item pays
his full budget for that item, again observe that, when for some item j we have
that π(h) = j and Ri∗

j = 0 for some bidder i 6= h, then item j has been allocated
in some Step 4 before the end of the auction. Let item j be allocated in some
round t. Then item j was in a minimal overdemanded set O at pt−1 and for
bidder h to which j is assigned it holds that (i) h ∈ {h′ ∈Mt | Dh′(pt)⊆ O},
(ii) j ∈ Dh(pt−1) and (iii) j 6∈ Dh(pt). Since pt

k = pt−1
k +1 for all k ∈ O and

pt
k = pt−1

k for all k ∈ Nt \{O}, it follows that pt−1
j = mh, otherwise j should

still have been in the demand set of h at pt . Hence p∗j = pt−1
j = mh, which

shows (iiib).

Theorem 6.1 shows that the auction finds an equilibrium under allotment
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in a finite number of price adjustments. First, note that the associated allotment
scheme is endogenously generated. Second, Theorem 6.1 immediately implies
that the existence Theorem 3.2 of Section 3 is true: the assignment model with
financially constrained bidders has an equilibrium under allotment. Since at
an equilibrium under allotment trade takes place at non-Walrasian prices, the
corresponding allocation is typically suboptimal.7 Given this suboptimality
principle, Example 2 in Section 3 has shown that our ascending auction can
realize both a high total value and high revenue for the seller. Property (iiib) of
the equilibrium definition also stresses that the seller extracts all the money
from the buyer of an item, when other bidders feel themselves rationed for that
item.

So far we have considered the case that some or all bidders may con-
front financial constraints. We have shown that the proposed ascending auction
can handle such a situation and always finds an equilibrium under allotment.
One may naturally ask whether the proposed auction can find a Walrasian
equilibrium when no bidder faces a budget constraint. The following theorem
demonstrates that this is indeed the case. This shows that the current auction is
indeed an appropriate generalization of the DGS auction to the more complex
situation where bidders have budget constraints.

Theorem 6.2. If mi ≥ max j∈N V i( j) for all i ∈ M, then the auction for
markets with financially constrained bidders coincides with the DGS auction
and finds a Walrasian equilibrium with a minimal equilibrium price vector p∗

in finitely many rounds.

Proof. It is sufficient to show that the ascending auction never generates an
underdemanded set of items. It is true in round 1 because the ascending auction
starts with the reservation price vector C. Suppose that in some round t, there
is no underdemanded set of items and O is the minimal overdemanded set of
items chosen by the auctioneer as described in Step 3. We show that there will
be no underdemanded set of items in round t +1.

We first prove that no subset S of the set O is underdemanded at pt+1.
Because mi ≥max j∈N V i( j) and 0 6∈O, every bidder i ∈D−O(pt) who demands
items from S at pt will continue to demand the same items in S and may demand
other items as well at pt+1. It follows from Lemma 3.4 that the set S cannot

7 It is known from the literature on equilibria under price rigidities that equilibria with rationing
are typically not Pareto efficient, see e.g., Böhm & Müller (1977) and Herings & Konovalov
(2009).
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be underdemanded at pt+1. Second, no subset S of Nt \O is underdemanded
at pt+1, because S is not underdemanded at pt and the price of each item in
Nt \O in round t +1 is the same as in round t and the price of each item in
O is increased by one in round t +1. Combining the two reasonings for the
case S⊆ O and S⊆ Nt \O, it follows that also any S⊆ Nt with S∩O 6= /0 and
S∩ (Nt \O) 6= /0 is not underdemanded at pt+1. So the ascending auction never
goes to Step 4 and thus coincides exactly with the DGS auction. It is known
that the DGS auction finds an equilibrium with the minimal equilibrium price
vector.

7. EFFICIENCY AND STRATEGIC ISSUES

7.1. Efficiency

We have seen that under financial constraints a Walrasian equilibrium may not
exist. In Section 2 we also show by example that under financial constraints
even if a Walrasian equilibrium exists, it need not be socially efficient. Howe-
ver, we will show that under financial constraints every Walrasian equilibrium
is Pareto efficient. To discuss Pareto efficiency we first need to give the utilities
of all agents, seller and bidders, at an allocation. An allocation is a pair (π,x)
with π a feasible assignment and x ∈ IRm

+ a nonnegative vector of money, assig-
ning amount xi ≥ 0 of money to bidder i, i∈M. Everything that is not assigned
to the bidders at allocation (π,x), is assigned to the seller. So at allocation
(π,x) the seller receives the total amount of money ∑i∈M (mi− xi) from the
bidders and keeps all unsold items for himself. It follows that allocation (π,x)
yields utilities

U i(π(i),xi) =V i(π(i))+ xi−mi, i ∈M,

to the bidders and utility

U s(π,x) = ∑
i∈M

(mi− xi)+ ∑
j∈Nπ

c( j)

to the seller, i.e., the utility of the seller is equal to the total amount of money
he receives plus the sum of his reservation values of the unassigned items.
Following the standard definition, we say an allocation (π∗,x∗) is Pareto
efficient if there does not exist another allocation (π,x) such that

U i(π(i),xi)≥U i(π∗(i),x∗i ), for all i ∈M and U s(π,x)≥U s(π∗,x∗)
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with strict inequality for at least one of the agents.
If (p∗,π∗) is a WE, with p∗ the (Walrasian) equilibrium price vector

and π∗ the (Walrasian) equilibrium assignment, the corresponding allocation
(π∗,x∗) with x∗i = mi− p∗π∗(i) is called a (Walrasian) equilibrium allocation.
It is well-known (see Mas-Colell et al., 1995) that for exchange economies
with divisible goods, under certain conditions every Walrasian equilibrium
allocation is Pareto efficient. However, the proof of the standard model does
not apply to our model.

Theorem 7.1. For the market model with financially constrained bidders,
let (p∗,π∗) be an admissible pair. If (p∗,π∗) is a Walrasian equilibrium, then
its corresponding equilibrium allocation (π∗,x∗) is Pareto efficient.

Proof. Suppose that (π∗,x∗) is not Pareto efficient. Then there exists an
allocation (π,x) such that

V i(π(i))+ xi−mi ≥V i(π∗(i))+ x∗i −mi =V i(π∗(i))− p∗π∗(i), (7.2)

for every bidder i ∈M, and for the seller

∑
i∈M

(mi− xi)+ ∑
j∈Nπ

c( j)≥ ∑
i∈M

(mi− x∗i )+ ∑
j∈Nπ∗

c( j),

where at least one of these m+1 inequalities is strict. Define q j = c( j) for j ∈
Nπ , qπ(i) = mi−xi for every i ∈M with π(i) 6= 0 and Q = ∑{i∈M|π(i)=0} (mi−
xi). Since p∗j = c( j) when j ∈ Nπ∗ , the seller’s condition becomes

Q+ ∑
j∈N

q j ≥ ∑
j∈N

p∗j . (7.3)

Since π∗(i) ∈ Di(p∗), 0 ∈ Bi(p∗) and p∗0 = 0, we have for every i ∈M that

V i(π∗(i))− p∗π∗(i) ≥V i(0)− p∗0 = 0, i ∈M.

So, for every i ∈M with π(i) = 0 it follows from (7.2) that xi ≥ mi and thus
Q≤ 0. Suppose q j > p∗j for some j ∈ N. Since q j > p∗j ≥ c( j), and qh = c(h)
when h ∈ Nπ , we must have that π(i) = j for some i ∈M. So, in (π,x), bidder
i receives item j and money amount xi ≥ 0. The latter inequality implies that
q j ≤ mi. So p∗j < q j ≤ mi, i.e., item j is in the budget set Bi(p∗) of i at p∗. On
the other hand

U i( j,xi) =V i( j)+ xi−mi =V i( j)−q j ≥V i(π∗(i))− p∗π∗(i)
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and thus
V i( j)− p∗j >V i( j)−q j ≥V i(π∗(i))− p∗π∗(i),

which contradicts that π∗(i) ∈ Di(p∗). Hence q j ≤ p∗j for all j. With Q≤ 0,
it follows from inequality (7.3) that Q = 0 (and thus xi = mi for all i with
π(i) = 0) and q j = p∗j for all j ∈ Nπ . So, the seller’s inequality holds with
equality.

Suppose that there is a bidder i with strict inequality, thus

V i(π(i))+ xi−mi >V i(π∗(i))− p∗π∗(i). (7.4)

Since xi = mi and thus V i(π(i))+ xi−mi = 0 if π(i) = 0, we must have that
π(i) 6= 0. Then mi− xi = qπ(i) = p∗π(i) and the inequality (7.4) becomes

V i(π(i))− p∗π(i) >V i(π∗(i))− p∗π∗(i).

Since xi ≥ mi− p∗π(i) ≥ 0 and thus p∗π(i) = qπ(i) ≤ mi, this again contradicts
that π∗(i) ∈ D(p∗).

7.2. Strategic Issues

When the auction results in a Walrasian equilibrium, it also preserves the
strategic properties of the DGS auction and thus truthful bidding is optimal
for the bidders; see Leonard (1983). It should be noted, however, that without
financial constraints in the DGS auction bidders only drop out for their bid-
ding on an item when another item (maybe the dummy item) becomes more
preferred. Under financial constraints it might also happen that a bidder drops
out for an item because the price of the item rises above his budget. However,
this does not affect the strategic properties of the auction as long as there is
no underdemand. In conclusion, if underdemand never appears in Step 2, the
auction behaves as the DGS auction, and no bidder has incentive to manipulate
the auction.

In general, due to budget constraints a Walrasian equilibrium does not
exist and our auction generates an equilibrium under allotment at which some
bidders are rationed on their demands. Borgs et al. (2005) have demonstrated
that it may be impossible to design truthful bidding multi-unit auctions with
budget-constrained bidders. Indeed, it could be possible for a rationed bidder
to attain a better outcome by misreporting his demands if this bidder knew

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 140 — #144

“p˙04” — 2016/12/16 — 21:40 — page 140 — #32

140 Ascending multi-item auction

all valuations and budgets of all other bidders and convinced that all other
bidders would bid honestly. On the other hand, truthful bidding is optimal
when the auction terminates with a Walrasian equilibrium. Observe in this case
that at the outcome of the auction no bidder is rationed on his demand. We
conjecture that this is still true in case of financially constrained bidders: for
every unrationed bidder at the outcome of the auction it is in his best interest to
bid truthfully. We prove this conjecture for the case of at most two real items.

Theorem 7.2. For the market model with at most two items and many
financially constrained bidders, let (p∗,π∗) be the outcome of the auction when
bidders report truthfully, and let i be a bidder that does not find himself rationed
in (p∗,π∗). Then there do not exist values W i( j), j = 1,2, and outcome (q,ρ)
when i reports his demands according to W i, such that U i(ρ(i),mi−qρ(i))>

U i(π∗(i),mi− p∗π∗(i)).

Proof. We prove the case of two items, i.e., N = {1,2}. The case of one item
can be shown similarly. Suppose that there exist W i( j), j = 1,2, and (q,ρ)
such that

U i(ρ(i),mi−qρ(i))>U i(π∗(i),mi− p∗π∗(i)). (7.5)

For ease of notation, denote π∗(i) = j and ρ(i) = k. If p∗k > mi, then qk < p∗k .
When p∗k ≤mi, then either k = j and thus qk < p∗k (because of inequality (7.5))
or k 6= j. In the latter case

U i(k,mi−qk) =V i(k)−qk >U i( j,mi− p∗j) =V i( j)− p∗j ≥V i(k)− p∗k ,

because bidder i is rationed, and thus also in this case qk < p∗k . So, qk < p∗k
must hold.

Since V i(k)− qk > V i( j)− p∗j , we must have that k 6= 0. So, when
reporting according to W i, bidder i gets a real item. Without loss of generality,
take k = 1 and thus q1 < p∗1. Suppose q2 < p∗2. Then, by the feature of the
ascending auction, the number of bidders h satisfying

Dh(q)⊆ {1,2}

is at least equal to 3, because otherwise there are at most two bidders that
demand a real item at q and the auction cannot reach an outcome in which
both prices are higher. So, also when bidder i misreports his demands there are
at least two other bidders that demand a real item from {1,2}. Since also at
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least two bidders can afford the prices p∗1 and p∗2, the auction cannot terminate
with price system q and assigning item 1 to bidder i.

It remains to consider the case that q2 ≥ p∗2. Then under the true
valuations, there has been some round t with pt such that pt

1 = q1 < p∗1, pt
2 ≤

p∗2 ≤ q2 and pτ
1 > pt

1 for all τ > t (thus the price of item 1 was higher in every
round after t). Then at pt either {1} or {1,2} was a minimal overdemanded
set. In the first case there was at least one bidder h 6= i that preferred item 1 to
any other item. Since q2 ≥ pt

2, also at q all these bidders prefer item 1 to any
other item. Since item j was sold at p∗1 and thus at least one bidder has item 1
in his demand set at p∗ and could afford p∗1, also under W i the auction cannot
terminate with price system q and assigning item 1 to bidder i. Finally, in case
{1,2} was a minimal overdemanded set, then there were at least two bidders
h 6= i with Dh(pt) = {1,2}. Then for all these bidders also Dh(q) = {1,2}
when q2 = pt

2 and Dh(q) = {1} if q2 > pt
2. Since again a bidder paid p∗1 > q1,

also in this case the auction cannot terminate under W i with price system q
and assigning item 1 to bidder i.

8. CONCLUDING REMARKS

In this paper we investigated a general and practical market model in which an
auctioneer wants to sell a number of items to a group of financially constrained
bidders. Every bidder demands at most one item and knows his valuation of
the items and his budget information privately. The auctioneer does not know
this private information unless bidders tell her. When bidders face budget
constraints, a Walrasian equilibrium typically fails to exist. We proposed the
notion of equilibrium under allotment to remedy the nonexistence of Walrasian
equilibrium. An ascending auction has been developed which, starting with the
seller’s reservation price of each item, always finds an equilibrium under allot-
ment in finite steps. This auction provides an effective allocation mechanism
for handling situations with financially constrained bidders, generating high
revenues for the seller and arguably efficient assignment of items. Another
interesting feature of the auction is that it can extract all the money from those
bidders who receive an item on which some other bidder is rationed. We have
further shown that when no bidder is financially constrained, the proposed
auction reduces to the auction of Demange et al. (1986) and thus preserves the
strategic properties of the DGS auction. We have also examined the strategic
and efficiency properties of the proposed auction and its outcome.
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Finally it is worth noting that that Ausubel (2006), Gul & Stacchetti
(2000), Kelso & Crawford (1982), Milgrom (2000), Sun & Yang (2009, 2014)
have proposed dynamic auctions for more general environments in which
each bidder may consume several items but has no budget constraint. It will
be interesting but also significantly more difficult to study this more general
situation with financially constrained bidders. Another important question
is whether it is possible to design an efficient and strategy-proof dynamic
multi-item auction with budget-constrained bidders.

9. APPENDIX

9.1. Proofs of the Lemmas of Section 3

Proof of Lemma 3.4. Since O is overdemanded at p, the constant d = |D−O(p)|− |O|
must be a positive integer. By definition the lemma holds (with equality) for S = O.
For any nonempty strict subset S of O, define DS = {i∈D−O(p) |Di(p)∩S 6= /0}. Then
we have

D−O(p)\DS = {i ∈ D−O(p) | Di(p)⊆ O\S}.
Suppose to the contrary that |DS|< |S|+d. Since 0 < |S| ≤ |O|−1, we have that

|D−O(p)\DS| = |D−O(p)|− |DS|> |D−O(p)|− (|S|+d) =
= |D−O(p)|− |S|− (|D−O(p)|− |O|) = |O|− |S|= |O\S|.

This means that the set O \ S is overdemanded, contradicting the fact that O is a
minimal overdemanded set. Hence, |DS| ≥ |S|+d = |S|+ |D−O(p)|− |O|.

Proof of Lemma 3.6. If |U |= 1, then U consists of an overpriced item and |D+
U (p)|=

0. So, both statements are true.
For |U | ≥ 2, denote T = D+

U (p). To prove the first part, suppose |T | ≤ |U |−2.
Then take any element k of U and denote T ′ = D+

U\{k}(p). Clearly, T ′ ⊆ T and thus
|T ′| ≤ |T |. Hence

|T ′| ≤ |T | ≤ |U |−2 = |U \{k}|−1

and thus U \{k} is underdemanded, contradicting the assumption that U is a minimal
underdemanded set.

To prove the second part, suppose there is a bidder i having only one element
of U in his demand set. Let k be this element. Then T ′ does not contain bidder i ∈ T .
Hence |T ′| ≤ |T |−1 and thus

|T ′| ≤ |T |−1 = |U |−2 = |U \{k}|−1,
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showing that U \{k} is underdemanded. Again this contradicts the fact that U is a
minimal underdemanded set.

Proof of Lemma 3.7.8 First, let (p,π) be a Walrasian equilibrium (p,π). Clearly, at
p no set of items is overdemanded and no set of items is underdemanded.

To prove the other direction, let M1 = {i ∈ M | 0 6∈ Di(p)} and N1 = { j ∈
N | p j > c( j)}. First, consider any T ⊆M1 and let DT = ∪i∈T Di(p). Because DT

is not overdemanded, |DT | ≥ |T |. By the well-known theorem of Hall (1935), there
exists a one-to-one mapping τ : M1→ N such that τ(i) ∈ Di(p) for all i ∈M1. We
can extend τ to a mapping from M to N∪{0} by setting τ(i) = 0 for all i 6∈M1. Next,
consider any S ⊆ N1. Because S is not underdemanded, |D−S (p)| ≥ |S|. Again by
Hall’s Theorem, there exists a one-to-one mapping ρ : N1→M such that j ∈Dρ( j)(p)
for all j ∈ N1.

With respect to τ and ρ , denote K = {i | τ(i) ∈ N1}, L = {τ(i) | i ∈ K} and
Q = {ρ( j) | j ∈ N1 \L} and define the mapping π : M→ N∪{0} by

π(i) =
{

τ(i), for i ∈M \Q,
ρ−1(i), for i ∈ Q.

Clearly, π(i) ∈ Di(p) for all i ∈M, and no real item is assigned by π to two different
bidders, and for every item j ∈ N1, there is a bidder i who demands the item at p and
is assigned the item. This shows that (p,π) is a Walrasian equilibrium.

9.2. Proofs of the lemmas of Section 5

In proofs of this subsection it should be noted that the sets D−S (pτ) and D+
S (pτ) are

defined with respect to the current set of bidders Mτ , for any set S⊂ Nτ and for any
τ = t−1, t.

Proof of Lemma 5.1. Suppose to the contrary that U ∩O = /0. Since U is underde-
manded at round t, we have that pt

j > c( j) for any j ∈U . Further, since U ∩O = /0, we
have for any j ∈U that j 6∈O. Hence pt

j = pt−1
j and thus also pt−1

j > c( j) for all j ∈U .
Since there is no underdemand in round t−1, it follows that |D+

U (pt−1)| ≥ |U |. Moreo-
ver, any bidder that demands some item j ∈U at pt−1, also demands this item at pt , be-
cause only prices of the items in O are increased. Hence |D+

U (pt)| ≥ |D+
U (pt−1)| ≥ |U |

and thus U is not underdemanded at pt , yielding a contradiction. Hence U∩O 6= /0.

Proof of Lemma 5.2. Since O is overdemanded at pt−1, we have |D−O(pt−1)|> |O|.
8 This proof is much simpler than the original one given by Mishra and Talman (2006).
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Now, consider the set S =U ∩O. By Lemma 5.1 this set is not empty. When U = O
and thus S = O, then by Lemma 3.6 there are |U |−1 = |O|−1 bidders demanding
at least one item from U at pt , because U is underdemanded at pt . So, in this case
there are at least two bidders in D−O(pt−1) not demanding any item from U = O any-
more at price pt . Select h from this set of bidders and select k from the set Dh(pt−1)
(recall that this set is never empty and does not contain any dummy item). Since
Dh(pt−1)⊆ O and for each bidder h ∈ D−O(pt−1), this item k and this bidder h satisfy
the requirements.

Next, consider the case that S is a strict subset of O. Denote H = {i ∈
D−O(pt−1) | Di(pt−1)∩S 6= /0}. From Lemma 3.4 we have that

|H| ≥ |S|+ |D−O(pt−1)|− |O| ≥ |S|+1,

i.e., the number of bidders in D−O(pt−1) that demand an item of S at pt−1 is at least
one more than the number of items in S. Next, consider the set T =U \O. Since there
is no underdemand at pt−1 we have that

|D+
T (pt−1)| ≥ |T |.

Since pt
j = pt−1

j for all j ∈ T = U \O, any bidder that demands an item from T at
pt−1, is still demanding this item at pt , so D+

T (pt−1)⊆ D+
T (pt). On the other hand, U

is underdemanded at pt , so
|D+

U (pt)|< |U |.
Further, observe that H ∩D+

T (pt−1) = /0, since H ⊆ D−O(pt−1) and the members of
D−O(pt−1) demand only items in O, whereas the members of D+

T (pt−1) demand at
least one item from T = U \O at pt−1. Therefore, the number of bidders in H that
still demand items in S at pt can be at most |S|−1. Suppose not, i.e., the number is at
least |S|. Then the number of bidders in D+

U (pt) (demanding at least one item of U at
pt) is at least equal to |S| plus the number of bidders in D+

T (pt−1), i.e.

|D+
U (pt)| ≥ |S|+ |T |= |U ∩O|+ |U \O|= |U |,

contradicting the fact that U is underdemanded. Hence there are at least two bidders in
H that are no longer demanding items in U ∩O at pt . Select h as one of these bidders
and k as one of the elements in the non-empty set Dh(pt−1)∩ S. Then item k and
bidder h satisfy the requirements.

Proof of Lemma 5.3. First, observe that, by definition of the auction, Mt+1 =
Mt−1 \ {h}, Nt+1 = Nt−1 \ {k} and Nt+1 6= /0 (otherwise the auction ends in Step
4). Further, pt+1

j = pt−1
j for all j ∈ Nt+1. Denote Õ = O \ {k}. For S ⊆ Nt+1 we
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consider two cases, namely S⊆ Õ and S\ Õ 6= /0. In the first case we have by Lemma
3.4 that at least |S|+ 1 members of the set D−O(pt−1) = {i ∈Mt−1 | Di(pt−1) ⊆ O}
demanded at least one item of S in round t−1. Since pt+1

j = pt−1
j for all j ∈ Nt+1, for

any bidder i in Mt+1 it holds that

Di(pt+1) = Di(pt−1)\{k}
and thus any bidder i ∈Mt+1∩D−O(pt−1) = D−O(pt−1)\{h} that demanded an item of
S at round t−1 is still demanding an item of S at round t +1. So, when h demanded
an item of S at round t−1, the number of bidders of Mt+1 demanding an item of S
at round t +1 is at least |S|, otherwise the number is at least |S|+1. Hence S is not
underdemanded.

For the second case S\Õ 6= /0 we consider the partition of S given by S1 = S∩Õ
and S2 = S\ Õ. Denote

K1 = {i ∈ D−O(pt−1) | Di(pt−1)∩S1 6= /0}
and

K2 = {i ∈Mt−1 | Di(pt−1)∩S2 6= /0}.
Since Di(pt−1)⊆O for all i∈D−O(pt−1) and S2⊆Nt−1\O, it follows that K1∩K2 = /0.
Since O is a minimal overdemanded set in round t−1 and there is no underdemand
in round t−1, we have that S1 is neither overdemanded nor underdemanded at pt−1,
because it is a strict subset of O. By Lemma 3.4 we have that at least |S1|+1 members
of D−O(pt−1) demanded at least one item of S1 in round t−1 and similarly as above
it follows that at least |S1| members of D−O(pt−1) \ {h} are still demanding an item
of S1 at round t + 1. Furthermore, none of these bidders belong to K2, because
D−O(pt−1)∩K2 = /0. Further |K2| ≥ |S2|, because there is no underdemand at round
t − 1. Clearly, any member of K2 is still demanding an item of S2 at round t + 1,
because all prices of the remaining items in Nt+1 are equal to the prices in round t−1.
Therefore the number of bidders that demand at least one item of S = S1∪ S2 is at
least equal to

|S1|+ |K2| ≥ |S1|+ |S2|= |S|
and thus S is not underdemanded in round t +1.

Proof of Lemma 5.4. Each time when an item is assigned in Step 4, the num-
ber of items and the number of bidders decreases with one. Suppose that in some
round t Step 4 is performed for the `th time. As long as ` < |M|− 1, we have that
Mt+1 = |M|− ` > 1. Now, suppose that `= |M|−1. Then |Mt+1|= 1 and the auction
returns to Step 2. According to Lemma 5.3, there is no underdemand in Step 2 and thus
the auction goes to Step 3. However, because only one bidder is left, also overdemand
cannot occur and thus the auction goes to Step 5 and terminates.
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1. INTRODUCTION

Convex analysis and fixed point theorems have played a crucial role in eco-
nomic and game-theoretic analysis, for instance, in proving the existence of a
competitive equilibrium and Nash equilibrium; see Debreu (1959), Arrow &
Hahn (1971), and Fudenberg & Tirole (1991). Traditionally, in such studies, it
is assumed that commodities are perfectly divisible, or mixed strategies can be
used, or the space of strategies is continuous. However, this traditional appro-
ach cannot be equally applied to economic models which involve significant
indivisibilities or to game-theoretic models where the space of strategies is
discrete and mixed strategies are not useful. In this paper we present a new
approach based on discrete convex analysis and discrete fixed point theorems
which have been recently developed in the field of discrete mathematics and
optimization and become a powerful tool for analyzing economic or game
models with indivisibilities.

Discrete convex analysis (Murota, 1998, 2003) is a general theoretical
framework constructed through a combination of convex analysis and combi-
natorial mathematics. The framework of convex analysis is adapted to discrete
settings and the mathematical results in matroid/submodular function theory
are generalized.1 The theory extends the direction set forth in discrete optimi-
zation by Edmonds (1970), Frank (1982), Fujishige (1984), and Lovász (1983);
see also Fujishige (2005, Chapter VII). The main feature of discrete convex
analysis is the distinction between two convexity concepts for functions in
integer or binary variables, M-convexity and L-convexity2 together with their
conjugacy relationship with respect to the (continuous or discrete) Legendre–
Fenchel transformation. Roughly speaking, M-convexity is defined in terms of
an exchange property and L-convexity by submodularity.

The application of discrete convex analysis to mathematical economics was
initiated by Danilov et al. (1998, 2001) to show the existence of a Walrasian
equilibrium in an exchange economy with indivisible goods (see also Murota,
2003, Chapter 11). The next stage of the interaction was brought about by the
crucial observation of Fujishige & Yang (2003) that M-concavity in its variant

1 The readers who are interested in general backgrounds are referred to Rockafellar (1970) for
convex analysis, Schrijver (1986) for linear and integer programming, Korte & Vygen (2012)
and Schrijver (2003) for combinatorial optimization, Oxley (2011) for matroid theory, and
Fujishige (2005) and Topkis (1998) for submodular function theory.

2 “M” stands for “Matroid” and “L” for “Lattice.”
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called M\-concavity3 is equivalent to the gross substitutability (GS) of Kelso &
Crawford (1982). The survey papers by Murota & Tamura (2003a) and Tamura
(2004) describe the interaction at the earlier stages of this development.

Concepts, theorems, and algorithms in discrete convex analysis have turned
out to be useful in the modeling and analysis of economic problems. The M-L
conjugacy corresponds to the conjugacy between commodity bundles and
price vectors in economics. The conjugacy theorem in discrete convex analysis
implies, for example, that a valuation (utility) function has the substitutes
property (M\-concavity) if and only if the indirect utility function is an L\-
convex function, where L\-convexity is a variant of L-convexity.

One of the most successful examples of the discrete convex analysis ap-
proach is Fujishige and Tamura’s model (Fujishige & Tamura, 2006, 2007)
of two-sided matching, which unifies the stable matching of Gale & Shapley
(1962) and the assignment model of Shapley & Shubik (1972). The existence
of a market equilibrium is established by revealing a novel duality-related pro-
perty of M\-concave functions. Tamura’s monograph (Tamura, 2009), though
in Japanese, gives a comprehensive account of this model.

Another significant instance of the discrete convex analysis approach is the
design and analysis of auction algorithms. Based on the Lyapunov function
approach of Ausubel (2006) and Sun & Yang (2009), Murota et al. (2013a,
2016) shed a new light on a variety of iterative auctions by making full use of
the M-L conjugacy theorem and L\-convex function minimization algorithms.
The lattice structure of equilibrium price vectors is obtained as an immediate
consequence of the L\-convexity of the Lyapunov function.

The contents of this paper are as follows:

Section 1: Introduction
Section 2: Notation
Section 3: M\-concave set function
Section 4: M\-concave function on Zn

Section 5: M\-concave function on Rn

Section 6: Operations for M\-concave functions
Section 7: Conjugacy and L\-convexity
Section 8: Iterative auctions
Section 9: Intersection and separation theorems
Section 10: Stable marriage and assignment game

3 “M\” and “L\” are read “em natural” and “ell natural,” respectively.
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Section 11: Valuated assignment problem
Section 12: Submodular flow problem
Section 13: Discrete fixed point theorem
Section 14: Other topics

Following the introduction of notations in Section 2, Sections 3 to 5 present
the definition of M\-concave functions and the characterizations of (or equi-
valent conditions for) M\-concavity in terms of demand functions and choice
functions. Section 6 shows the operations valid for M\-concave functions, in-
cluding the convolution operation used for the aggregation of utility functions.
Section 7 introduces L\-convexity as the conjugate concept of M\-concavity,
and Section 8 presents several iterative auctions. Section 9 deals with dua-
lity theorems of fundamental importance, including the discrete separation
theorems and the Fenchel-type minimax relations. Section 10 is a succinct
description of Fujishige and Tamura’s model. Combinations of M\-concave
functions with graph/network structures are considered in Sections 11 and 12.
Section 13 explains the basic idea underlying the discrete fixed point theorems.
Finally Section 14 gives a brief discussion of other related topics.4

2. NOTATION

Basic notations are listed here.

• The set of all real numbers is denoted by R, and the sets of nonnegative
reals and positive reals are denoted, respectively, by R+ and R++. The
set of all integers is denoted by Z, and the sets of nonnegative integers
and positive integers are denoted, respectively, by Z+ and Z++. The
sign ∀ means for all.

• We consistently assume N = {1,2, . . . ,n} for a positive integer n. Then
2N denotes the set of all subsets of N, i.e., the power set of N.

• The characteristic vector of a subset A⊆ N = {1,2, . . . ,n} is denoted by
χA ∈ {0,1}n. That is,

(χA)i =

{
1 (i ∈ A),
0 (i ∈ N \A). (2.1)

4 For other applications, we refer to Murota (2000b, 2009), Katoh et al. (2013), and Simchi-Levi
et al. (2014).
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For i∈ {1,2, . . . ,n}, we write χi for χ{i}, which is the ith unit vector. We
define χ0 = 0 where 0 = (0,0, . . . ,0). We also define 1 = (1,1, . . . ,1).

• For a vector x = (x1,x2, . . . ,xn) and a subset A ⊆ {1,2, . . . ,n}, x(A)
denotes the component sum within A, i.e., x(A) = ∑i∈A xi.

• For two vectors x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn), x≤ y means
the componentwise inequality. That is, x≤ y is true if and only if xi ≤ yi
is true for all i = 1,2, . . . ,n.

• For two integer vectors a and b in Zn with a ≤ b, [a,b]Z denotes the
integer interval between a and b (inclusive), i.e., [a,b]Z = {x ∈ Zn | a≤
x≤ b}.

• For two vectors x and y, x∨ y and x∧ y denote the vectors of compo-
nentwise maximum and minimum. That is, (x∨ y)i = max(xi,yi) and
(x∧ y)i = min(xi,yi) for i = 1, . . . ,n.

• For a real number z ∈ R, dze denotes the smallest integer not smaller
than z (rounding-up to the nearest integer) and bzc the largest integer not
larger than z (rounding-down to the nearest integer). This operation is
extended to a vector by componentwise application.

• For a vector x, supp+(x) = {i | xi > 0} and supp−(x) = {i | xi < 0}
denote the positive and negative supports of x, respectively.

• The `∞-norm of a vector x is denoted as ‖x‖∞, i.e.,

‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).

We also use the following variants:

‖x‖+∞ = max(0,x1,x2, . . . ,xn)

and
‖x‖−∞ = max(0,−x1,−x2, . . . ,−xn).

• For two vectors p = (p1, p2, . . . , pn) and x = (x1,x2, . . . ,xn), their inner
product is denoted by 〈p,x〉, i.e., 〈p,x〉= p>x = ∑n

i=1 pixi, where p> is
the transpose of p viewed as a column vector.
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• For a function f : Rn→ R∪{+∞} or f : Rn→ R∪{−∞},

dom f = {x | −∞ < f (x)<+∞},
argmin f = {x | f (x)≤ f (y) for all y},
argmax f = {x | f (x)≥ f (y) for all y}.

These notations are used also for f : Zn → R∪ {+∞} or f : Zn →
R∪{−∞}. We sometimes use domR f and domZ f to emphasize that
dom f ⊆ Rn and dom f ⊆ Zn.

• For a set function f : 2N → R∪{+∞} or f : 2N → R∪{−∞},

dom f = {X ⊆ N | −∞ < f (X)<+∞},
argmin f = {X ⊆ N | f (X)≤ f (Y ) for all Y ⊆ N },
argmax f = {X ⊆ N | f (X)≥ f (Y ) for all Y ⊆ N }.

• For a function f and a vector p, f [−p] means the function defined by

f [−p](x) = f (x)− p>x = f (x)−〈p,x〉.

If f is a set function, f [−p] is the set function defined by f [−p](X) =
f (X)− p(X).

• For a function f , four variants of the conjugate function of f are denoted
as

f •(p) = sup{〈p,x〉− f (x)}, f ◦(p) = inf{〈p,x〉− f (x)},
fO(p) = sup{ f (x)−〈p,x〉}, f4(p) = inf{ f (x)+ 〈p,x〉}.

• The convex closure of a function f is denoted by f . The convex hull of
a set S is denoted by S.

• D(p; f ) denotes the demand correspondence for a price vector p and a
valuation function f , defined in (3.16) and (4.21).

• C(·) denotes a choice function. C(· ; f ) denotes the choice function
determined by a valuation function f , defined in (3.17) and (4.23).

• tw(·) denotes the twisting of a set or a vector, defined in (3.18) and
(4.25), respectively.
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• For an arc a in a directed graph, ∂+a denotes the initial (tail) vertex of a,
and ∂−a the terminal (head) vertex of a. That is, ∂+a = u and ∂−a = v
if a = (u,v).

• For a flow ξ in a network, ∂ξ denotes the boundary vector on the vertex
set, defined in (4.36). For a matching M, ∂M denotes the set of the
vertices incident to some edge in M.

• For a potential p defined on the vertex set of a network, δ p denotes the
coboundary of p, the vector on the arc set defined in (12.20).

3. M\-CONCAVE SET FUNCTION

First we introduce M\-concavity for set functions. Let N be a finite set, say,
N = {1,2, . . . ,n}, F be a nonempty family of subsets of N, and f : F → R
be a real-valued function on F . In economic applications, we may think of f
as a single-unit valuation (binary valuation) over combinations of indivisible
commodities N, where F represents the set of feasible combinations.

3.1. Exchange property

Let F be a nonempty family of subsets of a finite set N = {1,2, . . . ,n}. We say
that a function f : F → R is M\-concave, if, for any X ,Y ∈F and i ∈ X \Y ,
we have (i) X− i ∈F , Y + i ∈F and

f (X)+ f (Y )≤ f (X− i)+ f (Y + i), (3.1)

or (ii) there exists some j ∈ Y \X such that X− i+ j ∈F , Y + i− j ∈F and

f (X)+ f (Y )≤ f (X− i+ j)+ f (Y + i− j). (3.2)

Here we use short-hand notations X− i = X \{i}, Y + i =Y ∪{i}, X− i+ j =
(X \{i})∪{ j}, and Y + i− j = (Y ∪{i})\{ j}. This property is referred to as
the exchange property.

A more compact way of defining M\-concavity, free from explicit reference
to the domain F , is to define a function f : 2N→R∪{−∞} to be M\-concave
if it has the following property:
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(M\-EXC) For any X ,Y ⊆ N and i ∈ X \Y , we have

f (X)+ f (Y )≤ max( f (X− i)+ f (Y + i),
max j∈Y\X{ f (X− i+ j)+ f (Y + i− j)}), (3.3)

where (−∞)+ a = a+(−∞) = (−∞)+ (−∞) = −∞ for a ∈ R, −∞ ≤ −∞,
and a maximum taken over an empty set is defined to be −∞. The family
of subsets X for which f (X) is finite is called the effective domain of f , and
denoted as dom f , i.e., dom f = {X | f (X)>−∞}. When f is regarded as a
function on F = dom f , it is an M\-concave function in the original sense.

As a (seemingly) stronger condition than (M\-EXC) we may also conceive
the multiple exchange property:

(M\-EXCm) For any X ,Y ⊆ N and I ⊆ X \Y , there exists J ⊆ Y \X such that
f (X)+ f (Y )≤ f ((X \ I)∪ J)+ f ((Y \ J)∪ I), i.e.,

f (X)+ f (Y )≤ max
J⊆Y\X

{ f ((X \ I)∪ J)+ f ((Y \ J)∪ I)}. (3.4)

Recently it has been shown (Murota, 2016) that (M\-EXCm) is equivalent
to (M\-EXC).

Theorem 3.1. A function f : 2N → R∪{−∞} satisfies (M\-EXC) if and only
if it satisfies (M\-EXCm). Hence, every M\-concave function has the multiple
exchange property (M\-EXCm).

Remark 3.1. The multiple exchange property (M\-EXCm) here is the same
as the “strong no complementarities property (SNC)” introduced by Gul &
Stacchetti (1999) where it is shown that (SNC) implies the gross substitutes
property (GS). On the other hand, (GS) is known (Fujishige & Yang, 2003)
to be equivalent to (M\-EXC) (see Theorem 3.7). Therefore, Theorem 3.1
above reveals that (SNC) is equivalent to (GS). This settles the question since
1999: Is (SNC) strictly stronger than (GS) or not? We now know that (SNC) is
equivalent to (GS). See Murota (2016) for details.

It follows from the definition of an M\-concave function that the (effective)
domain F of an M\-concave function has the following exchange property:

(B\-EXC) For any X ,Y ∈F and i ∈ X \Y , we have (i) X− i ∈F , Y + i ∈F
or
(ii) there exists some j ∈ Y \X such that X− i+ j ∈F , Y + i− j ∈F .
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This means that F forms a matroid-like structure,5 called a generalized ma-
troid (g-matroid), or an M\-convex family.6 An M\-convex family F contai-
ning the empty set forms the family of independent sets of a matroid. For
example, for integers a,b with 0≤ a≤ b≤ n, Fab = {X | a≤ |X | ≤ b} is an
M\-convex family, and F0b (with a = 0) forms the family of independent sets
of a matroid.

Remark 3.2. It follows from Theorem 3.1 that a nonempty family F ⊆ 2N

satisfies (B\-EXC) if and only if it satisfies the multiple exchange axiom:

(B\-EXCm) For any X ,Y ∈F and I ⊆ X \Y , there exists J ⊆ Y \X such that
(X \ I)∪ J ∈F and (Y \ J)∪ I ∈F .

M\-concavity can be characterized by a local exchange property under the
assumption that function f is (effectively) defined on an M\-convex family of
sets (Murota, 1996a, 2003; Murota & Shioura, 1999). The conditions (3.5)–
(3.7) below are “local” in the sense that they require the exchangeability of the
form of (3.3) only for (X ,Y ) with max(|X \Y |, |Y \X |)≤ 2.

Theorem 3.2. A set function f : 2N → R∪{−∞} is M\-concave if and only if
dom f is an M\-convex family and the following three conditions hold:

f (X + i+ j)+ f (X)≤ f (X + i)+ f (X + j) (3.5)

for all X ⊆ N and for all i, j ∈ N \X with i 6= j; and

f (X + i+ j)+ f (X + k)≤ max{ f (X + i+ k)+ f (X + j),
f (X + j+ k)+ f (X + i)} (3.6)

for all X ⊆ N and for all distinct i, j,k ∈ N \X; and

f (X + i+ j)+ f (X + k+ l)≤ max{ f (X + i+ k)+ f (X + j+ l),
f (X + j+ k)+ f (X + i+ l)} (3.7)

for all X ⊆ N and for all distinct i, j,k, l ∈ N \X.

5 See, e.g., Murota (2000b), Oxley (2011), and Schrijver (2003) for matroids.
6 A subset of N can be identified with a 0-1 vector (characteristic vector in (2.1)), and accordingly,

a family of subsets can be identified with a set of 0-1 vectors. We call a family of subsets an
M\-convex family if the corresponding set of 0-1 vectors is an M\-convex set as a subset of ZN .
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When the effective domain dom f contains the emptyset, the local exchange
condition for M\-concavity takes a simpler form without involving (3.7); see
Reijnierse et al. (2002, Theorem 10), Müller (2006, Theorem 13.5), Shioura &
Tamura (2015, Theorem 6.5).

Theorem 3.3. Let f : 2N → R∪{−∞} be a set function such that dom f is an
M\-convex family containing /0 (the empty set). Then f is M\-concave if and
only if (3.5) and (3.6) hold.

It is known (Murota, 2003, Theorem 6.19) that an M\-concave function is
submodular, i.e.,

f (X)+ f (Y )≥ f (X ∪Y )+ f (X ∩Y ) (X ,Y ⊆ N). (3.8)

More precisely, the condition (3.5) above is equivalent to the submodularity
(3.8) as long as dom f is M\-convex (Shioura & Tamura, 2015, Proposition
6.1).

Because of the additional condition (3.6) for M\-concavity, not every
submodular set function is M\-concave. Thus, M\-concave set functions form
a proper subclass of submodular set functions.

Remark 3.3. It follows from (M\-EXC) that M\-concave set functions enjoy
the following exchange properties under cardinality constraints (Murota &
Shioura, 1999, Lemmas 4.3 and 4.6):
• For any X ,Y ⊆ N with |X |< |Y |,

f (X)+ f (Y )≤ max
j∈Y\X

{ f (X + j)+ f (Y − j)}. (3.9)

• For any X ,Y ⊆ N with |X |= |Y | and i ∈ X \Y ,

f (X)+ f (Y )≤ max
j∈Y\X

{ f (X− i+ j)+ f (Y + i− j)}. (3.10)

The former property, in particular, implies the cardinal-monotonicity of the
induced choice function; see Theorem 3.10 and its proof.

Remark 3.4. For a set family F consisting of equi-cardinal sets (i.e., |X |= |Y |
for all X ,Y ∈F ) the exchange property (B\-EXC) takes a simpler form: For
any X ,Y ∈F and i∈X \Y , there exists some j ∈Y \X such that X− i+ j ∈F ,
Y + i− j ∈F . This means that F forms the family of bases of a matroid. An
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M\-concave function defined on matroid bases is called a valuated matroid
in Dress & Wenzel (1990, 1992) and Murota (2000b, Chapter 5) or an M-
concave set function in Murota (1996a, 2003). The exchange property for
M-concavity reads: A set function f is M-concave if and only if (3.10) holds
for any X ,Y ⊆ N and i ∈ X \Y . A corollary of Theorem 3.1: Every M-concave
function (valuated matroid) f has the multiple exchange property (M\-EXCm)
with |J| = |I|. A further corollary of this fact is a classical result in matroid
theory: The base family of a matroid has the multiple exchange property
(B\-EXCm) with |J|= |I|; see, e.g., Schrijver (2003, Section 39.9a).

3.2. Maximization and single improvement property

For an M\-concave function, the maximality of a function value is characterized
by a local condition (Murota, 2003, Theorem 6.26).

Theorem 3.4. Let f : 2N → R∪{−∞} be an M\-concave function and X ∈
dom f . Then X is a maximizer of f if and only if

f (X)≥ f (X− i+ j) (∀ i ∈ X , ∀ j ∈ N \X), (3.11)
f (X)≥ f (X− i) (∀ i ∈ X), (3.12)
f (X)≥ f (X + j) (∀ j ∈ N \X). (3.13)

As a discrete analogue of the subgradient inequality for convex functions,
we have the inequality (3.14) in the following theorem.7

Theorem 3.5. Let f : 2N → R∪{−∞} be an M\-concave function and X ,Y ∈
dom f . Then

f (Y )− f (X)≤ f̂ (X ,Y ), (3.14)

where f̂ (X ,Y ) is defined as follows:

• When |X |= |Y |,

f̂ (X ,Y ) = max
σ

(
∑

i∈X\Y
[ f (X− i+σ(i))− f (X)]

)
,

where the maximum is taken over all one-to-one correspondences σ :
X \Y → Y \X.

7 This is a reformulation of the “upper-bound lemma” (Murota, 2000b, Lemma 5.2.29) for
valuated matroids to M\-concave functions. See also Murota (2003, Proposition 6.25).
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• When |X |< |Y |,

f̂ (X ,Y ) = max
σ

(
∑

i∈X\Y
[ f (X− i+σ(i))− f (X)]

+ ∑
j∈Y\(X∪σ(X))

[ f (X + j)− f (X)]

)
,

where the maximum is taken over all injections σ : X \Y → Y \X.

• When |X |> |Y |,

f̂ (X ,Y ) = max
τ

(
∑

j∈Y\X
[ f (X− τ( j)+ j)− f (X)]

+ ∑
i∈X\(Y∪τ(Y ))

[ f (X− i)− f (X)]

)
,

where the maximum is taken over all injections τ : Y \X → X \Y .

For a vector p = (pi | i ∈ N) ∈ RN we use the notation f [−p] to mean the
function f (X)− p(X), where X ⊆ N and p(X) = ∑i∈X pi. That is,

f [−p](X) = f (X)− p(X) (X ⊆ N). (3.15)

Note that f [−p] is M\-concave if and only if f is M\-concave.
The “if” part of Theorem 3.4, which is the content of the theorem, can be

restated as follows: If X is not a maximizer of f , there exists Y ⊆ N such that
|X \Y | ≤ 1, |Y \X | ≤ 1, and f (X) < f (Y ). By considering this property for
f [−p] with varying p, we are naturally led to the single improvement property
of Gul & Stacchetti (1999):

(SI) For any p ∈ RN , if X is not a maximizer of f [−p], there exists Y ⊆ N
such that |X \Y | ≤ 1, |Y \X | ≤ 1, and f [−p](X)< f [−p](Y ).

The above argument shows that (SI) is true for M\-concave functions. In fact,
(SI) is equivalent to M\-concavity (Fujishige & Yang, 2003).
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3.3. Maximizers and gross substitutability

For a vector p = (pi | i ∈ N) ∈ RN we consider the maximizers of the function
f [−p](X) = f (X)− p(X), where p(X) = ∑i∈X pi for X ⊆ N. We denote the
set of these maximizers by

D(p; f ) = argmax
X
{ f (X)− p(X) | X ⊆ N}. (3.16)

In economic applications, p is a price vector and D(p) = D(p; f ) represents
the demand correspondence.

It is one of the most fundamental facts in discrete convex analysis that the
M\-concavity of a function is characterized in terms of the M\-convexity of its
maximizers; see Murota (1996a), Murota (2003, Theorem 6.30), and Murota
& Shioura (1999).

Theorem 3.6. A set function f : 2N → R∪{−∞} is M\-concave if and only if,
for every vector p ∈ RN , D(p; f ) is an M\-convex family. That is, f satisfies
(M\-EXC) if and only if, for every p ∈ RN , D(p; f ) satisfies (B\-EXC).

The following are two versions of the multiple exchange property of
D(p; f ):

(NC) For any p ∈ RN , if X ,Y ∈ D(p; f ) and I ⊆ X \Y , there exists J ⊆ Y \X
such that (X \ I)∪ J ∈ D(p; f ),

(NCsim) For any p ∈ RN , if X ,Y ∈ D(p; f ) and I ⊆ X \Y , there exists J ⊆
Y \X such that (X \ I)∪ J ∈ D(p; f ) and (Y \ J)∪ I ∈ D(p; f ).

The condition (NC), introduced by Gul & Stacchetti (1999) is called “no
complementarities property” and (NCsim) is a simultaneous (or symmetric)
version of (NC) introduced by Murota (2016). These conditions, (NC) and
(NCsim), are equivalent to each other, and are equivalent to the M\-concavity
of f ; see Remark 3.1 as well as Murota (2016) for details.

In the above we have looked at the family D(p; f ) of the maximizers for
each p ∈ RN . We now investigate how D(p; f ) changes with the variation of
p.

A set function (single-unit valuation function) f : 2N → R∪{−∞} is said
to have the gross substitutes property if 8

8 To be precise, Kelso & Crawford (1982) and also Gul & Stacchetti (1999) treat the case of
f : 2N → R.
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(GS) For any p,q ∈ RN with p≤ q and X ∈ D(p; f ), there exists Y ∈ D(q; f )
such that {i ∈ X | pi = qi} ⊆ Y .

The concept of gross substitutes property, introduced by Kelso & Crawford
(1982), has turned out to be crucial in economics; see, e.g., Roth & Sotomayor
(1990), Bikhchandani & Mamer (1997), Gul & Stacchetti (1999), Ausubel
& Milgrom (2002), Milgrom (2004), Hatfield & Milgrom (2005), Ausubel
(2006), Sun & Yang (2006), Milgrom & Strulovici (2009), and Hatfield et al.
(2016).

The following theorem, due to Fujishige & Yang (2003), plays the key role
in connecting discrete convex analysis and economics.

Theorem 3.7. A set function f : 2N → R∪{−∞} has the gross substitutes
property (GS) if and only if it is M\-concave.

It is known (Hatfield & Milgrom, 2005; Milgrom & Strulovici, 2009) that
the gross substitutes property, and hence M\-concavity, implies the law of
aggregate demand in the following form:

(LAD) For any p,q∈RN with p≤ q and X ∈D(p; f ), there exists Y ∈D(q; f )
such that |X | ≥ |Y |.

Gross substitutes properties for multi-unit valuations are treated in Section
4.3.

3.4. Choice function

A function C : 2N → 2N is called a choice function if C(Z)⊆ Z for all Z ⊆ N.
We have C( /0) = /0 and, possibly, C(Z) = /0 for some nonempty subsets Z. A
choice function C is said to be consistent if C(X) ⊆ Y ⊆ X implies C(Y ) =
C(X). Here we discuss two other properties of choice functions, substitutability
and cardinal monotonicity, which are closely related to M\-concavity.

The substitutability of a choice function C means the following property
(Roth, 1984; Roth & Sotomayor, 1990)

(SCch) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 it holds that Z2∩C(Z1)⊆C(Z2).

Several apparently different formulations of substitutability, each equivalent to
(SCch), are found in the literature:
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• For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 it holds that Z1 \C(Z1)⊇ Z2 \C(Z2).

• i ∈C(X) implies i ∈C(Y ∪{i}) for Y ⊆ X .

• For any X ⊆N and any distinct i, j ∈ X , i∈C(X) implies i∈C(X \{ j}).

A choice function C is said to be cardinal-monotone if |C(Y )| ≤ |C(X)|
for all Y ⊆ X (Alkan, 2002). This property is called increasing property by
Fleiner (2003) and law of aggregate demand by Hatfield & Milgrom (2005).

Remark 3.5. As is well known, consistency and substitutability together are
equivalent to path independence of Plott (1973) which is characterized by
the condition: C(C(X)∪Y ) = C(X ∪Y ) for all X ,Y ⊆ N. This condition is
equivalent to: C(C(X)∪C(Y )) =C(X ∪Y ) for all X ,Y ⊆ N.

Remark 3.6. The above-mentioned properties of choice functions are well-
known key properties in economics and game theory. In the stable matching
problem, for example, consistency and substitutability (i.e., path indepen-
dence) guarantee, roughly, the existence of a stable matching. If, in addition,
the choice functions are cardinal-monotone, then the stable matchings form a
nice lattice (with simple lattice operations, being distributive, etc.). To quote
Alkan (2002, Theorem 10): “The set of stable matchings in any two-sided
market with path-independent cardinal-monotone choice functions is a dis-
tributive lattice under the common preferences of all agents on one side of
the market. The supremum (infimum) operation of the lattice for each side
consists componentwise of the join (meet) operation in the revealed preference
ordering of associated agents. The lattice has the polarity, unicardinality and
complementarity properties.”

Remark 3.7. A function C : 2N → 2N is called comonotone if there exists
a monotone function g : 2N → 2N such that C(X) = X \ g(X) for all X ⊆ N
(Fleiner, 2003). A function C : 2N → 2N is comonotone if and only if C is
a choice function with substitutability. The fixed point approach to stable
matchings of Fleiner (2003) is based on the observation that stable matchings
correspond to fixed points of a certain monotone function associated with the
choice functions and the deferred acceptance algorithm of Gale & Shapley
(1962) can be regarded as an iteration of this function. See also Farooq et al.
(2012).
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A choice correspondence means a function C : 2N → 22N
such that /0 6=

C(Z)⊆ 2Z for all Z ⊆ N. It should be clear that the value C(Z) is not a subset
of N but a family of subsets of N. If C(Z) consists of a single subset for each
Z ⊆ N, then C can be identified with a choice function C : 2N → 2N .

The substitutability of a choice correspondence C is formulated as follows
(Sotomayor, 1999, Definition 4):

(SC1
ch) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 and any X1 ∈ C(Z1), there exists

X2 ∈C(Z2) such that Z2∩X1 ⊆ X2.

(SC2
ch) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 and any X2 ∈ C(Z2), there exists

X1 ∈C(Z1) such that Z2∩X1 ⊆ X2.

For a choice function C : 2N → 2N , (SC1
ch) and (SC2

ch) are each equivalent to
(SCch).

Choice function induced from a valuation function: A valuation function
f : 2N→R∪{−∞} with /0∈ dom f induces a choice correspondence C : 2N→
22N

by
C(Z) =C(Z; f ) = argmax{ f (Y ) | Y ⊆ Z}. (3.17)

The assumption “ /0∈ dom f ” ensures that C(Z; f ) 6= /0 for every Z⊆N. In gene-
ral, the maximizer is not unique, and accordingly, C is a choice correspondence
(i.e., C(Z; f ) is a family of subsets of N).

While (SC1
ch) and (SC2

ch) above formulate the substitutability for a choice
correspondence, (SC1) and (SC2) below are the corresponding conditions for a
valuation function f . That is, a valuation function f satisfies (SC1) if and only
if the induced choice correspondence C( · ; f ) satisfies (SC1

ch), and similarly for
(SC2) and (SC2

ch).

(SC1) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 and any X1 ∈C(Z1; f ), there exists
X2 ∈C(Z2; f ) such that Z2∩X1 ⊆ X2.

(SC2) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 and any X2 ∈C(Z2; f ), there exists
X1 ∈C(Z1; f ) such that Z2∩X1 ⊆ X2.

These two conditions are independent of each other; see Examples 3.1 and 3.2
in Farooq & Tamura (2004).

A connection to M\-concavity is pointed out by Eguchi et al. (2003) (see
also Fujishige & Tamura, 2006). This is another important finding, on top of
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Theorem 3.7 (equivalence of M\-concavity to (GS)), which has reinforced the
connection between discrete convex analysis and economics.

Theorem 3.8. Every M\-concave function f : 2N→R∪{−∞} with /0∈ dom f
satisfies (SC1) and (SC2). That is, the choice correspondence induced from an
M\-concave set function has the substitutability properties (SC1

ch) and (SC2
ch).

Proof. Assume Z1 ⊇ Z2.
Proof of (SC1): Let X1 ∈C(Z1; f ) and take X2 ∈C(Z2; f ) with minimum

|(Z2 ∩ X1) \ X2|. To prove by contradiction, suppose that there exists i ∈
(Z2 ∩ X1) \ X2. Since i ∈ X1 \ X2, (M\-EXC) implies (i) f (X1) + f (X2) ≤
f (X1− i)+ f (X2 + i) or (ii) there exists j ∈ X2 \X1 such that f (X1)+ f (X2)≤
f (X1− i+ j)+ f (X2 + i− j). In case (i) we note X1− i⊆ Z1 and X2 + i⊆ Z2,
from which follow f (X1− i)≤ f (X1) and f (X2 + i)≤ f (X2). Therefore, the
inequalities are in fact equalities, and X1− i ∈C(Z1; f ) and X2 + i ∈C(Z2; f ).
But we have |(Z2∩X1)\ (X2 + i)|= |(Z2∩X1)\X2|−1, which contradicts the
choice of X2. In case (ii) we note X1− i+ j ⊆ Z1 and X2 + i− j ⊆ Z2, from
which follow f (X1− i+ j)≤ f (X1) and f (X2 + i− j)≤ f (X2). Therefore, the
inequalities are in fact equalities, and X1− i+ j ∈C(Z1; f ) and X2 + i− j ∈
C(Z2; f ). But we have |(Z2∩X1)\ (X2 + i− j)|= |(Z2∩X1)\X2|−1, which
contradicts the choice of X2.

Proof of (SC2): Let X2 ∈C(Z2; f ) and take X1 ∈C(Z1; f ) with minimum
|(Z2∩X1)\X2|. By the same argument as above we obtain (i) X1− i∈C(Z1; f )
with |(Z2∩ (X1− i)) \X2| = |(Z2∩X1) \X2|− 1, or (ii) X1− i+ j ∈C(Z1; f )
with |(Z2∩ (X1− i+ j))\X2|= |(Z2∩X1)\X2|−1. This is a contradiction to
the choice of X1.

When the maximizer is unique in (3.17) for every Z, we say that f is
unique-selecting. In this case, C in (3.17) is a choice function (i.e., C(Z; f ) is
a subset of N for every Z), and (SC1) and (SC2) both reduce to the following
condition:

(SC) For any Z1,Z2 ⊆ N with Z1 ⊇ Z2 it holds that Z2∩C(Z1; f )⊆C(Z2; f ).

Theorem 3.8 yields, as a corollary, the following result of Eguchi & Fujis-
hige (2002).

Theorem 3.9. Every unique-selecting M\-concave function f : 2N → R∪
{−∞} with /0 ∈ dom f satisfies (SC). That is, the choice function induced from
a unique-selecting M\-concave set function has the substitutability property
(SCch).
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Unique-selecting M\-concave functions are well-behaved also with respect
to cardinal monotonicity. The following is a special case of Murota & Yokoi
(2015, Lemma 4.5).

Theorem 3.10. Every unique-selecting M\-concave function f : 2N → R∪
{−∞} with /0 ∈ dom f induces a choice function with cardinal monotonicity.

Proof. The proof is based on the exchange property (3.9) in Remark 3.3. To
prove by contradiction, suppose that there exist X and Y such that X ⊇ Y and
|C(X)| < |C(Y )|. Set X∗ = C(X) and Y ∗ = C(Y ). Then |X∗| < |Y ∗|. By the
exchange property (3.9) there exists j ∈ Y ∗ \X∗ such that f (X∗)+ f (Y ∗) ≤
f (X∗+ j)+ f (Y ∗− j). Here we have f (X∗+ j) < f (X∗) since X∗+ j ⊆ X
and X∗ is the unique maximizer, and also f (Y ∗− j)< f (Y ∗) since Y ∗− j ⊆ Y
and Y ∗ is the unique maximizer. This is a contradiction.

Thus, M\-concave valuation functions entail the three desirable properties.
Recall Remark 3.6 for the implications of this fact.

Theorem 3.11. The choice function induced from a unique-selecting M\-
concave set function f with /0 ∈ dom f has consistency, substitutability, and
cardinal monotonicity.

Finally, we mention a theorem that characterizes M\-concavity in terms of
a parametrized version of (SC1) and (SC2). Recall from (3.15) the notation
f [−p](X) = f (X)− p(X) for p ∈ RN and X ⊆ N. If f is an M\-concave
function (not assumed to be unique-selecting), f [−p] is also M\-concave, and
hence is equipped with the properties (SC1) and (SC2) by Theorem 3.8. In
other words, an M\-concave function f has the following properties.

(SC1
G) For any p ∈ RN , f [−p] satisfies (SC1).

(SC2
G) For any p ∈ RN , f [−p] satisfies (SC2).

The following theorem, due to Farooq & Tamura (2004), states that these two
conditions are equivalent, and each of them characterizes M\-concavity.

Theorem 3.12. For a set function f : 2N → R∪{−∞} with dom f 6= /0, we
have the equivalence: f is M\-concave ⇐⇒ (SC1

G) ⇐⇒ (SC2
G).
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3.5. Twisted M\-concavity

Let W be a subset of N. For any subset X of N we define

tw(X) = (X \W )∪ (W \X). (3.18)

A set function f : 2N → R∪{−∞} is said to be a twisted M\-concave function
with respect to W , if the function f̃ : 2N → R∪{−∞} defined by

f̃ (X) = f (tw(X)) (X ⊆ N) (3.19)

is an M\-concave function (Ikebe & Tamura, 2015). The same concept was
introduced earlier by Sun & Yang (2006, 2009) under the name of GM-concave
functions. Note that f is twisted M\-concave with respect to W if and only if it
is twisted M\-concave with respect to U = N \W .

Mathematically, twisted M\-concavity is equivalent to the original M\-
concavity through twisting, and all the properties and theorems about M\-
concave functions can be translated into those about twisted M\-concave
functions. However, twisted M\-concave functions are convenient sometimes
in the modeling in economics.

For example, as pointed out by Ikebe & Tamura (2015), twisted M\-
concavity implies the same-side substitutability (SSS) and the cross-side com-
plementarity (CSC) proposed by Ostrovsky (2008) in discussing supply chain
networks. For a choice function C : 2N → 2N the same-side substitutability
(SSS) with respect to the bipartition (U,W ) of N means the following property:

(SSS) (i) For any Z1,Z2 ⊆ N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W , we
have Z2∩C(Z1)∩U ⊆C(Z2)∩U , and (ii) the same statement with U
and W interchanged,

and the cross-side complementarity (CSC) means

(CSC) (i) For any Z1,Z2 ⊆ N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W , we
have C(Z1)∩W ⊇C(Z2)∩W , and (ii) the same statement with U and
W interchanged.

For our exposition it is convenient to combine these two into a single property:

(SSS-CSC) (i) For any Z1,Z2⊆N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W ,
we have Z2∩C(Z1)∩U ⊆C(Z2)∩U and C(Z1)∩W ⊇C(Z2)∩W , and
(ii) the same statement with U and W interchanged.
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The connection to twisted M\-concavity is given in the following theorem,9

to be ascribed to Ikebe & Tamura (2015). Recall from (3.17) the definition
of the choice function induced from a valuation function: C(Z) =C(Z; f ) =
argmax{ f (Y ) | Y ⊆ Z}.

Theorem 3.13. The choice function induced from a unique-selecting twisted
M\-concave set function f : 2N → R∪{−∞} with /0 ∈ dom f has the property
(SSS-CSC).

For choice correspondences we need to consider the following pair of
conditions.

(SSS-CSC1) (i) For any Z1,Z2⊆N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W
and any X1 ∈ C(Z1), there exists X2 ∈ C(Z2) such that Z2 ∩X1 ∩U ⊆
X2∩U and X1∩W ⊇ X2∩W , and (ii) the same statement with U and W
interchanged.

(SSS-CSC2) (i) For any Z1,Z2⊆N with Z1∩U ⊇ Z2∩U and Z1∩W = Z2∩W
and any X2 ∈ C(Z2), there exists X1 ∈ C(Z1) such that Z2 ∩X1 ∩U ⊆
X2∩U and X1∩W ⊇ X2∩W , and (ii) the same statement with U and W
interchanged.

The following theorem (Ikebe & Tamura, 2015) states that these two
properties are implied by twisted M\-concavity.

Theorem 3.14. The choice correspondence induced from a twisted M\-concave
set function f : 2N→R∪{−∞} with /0∈ dom f has the properties (SSS-CSC1)
and (SSS-CSC2).

Proof. We prove (SSS-CSC1)-(i) and (SSS-CSC2)-(i); the proofs of (SSS-
CSC1)-(ii) and (SSS-CSC2)-(ii) are obtained by interchanging U and W . As-
sume Z1 ∩U ⊇ Z2 ∩U and Z1 ∩W = Z2 ∩W , and let f̃ be the M\-concave
function in (3.19) associated with f . For X1 ⊆ Z1 and X2 ⊆ Z2 define

Φ(X1,X2) = |(Z2∩X1∩U)\ (X2∩U)|+ |(X2∩W )\ (X1∩W )|.
9 Theorem 3.13 can be understood as a twisted version of Theorem 3.9, though a straightforward

translation of Theorem 3.9 via twisting does not seem to yield Theorem 3.13. Theorem 3.13
can be proved as a special case of Theorem 3.14 below, for which a direct proof is given.
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Proof of (SSS-CSC1)-(i): Let X1 ∈C(Z1; f ) and take X2 ∈C(Z2; f ) with
Φ(X1,X2) minimum. To prove by contradiction, suppose that there exists i ∈(
(Z2∩X1∩U)\(X2∩U)

)
∪
(
(X2∩W )\(X1∩W )

)
. Since i∈ tw(X1)\ tw(X2),

(M\-EXC) for f̃ implies

(i) f̃ (tw(X1))+ f̃ (tw(X2))≤ f̃ (tw(X1)− i)+ f̃ (tw(X2)+ i) or

(ii) there exists j ∈ tw(X2) \ tw(X1) such that f̃ (tw(X1)) + f̃ (tw(X2)) ≤
f̃ (tw(X1)− i+ j)+ f̃ (tw(X2)+ i− j).

Letting

X̂1 =

{
tw(tw(X1)− i)) (in (i)),
tw(tw(X1)− i+ j)) (in (ii)), X̂2 =

{
tw(tw(X2)+ i)) (in (i)),
tw(tw(X2)+ i− j)) (in (ii)),

we can express the above inequalities in (i) and (ii) as

f (X1)+ f (X2)≤ f (X̂1)+ f (X̂2).

As can be verified easily, we have X̂1 ⊆ Z1 and X̂2 ⊆ Z2, from which follow
f (X̂1) ≤ f (X1) and f (X̂2) ≤ f (X2) since X1 ∈ C(Z1; f ) and X2 ∈ C(Z2; f ).
Therefore, the inequalities are in fact equalities, and X̂1 ∈C(Z1; f ) and X̂2 ∈
C(Z2; f ). But we have Φ(X1, X̂2) = Φ(X1,X2)− 1, which contradicts the
choice of X2.

Proof of (SSS-CSC2)-(i): Let X2 ∈C(Z2; f ) and take X1 ∈C(Z1; f ) with
Φ(X1,X2) minimum. By the same argument as above we obtain X̂1 ∈C(Z1; f )
with Φ(X̂1,X2) = Φ(X1,X2)− 1. This is a contradiction to the choice of
X1.

The concept of twisted M\-concavity can also be defined for functions on
integer vectors ZN to be used for multi-unit models. See Section 4.5.

3.6. Examples

Here are some examples of M\-concave set functions.

1. For real numbers ai indexed by i ∈ N, the additive valuation

f (X) = ∑
i∈X

ai (X ⊆ N) (3.20)

is an M\-concave function.
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2. For a set of nonnegative numbers ai indexed by i ∈ N, the maximum-
value function (unit-demand utility)

f (X) = max
i∈X

ai (X ⊆ N) (3.21)

with f ( /0) = 0 is an M\-concave function.

3. For a univariate concave function ϕ : Z→ R∪{−∞} (i.e., if ϕ(t−1)+
ϕ(t +1)≤ 2ϕ(t) for all integers t), the function f defined by

f (X) = ϕ(|X |) (X ⊆ N) (3.22)

is M\-concave. Such f is called a symmetric concave valuation.

4. For a family of univariate concave functions {ϕA | A ∈T } indexed by a
family T of subsets of N, the function

f (X) = ∑
A∈T

ϕA(|A∩X |) (X ⊆ N) (3.23)

is submodular. A function f of the form (3.23) is called laminar concave,
if T is a laminar family, i.e., if [A,B ∈ T ⇒ A∩B = /0 or A ⊆ B or
A⊇ B]. A laminar concave function is M\-concave. See Murota (2003,
Note 6.11) for a proof. A special case of (3.23) with T = {N} reduces
to (3.22).

5. Given a matroid10 on N in terms of the family I of independent sets,
the rank function f is defined by

f (X) = max{|I| | I ∈I , I ⊆ X} (X ⊆ N), (3.24)

which denotes the maximum size of an independent set contained in X .
A matroid rank function (3.24) is M\-concave. A weighted matroid rank
function (or weighted matroid valuation) is a function represented as

f (X) = max{w(I) | I ∈I , I ⊆ X} (X ⊆ N) (3.25)

with some weight w ∈ RN , where w(I) = ∑i∈I wi. A weighted matroid
rank function (3.25) is M\-concave (Shioura, 2012). See Murota (2010)
for an elementary proof for the M\-concavity of (3.25) as well as (3.24).

10 For matroids, see, e.g., Murota (2000b), Oxley (2011), and Schrijver (2003).
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6. Let G = (S,T ;E) be a bipartite graph with vertex bipartition (S,T ) and
edge set E, and suppose that each edge e ∈ E is associated with weight
we ∈ R. For M ⊆ E, we denote by ∂M the set of the vertices incident to
some edge in M, and call M a matching if |S∩∂M |= |M |= |T ∩∂M |.
For X ⊆ T denote by f (X) the maximum weight of a matching that
precisely matches X in T , i.e.,

f (X) = max{w(M) |M is a matching, T ∩∂M = X} (3.26)

with w(M) = ∑e∈M we, where f (X) = −∞ if no such M exists for X .
Then f : 2T → R∪ {−∞} is an M\-concave function. See Murota
(1996c, Example 3.3) or Murota (2000b, Example 5.2.4) for proofs.
Such function is called an assignment valuation by Hatfield & Milgrom
(2005). Assignment valuations cover a fairly large class of M\-concave
functions, but not every M\-concave function can be represented in the
form of (3.26), as shown by Ostrovsky & Paes Leme (2015).

7. Let G = (S,T ;E) be a bipartite graph with vertex bipartition (S,T )
and edge set E, with weight we ∈ R associated with each edge e ∈ E.
Furthermore, suppose that a matroid on S is given in terms of the family
I of independent sets (see Fig. 1). For X ⊆ T denote by f (X) the
maximum weight of a matching such that the end-vertices in S form an
independent set and the end-vertices in T are equal to X , i.e.,

f (X) = max{w(M) | M is a matching,
S∩∂M ∈I , T ∩∂M = X}, (3.27)

where f (X) =−∞ if no such M exists for X . We call such f an indepen-
dent assignment valuation. It is known that an independent assignment
valuation is M\-concave. For proofs, see Murota (2000b, Example
5.2.18), Murota (2003, Section 9.6.2), and Kobayashi et al. (2007). If the
given matroid is a free matroid with I = 2S, (3.27) reduces to (3.26).

3.7. Concluding remarks of section 3

We collect here the conditions that characterize M\-concave set functions:
– Exchange property (M\-EXC) (Section 3.1)
– Multiple exchange property (M\-EXCm)
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MI f (X)
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Figure 1: Independent assignment valuation

= Strong no complementarities property (SNC) (Section 3.1)
– Local exchange property (Theorems 3.2 and 3.3) (Section 3.1)
– Single improvement property (SI) (Section 3.2)
– Exchange property (B\-EXC) for the maximizers D(p; f ) (Section 3.3)
– Multiple (one-sided) exchange property for the maximizers D(p; f )

= No complementarities property (NC) (Section 3.3)
– Multiple exchange property (NCsim) for the maximizers

D(p; f ) (Section 3.3)
– Gross substitutability (GS) (Section 3.3)
– Parametrized substitutability (SC1

G) (Section 3.4)
– Parametrized substitutability (SC2

G) (Section 3.4)

4. M\-CONCAVE FUNCTION ON ZN

In Section 3 we have considered M\-concave set functions, which correspond
to single-unit valuations with substitutability. In this section we deal with
M\-concave functions defined on integer vectors, f : Zn→ R∪{−∞}, which
correspond to multi-unit valuations with substitutability.

4.1. Exchange property

Let N be a finite set, say, N = {1,2, . . . ,n} for n≥ 1. For a vector z ∈ RN in
general, define the positive and negative supports of z as

supp+(z) = {i | zi > 0}, supp−(z) = { j | z j < 0}. (4.1)

Recall that, for i ∈ N, the ith unit vector is denoted by χi.
We say that a function f : ZN →R∪{−∞} with dom f 6= /0 is M\-concave,

if, for any x,y ∈ ZN and i ∈ supp+(x− y), we have (i)

f (x)+ f (y)≤ f (x−χi)+ f (y+χi) (4.2)
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Figure 2: Nearer pair in the definition of M\-concave functions

or (ii) there exists some j ∈ supp−(x− y) such that

f (x)+ f (y)≤ f (x−χi +χ j)+ f (y+χi−χ j). (4.3)

This property is referred to as the exchange property. See Fig. 2, in which
(x′,y′) = (x−χi,y+χi) and (x′′,y′′) = (x−χi +χ j,y+χi−χ j).

A more compact expression of the exchange property is as follows:

(M\-EXC[Z]) For any x,y ∈ ZN and i ∈ supp+(x− y), we have

f (x)+ f (y)≤ max
j∈supp−(x−y)∪{0}

{ f (x−χi+χ j)+ f (y+χi−χ j)}, (4.4)

where χ0 = 0 (zero vector). In the above statement we may change “For
any x,y ∈ ZN ” to “For any x,y ∈ dom f ” since if x 6∈ dom f or y 6∈ dom f ,
(4.4) trivially holds with f (x)+ f (y) =−∞. An M\-concave function f with
dom f ⊆ {0,1}N can be identified with an M\-concave set function introduced
in Section 3.1. A function f is called M\-convex if − f is M\-concave.

It follows from (M\-EXC[Z]) that the effective domain B = dom f of an
M\-concave function f has the following exchange property:

(B\-EXC[Z]) For any x,y ∈ B and i ∈ supp+(x− y), we have (i) x− χi ∈ B,
y+χi ∈ B or
(ii) there exists some j ∈ supp−(x− y) such that x− χi + χ j ∈ B, y+
χi−χ j ∈ B.

A set B ⊆ ZN having this property is called an M\-convex set (or integral
generalized polymatroid, integral g-polymatroid). An M\-convex set contained
in the unit cube {0,1}N can be identified with an M\-convex family of subsets
(Section 3.1).
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M\-concavity can be characterized by a local exchange property under
the assumption that function f is (effectively) defined on an M\-convex set
(Murota, 1996a, 2003; Murota & Shioura, 1999). The conditions (4.5)–(4.9)
below are “local” in the sense that they require the exchangeability of the form
of (4.4) only for some (x,y) with ‖x− y‖1 ≤ 4.

Theorem 4.1. A function f : ZN → R∪{−∞} is M\-concave if and only if
dom f is an M\-convex set and the following conditions hold:

f (x+2χi)+ f (x)≤ 2 f (x+χi) (4.5)

for all x ∈ ZN and for all i ∈ N; and

f (x+χi +χ j)+ f (x)≤ f (x+χi)+ f (x+χ j) (4.6)

for all x ∈ ZN and for all distinct i, j ∈ N; and

f (x+2χi)+ f (x+χk)≤ f (x+χi +χk)+ f (x+χi) (4.7)

for all x ∈ ZN and for all distinct i,k ∈ N; and

f (x+χi +χ j)+ f (x+χk)≤max { f (x+χi +χk)+ f (x+χ j),
f (x+χ j +χk)+ f (x+χi)} (4.8)

for all x ∈ ZN and for all distinct i, j,k ∈ N; and

f (x+χi +χ j)+ f (x+χk +χl)≤
max{ f (x+χi +χk)+ f (x+χ j +χl),
f (x+χ j +χk)+ f (x+χi +χl)}

(4.9)

for all x ∈ ZN and for all i, j,k, l ∈ N with {i, j}∩{k, l}= /0. Here we allow
the possibility of i = j or k = l.

When the effective domain dom f is an M\-convex set such that 000 ∈
dom f ⊆ ZN

+, the local exchange condition above takes a simpler form that
does not involve (4.9) (Shioura & Tamura, 2015, Theorem 6.8). To cover the
case of dom f = ZN we weaken the assumption on dom f to:

x,y ∈ dom f =⇒ x∧ y ∈ dom f . (4.10)
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Theorem 4.2. Let f : ZN → R∪{−∞} be a function such that dom f is an
M\-convex set satisfying (4.10). Then f is M\-concave if and only if (4.5), (4.6),
(4.7) and (4.8) hold.

Proof. The proof of Shioura & Tamura (2015, Theorem 6.8) works under the
weaker condition (4.10).

The local exchange property above admits a natural reformulation in terms
of the discrete Hessian matrix when dom f = ZN . For x ∈ ZN and i, j ∈ N
define

Hi j(x) = f (x+χi +χ j)− f (x+χi)− f (x+χ j)+ f (x), (4.11)

and let H f (x)= (Hi j(x) | i, j∈N) be the matrix consisting of those components.
This matrix H f (x) is called the discrete Hessian matrix of f at x. The following
theorem, due to Hirai & Murota (2004) and Murota (2007) can be derived
from Theorem 4.2.

Theorem 4.3. A function f : ZN → R is M\-concave if and only if the discrete
Hessian matrix H f (x) = (Hi j(x)) satisfies the following conditions for each
x ∈ ZN:

Hi j(x)≤ 0 for any (i, j), (4.12)
Hi j(x)≤max(Hik(x),H jk(x)) if {i, j}∩{k}= /0. (4.13)

Proof. The correspondence between the conditions in Theorems 4.2 and 4.3
is quite straightforward. With the use of (4.11) we can easily verify: (4.5)⇔
Hii(x)≤ 0, (4.6)⇔ Hi j(x)≤ 0 (i 6= j), (4.7)⇔ Hii(x)≤ Hik(x) (i 6= k), and
(4.8)⇔ Hi j(x)≤max(Hik(x),H jk(x)) (i, j,k: distinct).

It is known (Murota, 2003, Theorem 6.19) that an M\-concave function
f : ZN → R∪{−∞} is submodular on the integer lattice, i.e.,

f (x)+ f (y)≥ f (x∨ y)+ f (x∧ y) (x,y ∈ ZN). (4.14)

More precisely, the condition (4.6) above is equivalent to the submodularity
(4.14) as long as dom f is M\-convex (Shioura & Tamura, 2015, Proposition
6.1). Because of the additional conditions for M\-concavity, not every sub-
modular function is M\-concave. Thus, M\-concave functions form a proper
subclass of submodular functions on ZN .
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It is also known in Murota (1996a, Theorem 4.6) and Murota (2003, The-
orem 6.42) that an M\-concave function f : ZN → R∪ {−∞} is concave-
extensible, i.e., there exists a concave function f : RN → R∪{−∞} such that
f (x) = f (x) for all x ∈ ZN .

Remark 4.1. It follows from (M\-EXC[Z]) that M\-concave functions enjoy
the following exchange properties under size constraints (Murota & Shioura,
1999, Lemmas 4.3 and 4.6):
• For any x,y ∈ ZN with x(N)< y(N),

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x+χ j)+ f (y−χ j)}. (4.15)

• For any x,y ∈ ZN with x(N) = y(N) and i ∈ supp+(x− y),

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x−χi +χ j)+ f (y+χi−χ j)}. (4.16)

The former property, in particular, implies the size-monotonicity of the induced
choice function; see Theorem 4.9 and its proof.

Remark 4.2. If B ⊆ ZN lies in a hyperplane with a constant component
sum (i.e., x(N) = y(N) for all x,y ∈ B), the exchange property (B\-EXC[Z])
takes a simpler form (without the possibility of j = 0): For any x,y ∈ B and
i ∈ supp+(x−y), there exists some j ∈ supp−(x−y) such that x−χi+χ j ∈ B,
y+ χi− χ j ∈ B. A set B ⊆ ZN having this exchange property is called an
M-convex set (or integral base polyhedron). An M\-concave function defined
on an M-convex set is called an M-concave function (Murota, 1996a, 2003).
The exchange property for M-concavity reads: A function f : ZN→R∪{−∞}
is M-concave if and only if, for any x,y ∈ ZN and i ∈ supp+(x− y), it holds
that

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x−χi +χ j)+ f (y+χi−χ j)}. (4.17)

M-concave functions and M\-concave functions are equivalent concepts, in
that M\-concave functions in n variables can be obtained as projections of
M-concave functions in n+ 1 variables. More formally, let “0” denote a
new element not in N and Ñ = {0}∪N. A function f : ZN → R∪{−∞} is
M\-concave if and only if the function f̃ : ZÑ → R∪{−∞} defined by

f̃ (x0,x) =
{

f (x) if x0 =−x(N)
−∞ otherwise (x0 ∈ Z,x ∈ ZN) (4.18)
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is an M-concave function. A function f is called M-convex if− f is M-concave.

4.2. Maximization and single improvement property

For an M\-concave function, the maximality of a function value is characterized
by a local condition as follows, where χ0 = 0 (Murota, 2003, Proposition 6.23,
Theorem 6.26).

Theorem 4.4. Let f : ZN → R∪{−∞} be an M\-concave function and x ∈
dom f .
(1) If f (x) < f (y) for y ∈ dom f , then f (x) < f (x− χi + χ j) for some i ∈
supp+(x− y)∪{0} and j ∈ supp−(x− y)∪{0}.
(2) x is a maximizer of f if and only if

f (x)≥ f (x−χi +χ j) (∀ i, j ∈ N∪{0}). (4.19)

For a vector p = (pi | i ∈ N) ∈ RN we use the notation f [−p] to mean the
function f (x)− p>x, where p> means the transpose of p. That is,

f [−p](x) = f (x)− p>x (x ∈ ZN). (4.20)

By considering the properties of (1) and (2) in Theorem 4.4 for f [−p] with
varying p, we are naturally led to (SSI[Z]) and (SI[Z]) below:11

(SSI[Z]) For any p ∈ RN and x,y ∈ dom f with f [−p](x)< f [−p](y), there
exists i ∈ supp+(x− y)∪ {0} and j ∈ supp−(x− y)∪ {0} such that
f [−p](x)< f [−p](x−χi +χ j).

(SI[Z]) For any p∈RN , if x∈ dom f is not a maximizer of f [−p], there exists
i ∈ N∪{0} and j ∈ N∪{0} such that f [−p](x)< f [−p](x−χi +χ j).

The stronger version (SSI[Z]) is shown to be equivalent to M\-concavity
(Murota & Tamura, 2003b, Theorem 7). This property is named the strong
single improvement property in Shioura & Tamura (2015). The latter (SI[Z])
is the vector version of single improvement property (Section 3.2), called
the multi-unit single improvement property by Milgrom & Strulovici (2009).
We can see from Milgrom & Strulovici (2009, Theorem 13) that (SI[Z]) is
equivalent to M\-concavity under the assumption of concave-extensibility of f
and boundedness of dom f .

11 (SSI[Z]) here is denoted as (M\-SI[Z]) in Murota (2003).
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4.3. Maximizers and gross substitutability

For a vector p = (pi | i ∈ N) ∈ RN we consider the maximizers of the function
f [−p](x) = f (x)− p>x. We denote the set of these maximizers by

D(p; f ) = argmax
x
{ f (x)− p>x}. (4.21)

In economic applications, p is a price vector and D(p) = D(p; f ) represents
the demand correspondence.

It is one of the most fundamental facts in discrete convex analysis that the
M\-concavity of a function is characterized in terms of the M\-convexity of its
maximizers; see Murota (1996a), Murota (2003, Theorem 6.30), and Murota
& Shioura (1999).

Theorem 4.5. Let f : ZN → R∪{−∞} be a function with a bounded effective
domain. Then f is M\-concave if and only if, for every vector p ∈ RN , D(p; f )
is an M\-convex set. That is, f satisfies (M\-EXC[Z]) if and only if, for every
p ∈ RN , D(p; f ) satisfies (B\-EXC[Z]).

As a straightforward extension of the gross substitutes condition from
single-unit valuations (Section 3.3) to multi-unit valuations it seems natural to
conceive the following condition:

(GS[Z]) For any p,q∈RN with p≤ q and x∈D(p; f ), there exists y∈D(q; f )
such that xi ≤ yi for all i ∈ N with pi = qi.

It turns out, however, that this condition alone is too weak to be fruitful,
mathematically and economically. Subsequently, several different strengthened
forms of (GS[Z]) are proposed in the literature, including Danilov et al. (2003);
Murota & Tamura (2003b); Milgrom & Strulovici (2009); Shioura & Tamura
(2015).

Among others we start with the projected gross substitutes condition12

(PRJ-GS[Z]) of Murota & Tamura (2003b):

(PRJ-GS[Z]) For any p,q ∈RN with p≤ q, any p0,q0 ∈R with p0 ≤ q0 and
x ∈D(p− p0111; f ), there exists y ∈D(q−q0111; f ) such that (i) xi ≤ yi for
all i ∈ N with pi = qi and (ii) x(N)≥ y(N) if p0 = q0,

12 (PRJ-GS[Z]) is denoted as (M\-GS[Z]) in Murota (2003, §6.8).
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where x(N) = ∑i∈N xi and y(N) = ∑i∈N yi. By fixing p0 = q0 = 0 in (PRJ-
GS[Z]) we obtain the following condition:

(GS&LAD[Z]) For any p,q ∈ RN with p ≤ q and x ∈ D(p; f ), there exists
y ∈D(q; f ) such that (i) xi ≤ yi for all i ∈ N with pi = qi and (ii) x(N)≥
y(N).

As the acronym (GS&LAD[Z]) shows, this condition is a combination of
(GS[Z]) above and the law of aggregate demand:

(LAD[Z]) For any p,q ∈ RN with p ≤ q and x ∈ D(p; f ), there exists y ∈
D(q; f ) such that x(N)≥ y(N).

This condition is studied by Hatfield & Milgrom (2005) and Milgrom &
Strulovici (2009). Note, however, that imposing (GS&LAD[Z]) on f is not the
same as imposing (GS[Z]) and (LAD[Z]) on f , since in (GS&LAD[Z]) both
(i) and (ii) must be satisfied by the same vector y. Obviously, (GS&LAD[Z])
implies (GS[Z]) and (LAD[Z]). The amalgamated form (GS&LAD[Z]) is
given in Murota et al. (2013a), whereas the juxtaposition of (GS[Z]) and
(LAD[Z]) is in Milgrom & Strulovici (2009, Theorem 13 (iv)). We may also
consider the following variant (Shioura & Tamura, 2015; Shioura & Yang,
2015) of (GS&LAD[Z]), where the vector q takes a special form13 p+δ χk
with k ∈ N and δ > 0:

(GS&LAD′[Z]) For any p ∈ RN , k ∈ N, δ > 0 and x ∈ D(p; f ), there exists
y ∈D(p+δ χk; f ) such that (i) xi ≤ yi for all i ∈ N \{k} and (ii) x(N)≥
y(N).

M\-concavity can be characterized by these properties as the following
theorem indicates; see Murota & Tamura (2003b), Danilov et al. (2003),
Milgrom & Strulovici (2009, Theorem 13), Shioura & Tamura (2015, Theorem
4.1), and Murota (2003, Theorems 6.34, 6.36). It refers to two other conditions
(SWGS[Z]) and (SS[Z]), which are explained in Remark 4.3 below.

Theorem 4.6. Let f : ZN → R∪{−∞} be a concave-extensible function with
a bounded effective domain. Then we have the following equivalence: (M\-
EXC[Z]) ⇐⇒ (PRJ-GS[Z]) ⇐⇒ (GS&LAD[Z]) ⇐⇒ (GS[Z]) & (LAD[Z])
⇐⇒ (GS&LAD′[Z]) ⇐⇒ (SWGS[Z]). If dom f is contained in ZN

+, each of
these conditions is equivalent to (SS[Z]).

13 Recall that χk denotes the kth unit vector.
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Remark 4.3. The step-wise gross substitutes condition (Danilov et al., 2003)
means:

(SWGS[Z]) For any p ∈RN , k ∈ N and x ∈D(p; f ), at least one of (i) and (ii)
holds true:14

(i) x ∈ D(p+δ χk; f ) for all δ ≥ 0,
(ii) there exists δ ≥ 0 and y ∈ D(p+δ χk; f ) such that yk = xk−1 and
yi ≥ xi for all i ∈ N \{k}.

The strong substitute condition (Milgrom & Strulovici, 2009) for a multi-
unit valuation f means the condition (GS[Z]) for the single-unit valuation f B

corresponding to f :

(SS[Z]) The function f B associated with f satisfies the condition (GS[Z]).

More specifically, the function f B is defined as follows. Let u ∈ZN
+ be a vector

such that dom f ⊆ [000,u]Z. Consider a set NB = {(i,β ) | i ∈ N, β ∈ Z, 1 ≤
β ≤ ui} and define f B : ZNB → R∪{−∞} with dom f B ⊆ {0,1}NB

by

f B(xB) = f (x), xB ∈ {0,1}NB
, xi =

ui

∑
β=1

xB
(i,β ) (i ∈ N). (4.22)

4.4. Choice function

Let b ∈ ZN
+ be an upper bound vector and B = {x ∈ ZN

+ | x≤ b} be the set of
feasible vectors. A function C : B→B is called a choice function if C(x)≤ x
for all x ∈B. Three important properties are identified in the literature (Alkan
& Gale, 2003):

• C is called consistent if C(x)≤ y≤ x implies C(y) =C(x),

• C is called persistent if x≥ y implies y∧C(x)≤C(y),

• C is called size-monotone if x ≥ y implies |C(x)| ≥ |C(y)|, where
|C(x)|= ∑

i∈N
C(x)i.

14 Recall that χk denotes the kth unit vector.
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Remark 4.4. Alkan & Gale (2003) consider a stable allocation model that
extends the stable matching model of Alkan (2002). If the choice functions are
consistent and persistent, the set of stable allocations is nonempty and forms a
lattice. Moreover, if the choice functions are also size-monotone, the lattice of
stable allocations is distributive and has several significant properties, called
polarity, complementarity, and uni-size property.

For a given function f : ZN → R∪{−∞} we define

C(z) =C(z; f ) = argmax{ f (y) | y≤ z}. (4.23)

In general, the maximizer may not be unique, and hence C(z; f )⊆ZN . We also
have the possibility of C(z; f ) = /0 to express the nonexistence of a maximizer.

An important property of M\-concave functions, closely related to persis-
tence, can be found in Eguchi et al. (2003, Lemma 1) and also in Fujishige &
Tamura (2006, Lemma 5.2).

Theorem 4.7. Let f : ZN → R∪{−∞} be an M\-concave function. Then the
following hold.

(SC1[Z]) For any z1,z2 ∈ ZN with z1 ≥ z2 and C(z2; f ) 6= /0 and for any x1 ∈
C(z1; f ), there exists x2 ∈C(z2; f ) such that z2∧ x1 ≤ x2.

(SC2[Z]) For any z1,z2 ∈ ZN with z1 ≥ z2 and C(z1; f ) 6= /0 and for any x2 ∈
C(z2; f ), there exists x1 ∈C(z1; f ) such that z2∧ x1 ≤ x2.

Proof. Assume z1 ≥ z2. For x1 ≤ z1 and x2 ≤ z2 define

Φ(x1,x2) = ∑{(x1)i− (x2)i | i ∈ supp+((z2∧ x1)− x2)}.

Proof of (SC1[Z]): Let x1 ∈C(z1; f ) and take x2 ∈C(z2; f ) with minimum
Φ(x1,x2). To prove by contradiction, suppose that there exists i ∈ supp+((z2∧
x1)− x2). Since i ∈ supp+(x1− x2), (M\-EXC[Z]) implies there exists j ∈
supp−(x1− x2)∪{0} such that

f (x1)+ f (x2)≤ f (x1−χi +χ j)+ f (x2 +χi−χ j).

Here we have x1− χi + χ j ≤ z1 and x2 + χi− χ j ≤ z2; the former is obvious
if j = 0 and otherwise, it follows from (x1) j < (x2) j ≤ (z2) j ≤ (z1) j, and the
latter follows from (x2)i < (z2)i. This implies that f (x1−χi+χ j)≤ f (x1) and
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f (x2 + χi− χ j)≤ f (x2) since x1 ∈C(z1; f ) and x2 ∈C(z2; f ). Therefore, the
inequalities are in fact equalities, and x1−χi+χ j ∈C(z1; f ) and x2+χi−χ j ∈
C(z2; f ). But we have Φ(x1,x2 +χi−χ j) = Φ(x1,x2)−1, which contradicts
the choice of x2.

Proof of (SC2[Z]): Let x2 ∈C(z2; f ) and take x1 ∈C(z1; f ) with minimum
Φ(x1,x2). By the same argument as above we obtain x1− χi + χ j ∈C(z1; f )
with Φ(x1−χi +χ j,x2) = Φ(x1,x2)−1. This is a contradiction to the choice
of x1.

When the maximizer is unique in (4.23) for every z, we say that f is
unique-selecting. In the following we assume that f is unique-selecting and

000 ∈ dom f ⊆ ZN
+. (4.24)

Then C in (4.23) can be regarded as a choice function C : B→B.
The induced choice function C is obviously consistent for any valuation

function f . For persistence, M\-concavity plays an essential role. The fol-
lowing theorem of Eguchi et al. (2003) can be obtained as a corollary of
Theorem 4.7, since for unique-selecting valuation functions, (SC1[Z]) and
(SC2[Z]) are equivalent and both coincide with persistence.

Theorem 4.8. Every unique-selecting M\-concave function f : ZN → R∪
{−∞} with (4.24) induces a persistent choice function.

The size-monotonicity is also implied by M\-concavity (Murota & Yokoi,
2015).

Theorem 4.9. Every unique-selecting M\-concave function f : ZN → R∪
{−∞} with (4.24) induces a size-monotone choice function.

Proof. The proof is based on the exchange property (4.15) in Remark 4.1.
To prove by contradiction, suppose that there exist x,y ∈ ZN such that x≥ y
and |C(x; f )|< |C(y; f )|. Set x∗ =C(x; f ) and y∗ =C(y; f ). Then |x∗|< |y∗|.
By the exchange property (4.15) there exists j ∈ supp−(x∗− y∗) such that
f (x∗)+ f (y∗) ≤ f (x∗+ χ j)+ f (y∗− χ j). Here we have f (x∗+ χ j) < f (x∗)
since x∗+χ j ≤ x by x∗j < y∗j ≤ y j ≤ x j and x∗ is the unique maximizer. We also
have f (y∗−χ j)< f (y∗) since y∗−χ j ≤ y∗ ≤ y and y∗ is the unique maximizer.
This is a contradiction.
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Thus, M\-concave valuation functions entail the three desired properties,
consistency, persistence, and size-monotonicity.15 Recall Remark 4.4 for the
implications of this fact.

Theorem 4.10. For a unique-selecting M\-concave value function f : ZN →
R∪{−∞} with (4.24), the choice function C induced from f is consistent,
persistent, and size-monotone.

Finally, we mention a theorem that characterizes M\-concavity in terms
of a parametrized version of (SC1[Z]) and (SC2[Z]). Recall from (4.20) the
notation f [−p](x) = f (x)− p>x for p∈RN and x∈ZN . If f is an M\-concave
function (not assumed to be unique-selecting), f [−p] is also M\-concave, and
hence is equipped with the properties (SC1[Z]) and (SC2[Z]) by Theorem 4.7.
In other words, an M\-concave function f has the following properties.

(SC1
G[Z]) For any p ∈ RN , f [−p] satisfies (SC1[Z]).

(SC2
G[Z]) For any p ∈ RN , f [−p] satisfies (SC2[Z]).

The following theorem, due to Farooq & Shioura (2005), states that each of
these conditions characterizes M\-concavity.

Theorem 4.11. For a function f : ZN → R∪{−∞} with a bounded nonempty
effective domain, we have the equivalence: f is M\-concave ⇐⇒ (SC1

G[Z])
⇐⇒ (SC2

G[Z]).

4.5. Twisted M\-concavity

Let W be a subset of N. For any vector x ∈ ZN we define tw(x) ∈ ZN by
specifying its ith component tw(x)i as

tw(x)i =

{
xi (i ∈ N \W ),
−xi (i ∈W ).

(4.25)

A function f : ZN → R∪{−∞} is said to be a twisted M\-concave function
with respect to W , if the function f̃ : ZN → R∪{−∞} defined by

f̃ (x) = f (tw(x)) (x ∈ ZN) (4.26)

15 Theorem 4.10 can be extended to quasi M\-concave value functions; see Murota & Yokoi
(2015).
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is an M\-concave function (Ikebe & Tamura, 2015). The same concept has
been introduced by Shioura & Yang (2015), almost at the same time and
independently, under the name of GM-concave functions; see also Sun & Yang
(2008) and Section 14.5. Note that f is twisted M\-concave with respect to W
if and only if it is twisted M\-concave with respect to U = N \W .

Mathematically, twisted M\-concavity is equivalent to the original M\-
concavity through twisting, and all the properties and theorems about M\-
concave functions can be translated into those about twisted M\-concave
functions. In such translations it is often adequate to define the twisted demand
correspondence as16

D̃(p; f ) = argmax
x
{ f (x)− tw(p)>x}. (4.27)

A twisted version of (GS&LAD′[Z]) is introduced by Ikebe et al. (2015)
as the generalized full substitutes (GFS[Z]) condition:

(GFS[Z]) (i) For any p ∈ RN , D̃(p; f ) is a discrete convex set.17

(ii) For any p ∈ RN , k ∈ U , δ > 0, and x ∈ D̃(p; f ), there exists y ∈
D̃(p+δ χk; f ) such that

xi ≤ yi for all i ∈U \{k},
xi ≥ yi for all i ∈W ,

x(U)− x(W ) ≥ y(U)− y(W ).
(4.28)

(iii) For any p ∈ RN , k ∈W , δ > 0, and x ∈ D̃(p; f ), there exists y ∈
D̃(p−δ χk; f ) such that

xi ≤ yi for all i ∈W \{k},
xi ≥ yi for all i ∈U ,

x(W )− x(U) ≥ y(W )− y(U).
(4.29)

The following theorem18 (Ikebe et al., 2015) characterizes twisted M\-concavity
in terms of this condition.

16 Note: x ∈ D̃(p; f ) ⇐⇒ tw(x) ∈ D(p; f̃ ).
17 That is, D̃(p; f ) should coincide with the integer points contained in the convex hull of D̃(p; f ).
18 Theorem 4.12 can be understood as a twisted version of the equivalence “(GS&LAD′[Z])⇔

(M\-EXC[Z])” in Theorem 4.6.
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Theorem 4.12. Let f : ZN → R∪{−∞} be a concave-extensible19 function
with a bounded effective domain. Then f satisfies (GFS[Z]) if and only if it is
a twisted M\-concave function with respect to W.

In the modeling of a trading network (supply chain network), where an
agent is identified with a vertex (node) of the network, each vertex (agent) is
associated with a valuation function f defined on the set of arcs incident to
the vertex. Denoting the set of in-coming arcs to the vertex by U and the set
of out-going arcs from the vertex by W , the function f is defined on U ∪W .
Twisted M\-concave functions are used effectively in this context (Ikebe &
Tamura, 2015; Ikebe et al., 2015; Candogan et al., 2016). See Section 14.2.

With the use of the ordinary (un-twisted) demand correspondence

D(p; f ) = argmax
x
{ f (x)− p>x}, (4.30)

a similar condition was formulated by Shioura & Yang (2015), independently
of Ikebe et al. (2015), to deal with economies with two classes of indivisible
goods such that goods in the same class are substitutable and goods across
two classes are complementary. The condition, called the generalized gross
substitutes and complements (GGSC[Z]) condition, reads as follows:

(GGSC[Z]) (i) For any p ∈ RN , D(p; f ) is a discrete convex set.
(ii) For any p ∈ RN , k ∈ U , δ > 0, and x ∈ D(p; f ), there exists y ∈
D(p+δ χk; f ) that satisfies (4.28).
(iii) For any p ∈ RN , k ∈W , δ > 0, and x ∈ D(p; f ), there exists y ∈
D(p+δ χk; f ) that satisfies (4.29).

This condition also characterizes twisted M\-concavity (Shioura & Yang,
2015).

Theorem 4.13. Let f : ZN→R∪{−∞} be a concave-extensible function with
a bounded effective domain. Then f satisfies (GGSC[Z]) if and only if it is a
twisted M\-concave function with respect to W.

19 The concave-extensibility of f is assumed here for the consistency with the statement of
Theorem 4.6. Mathematically, this assumption can be omitted, since the condition (i) in
(GFS[Z]) is equivalent to the concave-extensibility of f and twisted M\-concave functions are
concave-extensible. Similarly in Theorem 4.13.
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Although Theorems 4.12 and 4.13 have significances in different contexts,
they are in fact two variants of the same mathematical statement. Note that
(GSF[Z]) and (GGSC[Z]) are equivalent, since

D(p; f ) = D̃(tw(p); f ), tw(p+δ χk) =

{
tw(p)+δ χk (k ∈U),
tw(p)−δ χk (k ∈W ).

The multi-unit (or vector) version of the same-side substitutability (SSS)
and the cross-side complementarity (CSC) of Ostrovsky (2008) can be formu-
lated for a correspondence C : ZN → 2Z

N
as follows, where, for any z ∈ ZN ,

the subvector of z on U is denoted by zU ∈ ZU and similarly the subvector on
W by zW ∈ ZW .

(SSS-CSC1[Z]) (i) For any z1,z2 ∈ ZN with zU
1 ≥ zU

2 , zW
1 = zW

2 and C(z2) 6= /0
and for any x1 ∈C(z1), there exists x2 ∈C(z2) such that zU

2 ∧ xU
1 ≤ xU

2
and xW

1 ≥ xW
2 , and (ii) the same statement with U and W interchanged.

(SSS-CSC2[Z]) (i) For any z1,z2 ∈ ZN with zU
1 ≥ zU

2 , zW
1 = zW

2 and C(z1) 6= /0
and for any x2 ∈C(z2) there exists x1 ∈C(z1), such that zU

2 ∧ xU
1 ≤ xU

2
and xW

1 ≥ xW
2 , and (ii) the same statement with U and W interchanged.

The following theorem (Ikebe & Tamura, 2015) states that these two pro-
perties are implied by twisted M\-concavity. Recall from (4.23) that a valuation
function f induces the correspondence20 C(z) =C(z; f ) = argmax{ f (y) | y≤
z} (z ∈ ZN).

Theorem 4.14. For any twisted M\-concave function f : ZN → R∪{−∞},
the induced correspondence C has the properties (SSS-CSC1[Z]) and (SSS-
CSC2[Z]).

Proof. We prove (SSS-CSC1[Z])-(i) and (SSS-CSC2[Z])-(i); the proofs of
(SSS-CSC1[Z])-(ii) and (SSS-CSC2[Z])-(ii) are obtained by interchanging
U and W . Assume zU

1 ≥ zU
2 , zW

1 = zW
2 and C(z1; f ) 6= /0, and let f̃ be the

M\-concave function in (4.26) associated with f . For x1 ≤ z1 and x2 ≤ z2
define

Φ(x1,x2) =∑{(x1)i− (x2)i | i ∈U ∩ supp+((z2∧ x1)− x2)}
+∑{(x2)i− (x1)i | i ∈W ∩ supp+(x2− x1)}.

20 It may be that C(z) = /0 if dom f is unbounded below or {y | y≤ z}∩dom f = /0. The condition
“C(z2) 6= /0” in (SSS-CSC1[Z]), for example, takes care of this possibility.
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Proof of (SSS-CSC1[Z])-(i): Let x1 ∈C(z1; f ) and take x2 ∈C(z2; f ) with
Φ(x1,x2) minimum. To prove by contradiction, suppose that there exists

i ∈
(
U ∩ supp+((z2∧ x1)− x2)

)
∪
(
W ∩ supp+(x2− x1)

)
.

Then i ∈ supp+(tw(x1)− tw(x2)), and (M\-EXC[Z]) for f̃ implies that there
exists j ∈ supp−(tw(x1)− tw(x2))∪{0} such that

f̃ (tw(x1))+ f̃ (tw(x2))≤ f̃ (tw(x1)−χi +χ j)+ f̃ (tw(x2)+χi−χ j).

Letting x̂1 = tw(tw(x1)− χi + χ j)) and x̂2 = tw(tw(x2)+ χi− χ j)) we can
express the above inequality as

f (x1)+ f (x2)≤ f (x̂1)+ f (x̂2).

By considering all possibilities (i ∈U or i ∈W , and j ∈U or j ∈W or j = 0),
we can verify that x̂1 ≤ z1 and x̂2 ≤ z2, from which follow f (x̂1)≤ f (x1) and
f (x̂2)≤ f (x2) since x1 ∈C(z1; f ) and x2 ∈C(z2; f ). Therefore, the inequali-
ties are in fact equalities, and x̂1 ∈ C(z1; f ) and x̂2 ∈ C(z2; f ). But we have
Φ(x1, x̂2) = Φ(x1,x2)−1, which contradicts the choice of x2.

Proof of (SSS-CSC2[Z])-(i): Let x2 ∈C(z2; f ) and take x1 ∈C(z1; f ) with
minimum Φ(x1,x2). By the same argument as above we obtain x̂1 ∈C(z1; f )
with Φ(x̂1,x2) = Φ(x1,x2)−1. This is a contradiction to the choice of x1.

4.6. Examples

Here are some examples of M\-concave functions in integer variables.

1. A linear (or affine) function

f (x) = α + 〈p,x〉 (4.31)

with p ∈ RN and α ∈ R is M\-concave if dom f is an M\-convex set.

2. A quadratic function f : ZN → R defined by

f (x) =
n

∑
i=1

n

∑
j=1

ai jxix j (4.32)
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with ai j = a ji ∈ R (i, j = 1, . . . ,n) is M\-concave if and only if

ai j ≤ 0 for all (i, j), and
ai j ≤ max(aik,a jk) when {i, j}∩{k}= /0. (4.33)

The Hessian matrix H f (x) = (Hi j(x)) defined in (4.11) is given by
Hi j(x) = 2ai j, and (4.33) above is consistent with (4.12), (4.13) in Theo-
rem 4.3.

3. A function f : ZN → R∪{−∞} is called separable concave if it can be
represented as

f (x) = ∑
i∈N

ϕi(xi) (x ∈ ZN) (4.34)

for univariate concave functions21 ϕi : Z→ R∪{−∞} (i ∈ N). A sepa-
rable concave function is M\-concave. In (4.4) for (M\-EXC[Z]) we can
always take j = 0, i.e., (4.2).

4. A function f : ZN → R∪{−∞} is called laminar concave if it can be
represented as

f (x) = ∑
A∈T

ϕA(x(A)) (x ∈ ZN) (4.35)

for a laminar family T ⊆ 2N and a family of univariate concave functions
ϕA :Z→R∪{−∞} indexed by A∈T , where x(A) =∑i∈A xi. A laminar
concave function is M\-concave; see Murota (2003, Note 6.11) for a
proof. A special case of (4.35) with T = {{1},{2}, . . . ,{n}} reduces
to the separable convex function (4.34).

5. M\-concave functions arise from the maximum weight of nonlinear
network flows. Let G = (V,A) be a directed graph with two disjoint
vertex subsets S ⊆V and T ⊆V specified as the entrance and the exit.
Suppose that, for each arc a ∈ A, we are given a univariate concave
function ϕa : Z→ R∪{−∞} representing the weight of flow on the arc
a. Let ξ ∈ ZA be a vector representing an integer flow, and ∂ξ ∈ ZV be
the boundary of flow ξ defined for every v ∈V by

∂ξ (v) = ∑{ξ (a) | arc a leaves v }
−∑{ξ (a) | arc a enters v }. (4.36)

21 Recall that ϕ : Z→R∪{−∞} is called concave if ϕ(t−1)+ϕ(t +1)≤ 2ϕ(t) for all integers
t.
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Then, the maximum weight of a flow that realizes a supply/demand
specification on the exit T in terms of x ∈ ZT is expressed by

f (x) = supξ
{

∑a∈A ϕa(ξ (a)) | (∂ξ )(v) =−x(v) (v ∈ T ),
(∂ξ )(v) = 0 (v ∈V \ (S∪T ))

} (4.37)

where no constraint is imposed on (∂ξ )(v) for entrance vertices v ∈ S.
This function is M\-concave, provided that f does not take the value
+∞ and dom f is nonempty. If S = /0, the function f is M-concave,
since ∑v∈T x(v) = −∑v∈T (∂ξ )(v) = ∑v∈V\T (∂ξ )(v) = 0 in this case.
See Murota (1998, Example 2.3) and Murota (2003, Section 2.2.2) for
details. The maximum weight of a matching in (3.26) can be understood
as a special case of (4.37).

4.7. Concluding remarks of section 4

The concept of M-convex functions is formulated by Murota (1996a) as a
generalization of valuated matroids of Dress & Wenzel (1990, 1992). Then
M\-convex functions are introduced by Murota & Shioura (1999) as a variant
of M-convex functions. Quasi M-convex functions are introduced by Murota
& Shioura (2003). The concept of M-convex functions is extended to functions
on jump systems by Murota (2006); see also Kobayashi et al. (2007).

Unimodularity is closely related to discrete convexity. For a fixed unimo-
dular matrix U we may consider a change of variables x 7→Ux for x ∈ Zn

to define a class of functions { f (Ux) | f : M\-concave} as a variant of M\-
concave functions. Twisted M\-concave functions (Section 4.5) are a typical
example of this construction with U = diag(1, . . . ,1,−1, . . . ,−1); see Sun &
Yang (2008) and Section 14.5 for further discussion in this direction.

5. M\-CONCAVE FUNCTION ON RN

In Sections 3 and 4, we have considered M\-concave functions on 2N and ZN ,
which correspond to valuations for indivisible goods with substitutability. In
this section we deal with M\-concave functions in real vectors, f : RN → R∪
{−∞}, which correspond to valuations for divisible goods with substitutability.
M\-concave functions in real variables are investigated by Murota & Shioura
(2000, 2004a,b).
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5.1. Exchange property

We say that a function f : RN → R∪{−∞} is M\-concave if it is a concave
function (in the ordinary sense) that satisfies

(M\-EXC[R]) For any x,y∈RN and i∈ supp+(x−y), there exist j∈ supp−(x−
y)∪{0} and a positive number α0 ∈ R++ such that

f (x)+ f (y)≤ f (x−α(χi−χ j))+ f (y+α(χi−χ j)) (5.1)

for all α ∈ R with 0≤ α ≤ α0.

In the following we restrict ourselves to closed proper22 M\-concave functi-
ons, for which the closure of the effective domain dom f is a well-behaved
polyhedron (g-polymatroid, or M\-convex polyhedron23); see Murota & Shi-
oura (2008, Theorem 3.2). Often we are interested in polyhedral M\-concave
functions.

Remark 5.1. It follows from (M\-EXC[R]) that M\-concave functions enjoy
the following exchange properties under size constraints:
• For any x,y ∈ RN with x(N)< y(N), there exists α0 ∈ R++ such that

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x+αχ j)+ f (y−αχ j)} (5.2)

for all α ∈ R with 0≤ α ≤ α0.
• For any x,y ∈ RN with x(N) = y(N) and i ∈ supp+(x− y), there exists
α0 ∈ R++ such that

f (x)+ f (y)≤ max
j∈supp−(x−y)

{ f (x−α(χi−χ j))+ f (y+α(χi−χ j))} (5.3)

for all α ∈ R with 0≤ α ≤ α0.

Remark 5.2. If dom f ⊆ RN lies in a hyperplane with a constant compo-
nent sum (i.e., x(N) = y(N) for all x,y ∈ dom f ), the exchange property (M\-
EXC[R]) takes a simpler form excluding the possibility of j = 0. A function
f : RN → R∪{−∞} having this exchange property is called an M-concave
function. That is, a concave function f is M-concave if and only if (5.3) holds.

22 A concave function f : Rn→ R∪{−∞} is said to be proper if dom f is nonempty, and closed
if the hypograph {(x,β ) ∈ Rn+1 | β ≤ f (x)} is a closed subset of Rn+1.

23 A polyhedron P is called an M\-convex polyhedron if its (concave) indicator function f is
M\-concave, where f (x) = 0 for x ∈ P and =−∞ for x 6∈ P. See Murota (2003, Section 4.8)
for details.
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5.2. Maximizers and gross substitutability

For p ∈ RN we denote the set of the maximizers of f [−p](x) = f (x)− p>x by
D(p; f ) ⊆ RN (cf. (4.21)). M\-concavity of a function f is characterized by
the M\-convexity of D(p; f ) (Murota & Shioura, 2000, Theorem 5.2).

Theorem 5.1. A polyhedral concave function f : RN → R∪ {−∞} is M\-
concave if and only if, for every vector p ∈ RN , D(p; f ) is an M\-convex
polyhedron.24

(GS[R]) For any p,q∈RN with p≤ q and x∈D(p; f ), there exists y∈D(q; f )
such that xi ≤ yi for all i ∈ N with pi = qi.

The following theorem is given by Danilov et al. (2003).

Theorem 5.2. A polyhedral M\-concave function f : RN → R∪{−∞} with a
bounded effective domain satisfies (GS[R]).

Proof. This follows from Theorem 7.5 (2) and Theorem 7.7 in Section 7.2.1.

Example 5.1. Here is an example to show that (GS[R]) does not imply M\-
concavity. Let f : R2 → R be defined by f (x1,x2) = min(2,x1 + 2x2) on
dom f = R2. This function is not M\-concave because (M\-EXC[R]) fails for
x = (2,0), y = (0,1) and i = 1. However, it satisfies (GS[R]), which can be
verified easily. Thus the converse of Theorem 5.2 does not hold.

5.3. Choice function

In Theorem 4.10 in Section 4.4 we have seen, for the multi-unit indivisible
goods, the choice function induced from a unique-selecting M\-concave value
function is consistent, persistent, and size-monotone in the sense of Alkan &
Gale (2003). In this section we point out that this is also the case with divisible
goods; recall Remark 4.4 in Section 4.4 for the implications of this fact.

For a choice function C : B→B with B = {x ∈ RN
+ | x ≤ b} for some

b∈RN
+, consistency means [C(x)≤ y≤ x⇒C(y) =C(x) ], persistence means

[ x≥ y⇒ y∧C(x)≤C(y) ], and size-monotonicity means [ x≥ y⇒ |C(x)| ≥
|C(y)| ], where |C(x)|= ∑i∈N C(x)i (sum of the components).

24 See the footnote 23.
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Theorem 5.3. For a unique-selecting M\-concave value function f : RN →
R ∪ {−∞} with 000 ∈ dom f ⊆ RN

+, the induced choice function C(x; f ) =
argmax{ f (y) | y≤ x} is consistent, persistent, and size-monotone.25

Proof. The consistency is obvious from the definition of C(x; f ).
To prove persistence26 by contradiction, suppose that y∧C(x; f )≤C(y; f )

fails for some x,y ∈ RN with x≥ y. Set x∗ =C(x; f ), y∗ =C(y; f ). Since y∧
x∗≤ y∗ fails, there exists some i∈N such that yi∧x∗i > y∗i . Then i∈ supp+(x∗−
y∗). We apply (M\-EXC[R]) to x∗,y∗ and i, to obtain j ∈ supp−(x∗−y∗)∪{0}
and α0 > 0 such that

f (x∗)+ f (y∗)≤ f (x∗−α(χi−χ j))+ f (y∗+α(χi−χ j)) (5.4)

for all α with 0 < α ≤ α0. For sufficiently small α > 0 we also have x∗−
α(χi− χ j) ≤ x and y∗+α(χi− χ j) ≤ y; the former follows from x∗j < y∗j ≤
y j ≤ x j for j ∈ supp−(x∗− y∗), and the latter from y∗i < yi∧ x∗i ≤ yi. On the
right-hand side of (5.4), we have f (x∗−α(χi−χ j))< f (x∗) since x∗−α(χi−
χ j) ≤ x and x∗ = C(x; f ) is the unique maximizer of f in {z ∈ RN | z ≤ x},
and similarly, f (y∗+α(χi− χ j)) < f (y∗). This is a contradiction, proving
persistence.

To prove size-monotonicity by contradiction, suppose that there exist
x,y ∈ RN such that x ≥ y and |C(x; f )| < |C(y; f )|. Set x∗ = C(x; f ) and
y∗ =C(y; f ). Then |x∗|< |y∗|. By the exchange property (5.2) in Remark 5.1,
there exists j∈ supp−(x∗−y∗) such that f (x∗)+ f (y∗)≤ f (x∗+αχ j)+ f (y∗−
αχ j) for sufficiently small α > 0. Here we have f (x∗+αχ j)< f (x∗) since
x∗+ αχ j ≤ x by x∗j < y∗j ≤ y j ≤ x j and x∗ is the unique maximizer. We
also have f (y∗−αχ j)< f (y∗) since y∗−αχ j ≤ y∗ ≤ y and y∗ is the unique
maximizer. This is a contradiction, proving size-monotonicity.

5.4. Examples

Here are some examples of M\-concave functions in real variables.

1. A function f : RN → R∪{−∞} is called laminar concave if it can be
represented as

f (x) = ∑
A∈T

ϕA(x(A)) (x ∈ RN) (5.5)

25 As in Section 4.4, f is said to be unique-selecting if C(x; f ) consists of a single element for
every x.

26 This proof for persistence is an adaptation of the one in Murota & Yokoi (2015, Lemma 3.3).
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for a laminar family T ⊆ 2N and a family of univariate (closed proper)
concave functions ϕA :R→R∪{−∞} indexed by A∈T , where x(A) =
∑i∈A xi. A laminar concave function is M\-concave.

2. M\-concave functions arise from the maximum weight of nonlinear
network flows. Let G = (V,A) be a directed graph with two disjoint
vertex subsets S ⊆V and T ⊆V specified as the entrance and the exit.
Suppose that, for each arc a∈A, we are given a univariate (closed proper)
concave function ϕa : R→ R∪{−∞} representing the weight of flow
on the arc a. Let ξ ∈ RA be a vector representing a flow, and ∂ξ ∈ RV

be the boundary of flow ξ defined by (4.36). Then, the maximum
weight of a flow that realizes a supply/demand specification on the exit
T in terms of x ∈ RT is expressed by a function f : RT → R∪{−∞}
defined as (4.37). This function is M\-concave, provided that f does not
take the value +∞ and dom f is nonempty. If S = /0, the function f is
M-concave. See Murota (2003, Section 2.2.1) and Murota & Shioura
(2004a, Theorem 2.10) for details.

5.5. Concluding remarks of section 5

The concept of M-concave functions in continuous variables is introduced for
polyhedral concave functions by Murota & Shioura (2000) and for general
concave functions by Murota & Shioura (2004a). This is partly motivated
by a phenomenon inherent in the network flow/tension problem described in
Section 5.4.

6. OPERATIONS FOR M\-CONCAVE FUNCTIONS

6.1. Basic operations

Basic operations on M\-concave functions on Zn are presented here, whe-
reas the most powerful operation, transformation by networks, is treated in
Section 6.2.

M\-concave functions admit the following operations.

Theorem 6.1. Let f , f1, f2 : ZN → R∪{−∞} be M\-concave functions.
(1) For nonnegative α ∈ R+ and β ∈ R, α f (x)+β is M\-concave in x.
(2) For a ∈ ZN , f (a− x) and f (a+ x) are M\-concave in x.
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(3) For p ∈ RN , f [−p] is M\-concave, where f [−p] is defined by (4.20).
(4) For univariate concave functions ϕi : Z→ R∪{−∞} indexed by i ∈ N,

f̃ (x) = f (x)+ ∑
i∈N

ϕi(xi) (x ∈ ZN) (6.1)

is M\-concave, provided dom f̃ 6= /0.
(5) For a ∈ (Z∪{−∞})N and b ∈ (Z∪{+∞})N , the restriction of f to the
integer interval [a,b]Z = {x ∈ ZN | a≤ x≤ b} defined by

f[a,b]Z(x) =
{

f (x) (x ∈ [a,b]Z),
−∞ (x 6∈ [a,b]Z)

(6.2)

is M\-concave, provided dom f[a,b]Z 6= /0.
(6) For U ⊆ N, the restriction of f to U defined by

fU(y) = f (y,0N\U) (y ∈ ZU) (6.3)

is M\-concave, provided dom fU 6= /0, where 0N\U means the zero vector in
ZN\U .
(7) For U ⊆ N, the projection of f to U defined by

fU(y) = sup{ f (y,z) | z ∈ ZN\U} (y ∈ ZU) (6.4)

is M\-concave, provided fU <+∞.
(8) For U ⊆ N, the function f̃ defined at y ∈ ZU and w ∈ Z by

f̃ (y,w) = sup{ f (y,z) | z(N \U) = w,z ∈ ZN\U} (6.5)

is M\-concave, provided f̃ <+∞.
(9) Integer (supremal) convolution f12 f2 : ZN → R∪{−∞,+∞} defined at
x ∈ ZN by

( f12 f2)(x) = sup{ f1(x1)+ f2(x2) | x = x1 + x2, x1,x2 ∈ ZN} (6.6)

is M\-concave, provided ( f12 f2)<+∞.

Proof. See Murota (2003, Theorem 6.15) for the proofs of (1) to (8). In view of
the importance of convolution operations we give a straightforward alternative
proof of (9) in Remark 6.2.
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Remark 6.1. Theorem 6.1 (9) for M\-concavity of convolutions has an impli-
cation of great economic significance. Suppose that U1,U2, . . . ,Uk represent
utility functions. Then the aggregated utility is given by their convolution
U12U22 · · ·2Uk. Theorem 6.1 (9) means that substitutability is preserved in
this aggregation operation.

Remark 6.2. A proof for M\-concavity of the convolution (6.6) is given
here.27 Let f1 and f2 be M\-concave functions, and f = f12 f2. First we
treat the case where dom f1 and dom f2 are bounded. Then dom f = dom f1 +
dom f2 (Minkowski sum) is bounded. For each p ∈ RN we have f [−p] =
( f1[−p])2( f2[−p]), from which follows

argmax( f [−p]) = argmax( f1[−p])+ argmax( f2[−p]).

In this expression, both argmax( f1[−p]) and argmax( f2[−p]) are M\-convex
sets by Theorem 4.5 (only if part), and therefore, their Minkowski sum (the
right-hand side) is M\-convex (Murota, 2003, Theorem 4.23). This means
that argmax( f [−p]) is M\-convex for each p ∈ RN , which implies the M\-
concavity of f by Theorem 4.5 (if part).

The general case without the boundedness assumption on effective domains
can be treated via limiting procedure as follows. For l = 1,2 and k = 1,2, . . .,
define f (k)l : ZN → R∪{−∞} by

f (k)l (x) =
{

fl(x) if ‖x‖∞ ≤ k
−∞ otherwise,

which is an M\-concave function with a bounded effective domain, provi-
ded that k is large enough to ensure dom f (k)l 6= /0. For each k, the convolu-

tion f (k) = f (k)1 2 f (k)2 is M\-concave by the above argument, and moreover,
limk→∞ f (k)(x) = f (x) for each x. It remains to demonstrate the property
(M\-EXC[Z]) for f . Take x,y ∈ dom f and i ∈ supp+(x− y). There exists
k0 = k0(x,y), depending on x and y, such that x,y ∈ dom f (k) for every k ≥ k0.
Since f (k) is M\-concave, there exists jk ∈ supp−(x− y)∪{0} such that

f (k)(x)+ f (k)(y)≤ f (k)(x−χi +χ jk)+ f (k)(y+χi−χ jk).

27 This proof is an adaptation of the proof (Murota, 2004a) for M-convex functions to M\-concave
functions. See Murota (2003, Note 9.30) for another proof using a network transformation.
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Since supp−(x−y)∪{0} is a finite set, at least one element of supp−(x−y)∪
{0} appears infinitely many times in the sequence { jk}. More precisely, there
exists j ∈ supp−(x−y)∪{0} and an increasing subsequence k(1)< k(2)< · · ·
such that jk(t) = j for t = 1,2, . . .. By letting k→ ∞ along this subsequence in
the above inequality we obtain

f (x)+ f (y)≤ f (x−χi +χ j)+ f (y+χi−χ j).

Thus f = f12 f2 satisfies (M\-EXC[Z]), which proves Theorem 6.1 (9).

Remark 6.3. A sum of M\-concave functions is not necessarily M\-concave.
This implies, in particular, that an M\-concave function does not necessarily
remain M\-concave when its effective domain is restricted to an M\-convex
set. For example,28 let S1 = S0∪{(0,1,1)} and S2 = S0∪{(1,1,0)} with S0 =
{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,0,1)}, and let fi : Z3→ R∪{−∞} be
the (concave) indicator function29 of Si for i = 1,2. Then f1 + f2 is the
indicator function of S1∩S2 = S0. Here S1 and S2 are M\-convex sets, whereas
S0 is not.30 Accordingly, f1 and f2 are M\-concave functions, but their sum
f1 + f2 is not M\-concave. Functions represented as a sum of two M\-concave
functions are an intriguing mathematical object, investigated under the name
of M\

2-concave function in Murota (2003, Section 8.3).

Remark 6.4. For a function f : Zn→ R∪{−∞} and a positive integer α , the
function f α : Zn→ R∪{−∞} defined by f α(x) = f (αx) (x ∈ Zn) is called a
domain scaling of f . If α = 2, for instance, this amounts to considering the
function values only on vectors of even integers. Scaling is one of the common
techniques used in designing efficient algorithms and this is particularly true
of network flow algorithms. Unfortunately, M\-concavity is not preserved
under scaling. For example,31 let f be the indicator function of a set S =
{c1(1,0,−1)+c2(1,0,0)+c3(0,1,−1)+c4(0,1,0) | ci ∈ {0,1}} ⊆ Z3. This
f is an M\-concave function, but f 2 (= f α with α = 2), being the indicator
function of {(0,0,0),(1,1,−1)}, is not M\-concave. Nevertheless, scaling of
an M\-concave function is useful in designing efficient algorithms (Murota,

28 This example is a reformulation of Murota (2003, Note 4.25) for M-convex functions to
M\-concave functions.

29 fi(x) = 0 for x ∈ Si and =−∞ for x 6∈ Si.
30 (B\-EXC[Z]) fails for S0 with x = (1,0,1), y = (0,1,0), and i = 1.
31 This example is a reformulation of Murota (2003, Note 6.18) for M-convex functions to

M\-concave functions.
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Figure 3: Transformation by a network and a bipartite graph

2003, Section 10.1). It is worth mentioning that some subclasses of M\-concave
functions are closed under scaling operation; linear, quadratic, separable, and
laminar M\-concave functions, respectively, form such subclasses.

Remark 6.5. A class of set functions, named matroid-based valuations, is
defined by Ostrovsky & Paes Leme (2015) with the use of the convolu-
tion operation as well as the contraction operation. For set functions f1, f2 :
2N → R∪{−∞}, the convolution of f1 and f2 is defined by ( f12 f2)(X) =
maxY⊆X( f1(Y )+ f2(X \Y )) for X ⊆ N. For a set function f : 2N→R∪{−∞}
and a subset T of N, the contraction of T is defined as fT (X) = f (X ∪T )−
f (T ) for X ⊆N \T . A set function f is said to be a matroid-based valuation, if
it can be constructed by repeated application of convolution and contraction to
weighted matroid valuations (3.25). By Theorem 6.1, matroid-based valuations
are M\-concave functions. It is conjectured in Ostrovsky & Paes Leme (2015)
that every M\-concave function is a matroid-based valuation.

6.2. Transformation by networks

M\-concave functions can be transformed through networks. Let G = (V,A)
be a directed graph with two disjoint vertex subsets S⊆V and T ⊆V specified
as the entrance and the exit (Fig. 3, left). Suppose that, for each arc a ∈ A, we
are given a univariate concave function ϕa : Z→ R∪{−∞} representing the
weight of flow on the arc a. Let ξ ∈ ZA be a vector representing a flow, and
∂ξ ∈ ZV be the boundary of flow ξ defined by (4.36).

Given a function g : ZS→ R∪{−∞} on the entrance set S, we define a
function f : ZT → R∪{−∞,+∞} on the exit set T by

f (x) = supξ ,z{g(z)+ ∑a∈A ϕa(ξ (a)) | ξ ∈ ZA,

∂ξ = (z,−x,0) ∈ ZS×ZT ×ZV\(S∪T )}. (6.7)
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This function f (x) represents the maximum weight to meet the demand specifi-
cation x at the exit, subject to the flow conservation at the vertices not in S∪T .
The weight consists of two parts, the weight g(z) of supply z at the entrance S
and the weight ∑a∈A ϕa(ξ (a)) in the arcs.

We can regard (6.7) as a transformation of g to f by the network. If the
given function g is M\-concave, the resultant function f is also M\-concave,
provided that f does not take the value +∞ and dom f is nonempty. In other
words, the transformation (6.7) by a network preserves M\-concavity. See
Murota (2003, Section 9.6) for a proof. An alternative proof is given by
Kobayashi et al. (2007).

In particular, an M\-concave set function is transformed to another M\-
concave set function through a bipartite graph (Fig. 3, right). Let G = (S,T ;E)
be a bipartite graph with vertex bipartition (S,T ) and edge set E, with weight
we ∈ R associated with each edge e ∈ E. Given an M\-concave set function
g : 2S→ R∪{−∞} on S, define a set function f on T by

f (X) = max{g(Z)+w(M) | M is a matching,
S∩∂M = Z,T ∩∂M = X} (6.8)

where f (X) =−∞ if no such M exists for X . If g is M\-concave, then f is also
M\-concave, as long as dom f is nonempty. A proof tailored to set functions is
given in the proof of Murota (2000b, Theorem 5.2.18).

6.3. Concluding remarks of section 6

Efficient algorithms are available for the operations listed in Theorem 6.1.
In particular, the convolution (6.6), corresponding to the aggregation of uti-
lity functions, can be computed efficiently (Murota & Tamura, 2003a). The
transformation by networks is also accompanied by efficient algorithms. For
M\-concave function maximization algorithms, see Murota (2003, Chapter 10),
and more recent papers, e.g., Shioura (2004), Tamura (2005), Murota (2010),
Moriguchi et al. (2011), Fujishige et al. (2015), and Shioura (2015).

7. CONJUGACY AND L\-CONVEXITY

Conjugacy under the Legendre transformation is one of the most appealing
facts in convex analysis. This is also the case in discrete convex analysis. The
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conjugacy theorem in discrete convex analysis says that the Legendre trans-
formation gives a one-to-one correspondence between M\-concave functions
and L\-convex functions. Since M\-concavity expresses substitutability of
valuation or utility functions, L\-convexity characterizes substitutability in
terms of indirect utility functions. This fact has a significant application to
auction theory, to be expounded in Section 8.

7.1. L\-convex function

The concept of L\-convexity is defined for functions in discrete (integer)
variables and for those in continuous (real) variables. We start with discrete
variables.

7.1.1. L\-convex function on Zn

First recall that a function g : Zn→ R∪{+∞} is called submodular if

g(p)+g(q)≥ g(p∨q)+g(p∧q) (p,q ∈ Zn), (7.1)

where p∨ q and p∧ q mean the vectors of componentwise maximum and
minimum of p and q, respectively. To define L\-convexity of g, we consider a
function g̃ in n+1 variables (p0, p) = (p0, p1, . . . , pn) defined as

g̃(p0, p) = g(p− p01) (p0 ∈ Z, p ∈ Zn), (7.2)

where 111 = (1,1, . . . ,1). Then we say that g : Zn → R∪{+∞} is L\-convex
if the associated function g̃ : Zn+1→ R∪{+∞} is a submodular function in
(p0, p), i.e., if for all p0,q0 ∈ Z and for all p,q ∈ Zn it holds

g(p− p01)+g(q−q01)≥ g((p∨q)− (p0∨q0)1)
+g((p∧q)− (p0∧q0)1).

(7.3)

Remark 7.1. The significance of the extra variable p0 in the definition of L\-
convexity is most transparent when n= 1. When n= 1 we have (p∨q, p∧q) =
(p,q) or (q, p), according to whether p≥ q or p≤ q. Hence the submodular
inequality (7.1) is always satisfied, and every function g : Z→ R∪{+∞} is
submodular. On the other hand, the inequality (7.3) for (p0, p) = (1, t) and
(q0,q) = (0, t +1) yields g(t−1)+g(t +1) ≥ 2g(t) for t ∈ Z, which shows
the convexity of g on Z. The converse is also true. Therefore, a function
g : Z→ R∪{+∞} is L\-convex if and only if g(t−1)+g(t +1)≥ 2g(t) for
all t ∈ Z.
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Remark 7.2. For a set function µ : 2N→R∪{+∞}, L\-convexity is equivalent
to submodularity (3.8). Recall the notation χX for the characteristic vector
of a subset X ; see (2.1). A set function µ can be identified with a function
g : ZN → R∪{+∞} with domg⊆ {0,1}N by µ(X) = g(χX) for X ⊆ N, and
µ is submodular if and only if the corresponding g is L\-convex.

Remark 7.3. Matroid rank functions have a dual character of being both L\-
convex and M\-concave. It is L\-convex as it is submodular, and M\-concave
as already mentioned in Section 3.6.

L\-convexity can be characterized by a number of equivalent conditions
(Favati & Tardella, 1990; Fujishige & Murota, 2000; Murota, 2003).

Theorem 7.1. For g : Zn→R∪{+∞} the following conditions, (a) to (d), are
equivalent:
(a) L\-convexity, i.e., (7.3).
(b) Translation-submodularity:32 for all p,q ∈ Zn and for all α ∈ Z+

g(p)+g(q)≥ g((p−α1)∨q)+g(p∧ (q+α1)). (7.4)

(c) Discrete midpoint convexity: for all p,q ∈ Zn

g(p)+g(q)≥ g
(⌈

p+q
2

⌉)
+g
(⌊

p+q
2

⌋)
(7.5)

where d·e and b·c denote the integer vectors obtained by componentwise
rounding-up and rounding-down to the nearest integers, respectively.
(d) For any p,q ∈ Zn with supp+(p−q) 6= /0, it holds that33

g(p)+g(q)≥ g(p−χA)+g(q+χA), (7.6)

where A = argmax
i
{pi−qi}.

It is known (Murota, 2003, Theorem 7.20) that an L\-convex function
g : Zn→ R∪{+∞} is convex-extensible, i.e., there exists a convex function
g : Rn → R∪ {+∞} such that g(p) = g(p) for all p ∈ Zn. Moreover, the
convex extension g can be constructed by a simple procedure; see Murota
(2003, Theorem 7.19).

32 This condition is labeled as (SBF\[Z]) in Murota (2003, Section 7.1). Note that α is restricted
to be nonnegative, and the inequality (7.4) for α = 0 coincides with submodularity (7.1).

33 This condition is labeled as (L\-APR[Z]) in Murota (2003, Section 7.2). Recall the notation
χA for the characteristic vector of A, as defined in (2.1).
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Remark 7.4. A nonempty set P⊆ Zn is called an L\-convex set if its indicator
function34 is an L\-convex function. In other words, P 6= /0 is an L\-convex set
if it satisfies one of the following equivalent conditions, where p,q ∈ Zn and
p0,q0 ∈ Z:

(a) p− p01, q−q01 ∈ P =⇒ (p∨q)− (p0∨q0)1, (p∧q)− (p0∧q0)1 ∈
P.

(b) p,q ∈ P, α ∈ Z+ =⇒ (p−α1)∨q, p∧ (q+α1) ∈ P.

(c) p,q ∈ P =⇒
⌈ p+q

2

⌉
,
⌊ p+q

2

⌋
∈ P.

(d) p,q ∈ P, supp+(p− q) 6= /0 =⇒ p− χA, q + χA ∈ P with A =
argmax

i
{pi−qi}.

For an L\-convex function g, the effective domain domg and the set of mini-
mizers argming are L\-convex sets. See Murota (2003, Section 5.5) for more
about L\-convex sets.

Remark 7.5. A function g : Zn→ R∪{+∞} is called an L-convex function
if it is an L\-convex function such that there exists r ∈ R for which g(p+
1) = g(p)+ r for all p ∈ Zn. L-convex functions and L\-convex functions
are equivalent concepts, in that L\-convex functions in n variables can be
identified, up to the constant r, with L-convex functions in n+ 1 variables.
Indeed, a function g : Zn→ R∪{+∞} is L\-convex if and only if the function
g̃ : Zn+1→ R∪{+∞} in (7.2) is an L-convex function (with r = 0).

7.1.2. L\-convex function on Rn

We turn to continuous variables. A function g : Rn → R∪ {+∞} is said
to be L\-convex if it is a convex function (in the ordinary sense) such that
g̃(p0, p) = g(p− p01) (p0 ∈ R, p ∈ Rn) is a submodular function in n+ 1
variables, i.e., for all p0,q0 ∈ R and for all p,q ∈ Rn

g(p− p01)+g(q−q01)≥ g((p∨q)− (p0∨q0)1)
+g((p∧q)− (p0∧q0)1).

(7.7)

34 g(p) = 0 for p ∈ P and =+∞ for p 6∈ P.
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In the following we restrict ourselves to closed proper L\-convex functions,35

for which the closure of the effective domain domg is a well-behaved polyhe-
dron (L\-convex polyhedron36); see Murota & Shioura (2008, Theorem 3.3).
For a closed proper convex function g : Rn→ R∪{+∞}, the condition (7.7)
for L\-convexity is equivalent to translation-submodularity: for all p,q ∈ Rn

and for all α ∈ R+

g(p)+g(q)≥ g((p−α1)∨q)+g(p∧ (q+α1)). (7.8)

Often we are interested in polyhedral L\-convex functions.
L\-convex functions in real variables are investigated by Murota & Shioura

(2000, 2004a,b, 2008).

7.2. Conjugacy

7.2.1. Functions in continuous variables

For a function f : Rn→ R∪{+∞} (not necessarily convex) with dom f 6= /0,
the convex conjugate f • : Rn→ R∪{+∞} is defined by

f •(p) = sup{〈p,x〉− f (x) | x ∈ Rn} (p ∈ Rn), (7.9)

where 〈p,x〉= ∑n
i=1 pixi is the inner product of p = (pi) ∈ Rn and x = (xi) ∈

Rn. The function f • is also referred to as the (convex) Legendre(–Fenchel)
transform of f , and the mapping f 7→ f • as the (convex) Legendre(–Fenchel)
transformation. A fundamental theorem in convex analysis states that the
Legendre transformation gives a symmetric one-to-one correspondence in the
class of all closed proper convex functions. That is, for a closed proper convex
function f , the conjugate function f • is a closed proper convex function and
the biconjugacy ( f •)• = f holds.

To formulate the correspondence between concave functions f : Rn →
R∪ {−∞} and convex functions g : Rn → R∪ {+∞} with dom f 6= /0 and
domg 6= /0, we introduce the following variants of the transformation (7.9):

fO(p) = sup{ f (x)−〈p,x〉 | x ∈ Rn} (p ∈ Rn), (7.10)

g4(x) = inf{g(p)+ 〈p,x〉 | p ∈ Rn} (x ∈ Rn), (7.11)

35 A convex function g : Rn→ R∪{+∞} is said to be proper if domg is nonempty, and closed
if the epigraph {(p,α) ∈ Rn+1 | α ≥ g(p)} is a closed subset of Rn+1.

36 A polyhedron is called an L\-convex polyhedron if its (convex) indicator function is L\-convex.
See Murota (2003, Section 5.6) for details.
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where fO : Rn→ R∪{+∞} and g4 : Rn→ R∪{−∞}. The biconjugacy is
expressed as ( fO)4 = f , (g4)O = g for closed proper concave functions f
and closed proper convex functions g.

Theorem 7.2.
(1) The transformations (7.10) and (7.11) give a one-to-one correspondence
between the classes of all closed proper concave functions f and closed proper
convex functions g.
(2) For a closed proper concave function f : Rn→ R∪{−∞}, the conjugate
function fO : Rn→R∪{+∞} is a closed proper convex function and ( fO)4=
f .
(3) For a closed proper convex function g : Rn → R ∪ {+∞}, the conju-
gate function g4 : Rn→ R∪{−∞} is a closed proper concave function and
(g4)O = g.

Addition of combinatorial ingredients to the above theorem yields the
conjugacy theorem between M\-concave and L\-convex functions (Murota &
Shioura, 2004a).

Theorem 7.3.
(1) The transformations (7.10) and (7.11) give a one-to-one correspondence
between the classes of all closed proper M\-concave functions f and closed
proper L\-convex functions g.
(2) For a closed proper M\-concave function f :Rn→R∪{−∞}, the conjugate
function fO : Rn → R∪ {+∞} is a closed proper L\-convex function and
( fO)4 = f .
(3) For a closed proper L\-convex function g : Rn→ R∪{+∞}, the conjugate
function g4 : Rn→ R∪{−∞} is a closed proper M\-concave function and
(g4)O = g.

The M\/L\-conjugacy is also valid for polyhedral concave/convex functions;
see Murota & Shioura (2000) and Murota (2003, Theorem 8.4).

Theorem 7.4.
(1) The transformations (7.10) and (7.11) give a one-to-one correspondence
between the classes of all polyhedral M\-concave functions f and polyhedral
L\-convex functions g.
(2) For a polyhedral M\-concave function f : Rn→ R∪{−∞}, the conjugate
function fO :Rn→R∪{+∞} is a polyhedral L\-convex function and ( fO)4=
f .
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(3) For a polyhedral L\-convex function g : Rn→ R∪{+∞}, the conjugate
function g4 : Rn → R ∪ {−∞} is a polyhedral M\-concave function and
(g4)O = g.

As corollaries of the conjugacy theorems, the following characterizations
of M\-concavity and L\-convexity in terms of the conjugate functions are
obtained.

Theorem 7.5.
(1) A function f : Rn→ R∪{−∞} is closed proper M\-concave if and only
if the conjugate function fO : Rn → R∪ {+∞} by (7.10) is closed proper
L\-convex.
(2) A function f : Rn→ R∪{−∞} is polyhedral M\-concave if and only if the
conjugate function fO : Rn→ R∪{+∞} by (7.10) is polyhedral L\-convex.

Theorem 7.6.
(1) A function g : Rn → R∪ {+∞} is closed proper L\-convex if and only
if the conjugate function g4 : Rn → R∪ {−∞} by (7.11) is closed proper
M\-concave.
(2) A function g : Rn→ R∪{+∞} is polyhedral L\-convex if and only if the
conjugate function g4 : Rn→ R∪{−∞} by (7.11) is polyhedral M\-concave.

L\-convexity, being equivalent to translation-submodularity, is a stronger
property than mere submodularity. When we replace L\-convexity of fO in
Theorem 7.5 (2) with submodularity, we obtain a larger class of polyhedral
concave functions f than M\-concave functions. The following theorem is
ascribed to Danilov & Lang (2001) in Danilov et al. (2003); see also Shioura
& Tamura (2015, Appendix) for technical supplements.

Theorem 7.7. Let f : RN →R∪{−∞} be a polyhedral concave function with
a bounded effective domain. Then the following conditions are equivalent:37

(a) f satisfies (GS[R]).
(b) For every p ∈RN , each edge (one-dimensional face) of D(p; f ) is parallel

to a vector d with |supp+(d)| ≤ 1 and |supp−(d)| ≤ 1.
(c) fO : RN → R∪{+∞} by (7.10) is a submodular function.

37 Recall the definition of (GS[R]) from Section 5.2. Also recall from Theorem 5.2 that polyhedral
M\-concave functions satisfy (GS[R]).
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Remark 7.6. In Danilov et al. (2003) a bounded polyhedron P is called a
quasi-polymatroid if each edge (one-dimensional face) is parallel to a vector
d with |supp+(d)| ≤ 1 and |supp−(d)| ≤ 1. It follows from Fujishige et al.
(2004, Theorem 3.1) that every face of a quasi-polymatroid whose normal
vector has the full support N is obtained from an M-convex polyhedron (base
polyhedron) by a scaling along axes. We mention in passing that a pointed
convex polyhedron is called polybasic if each edge is parallel to a vector d
with |supp+(d)|+ |supp−(d)| ≤ 2 (Fujishige et al., 2004).

Remark 7.7. In the canonical situation, where f : Rn→ R is a strictly con-
cave smooth function, the equivalence between (GS[R]) of f and the sub-
modularity of g = fO is easily derived by simple calculus. Let x(p) be the
unique maximizer of f (x)−〈p,x〉. We have pi = ∂ f/∂xi for i = 1, . . . ,n, and
g(p) = f (x(p))−〈p,x(p)〉. This implies ∂g/∂ pi = −xi (i = 1, . . . ,n), and
hence ∂ 2g/∂ pi∂ p j =−∂xi/∂ p j (i, j = 1, . . . ,n). On the other hand, the sub-
modularity of g is equivalent to ∂ 2g/∂ pi∂ p j ≤ 0 (i 6= j), and (GS[R]) of f is
represented as ∂xi/∂ p j ≥ 0 (i 6= j).

7.2.2. Functions in discrete variables

We turn to functions defined on integer vectors. For functions f : Zn →
R∪{−∞} and g : Zn→ R∪{+∞} with dom f 6= /0 and domg 6= /0, the trans-
formations (7.10) and (7.11) are modified to

fO(p) = sup{ f (x)−〈p,x〉 | x ∈ Zn} (p ∈ Rn), (7.12)

g4(x) = inf{g(p)+ 〈p,x〉 | p ∈ Zn} (x ∈ Rn), (7.13)

where fO : Rn→ R∪{+∞} and g4 : Rn→ R∪{−∞}.
The conjugacy between M\-concavity and L\-convexity in this case reads

as follows.38

Theorem 7.8.
(1) For an M\-concave function f :Zn→R∪{−∞}, the conjugate function fO :
Rn→R∪{+∞} is a (locally polyhedral) L\-convex function, and ( fO)4(x) =
f (x) for x ∈ Zn.

38 In Theorem 7.8 (1), O is defined by (7.12) and 4 by (7.11). In (2), 4 is defined by (7.13) and
O by (7.10).
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(2) For an L\-convex function g : Zn → R∪{+∞}, the conjugate function
g4 : Rn → R∪ {−∞} is a (locally polyhedral) M\-concave function, and
(g4)O(p) = g(p) for p ∈ Zn.

For integer-valued functions f and g, fO(p) and g4(x) are integers for
integer vectors p and x. Hence (7.12) with p ∈ Zn and (7.13) with x ∈ Zn, i.e.,

fO(p) = sup{ f (x)−〈p,x〉 | x ∈ Zn} (p ∈ Zn), (7.14)

g4(x) = inf{g(p)+ 〈p,x〉 | p ∈ Zn} (x ∈ Zn), (7.15)

define transformations of f : Zn → Z∪{−∞} to fO : Zn → Z∪{+∞} and
g : Zn→ Z∪{+∞} to g4 : Zn→ Z∪{−∞}, respectively.

The conjugacy theorem for integer-valued discrete-variable M\-concave
and L\-convex functions reads as follows; see Murota (1998) and Murota
(2003, Theorem 8.12).

Theorem 7.9.
(1) The transformations (7.14) and (7.15) give a one-to-one correspondence
between the classes of all integer-valued M\-concave functions f and integer-
valued L\-convex functions g.
(2) For an integer-valued M\-concave function f : Zn→ Z∪{−∞}, the con-
jugate function fO : Zn→ Z∪{+∞} is an integer-valued L\-convex function
and ( fO)4 = f .
(3) For an integer-valued L\-convex function g :Zn→Z∪{+∞}, the conjugate
function g4 : Zn→ Z∪{−∞} is an integer-valued M\-concave function and
(g4)O = g.

As corollaries of the conjugacy theorems, the following characterizations
of M\-concavity and L\-convexity in terms of the conjugate functions are
obtained.

Theorem 7.10.
(1) A function f : Zn→ R∪{−∞} is M\-concave if and only if the conjugate
function fO : Rn→ R∪{+∞} by (7.12) is (locally polyhedral) L\-convex.
(2) A function f : Zn→ Z∪{−∞} is M\-concave if and only if the conjugate
function fO : Zn→ Z∪{+∞} by (7.14) is L\-convex.

Theorem 7.11.
(1) A function g : Zn→ R∪{+∞} is L\-convex if and only if the conjugate
function g4 : Rn→ R∪{−∞} by (7.13) is (locally polyhedral) M\-concave.
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(2) A function g : Zn→ Z∪{+∞} is L\-convex if and only if the conjugate
function g4 : Zn→ Z∪{−∞} by (7.15) is M\-concave.

L\-convexity, being equivalent to translation-submodularity, is a stronger
property than mere submodularity. Naturally, we may wonder if L\-convexity
of fO in Theorem 7.10 can be replaced by submodularity. However, the
following example denies this possibility.39

Example 7.1. Here is an example of a function f such that the conjugate
function fO is submodular, but f is not M\-concave. Let f : Z2→ R∪{−∞}
be defined by f (x1,x2) = min(2,x1 + 2x2) on dom f = {(x1,x2) ∈ Z2 | 0 ≤
x1 ≤ 2,0≤ x2 ≤ 1}, whose numerical values are

f (0,0) = 0, f (1,0) = 1, f (2,0) = 2; f (0,1) = f (1,1) = f (2,1) = 2.

This function is not M\-concave because (M\-EXC[Z]) fails for x = (2,0),
y = (0,1) and i = 1. The conjugate function fO : R2→ R∪{+∞} of (7.12) is
given by

fO(p1, p2) = max(0,2−2p1,2− p2,2−2p1− p2)

=





0 (p1 ≥ 1, p2 ≥ 2),
2−2p1 (2p1 ≤min(2, p2), p2 ≥ 0),
2− p2 (p2 ≤min(2,2p1), p1 ≥ 0),
2−2p1− p2 (p1 ≤ 0, p2 ≤ 0).

The function fO is submodular, as is easily verified, but it is not L\-convex since
the translation-submodularity (7.8) fails for g = fO, p = (1,2), q = (0,0) and
α = 1 with g(p)+g(q) = 0+2 = 2 and g((p−α1)∨q)+g(p∧ (q+α1)) =
g(0,1)+g(1,1) = 2+1 = 3. It is also noted that fO(p1/2, p2) is L\-convex
in (p1, p2).

In spite of the above example, M\-concavity of a set function f : 2N →
R∪{−∞} can be characterized by submodularity of the conjugate function
fO, which is defined by

fO(p) = max{ f (X)− p(X) | X ⊆ N} (p ∈ Rn) (7.16)

as an adaptation of (7.12).
39 Shioura & Tamura (2015, Example 7.4) also shows this. See Theorem 7.7 for the continuous

case.
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Theorem 7.12. A set function f : 2N → R∪{−∞} is M\-concave if and only
if the conjugate function fO : Rn→ R∪{+∞} in (7.16) is submodular.

This theorem can be derived from a combination of Ausubel & Milgrom
(2002, Theorem 10) with Theorem 3.7 in Section 3.3; see also Shioura &
Tamura (2015, Section 7.2.2) for an alternative proof.

7.3. Minimization of L\-convex functions

The set of the minimizers of an L\-convex function on Zn forms a well-behaved
“discrete convex” subset of Zn. Recall from Remark 7.4 that a nonempty set
P⊆ Zn is called an L\-convex set if

p,q ∈ P =⇒ (p−α1)∨q, p∧ (q+α1) ∈ P (∀α ∈ Z+). (7.17)

This condition with α = 0 gives

p,q ∈ P =⇒ p∨q, p∧q ∈ P, (7.18)

which shows that an L\-convex set forms a sublattice of Zn. A bounded L\-
convex set has the (uniquely determined) maximal element and the (uniquely
determined) minimal element.

Theorem 7.13. Let g : ZN →R∪{+∞} be an L\-convex function and assume
argming 6= /0. Then the set of the minimizers argming is an L\-convex set. If
argming is bounded, there exist the maximal and the minimal minimizer of g.

Proof. This follows easily from the translation-submodularity in Theorem 7.1
(b).

For an L\-convex function, the minimality of a function value is characteri-
zed by a local condition as follows (Murota, 2003, Theorem 7.14). Recall the
notation χY for the characteristic vector of a subset Y ; see (2.1).

Theorem 7.14. Let g : ZN → R∪{+∞} be an L\-convex function and p ∈
domg.
(1) If g(p)> g(q) for q∈ domg, then g(p)> g(p+χY ) for some Y ⊆ supp+(q−
p) or g(p)> g(p−χZ) for some Z ⊆ supp−(q− p).
(2) p is a minimizer of g if and only if

g(p)≤ g(p+χY ) (∀Y ⊆ N), g(p)≤ g(p−χZ) (∀Z ⊆ N). (7.19)
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Proof. (1) This follows from Theorem 7.15 below. If g(q)< g(p) in (7.20),
g(p+ χYk)− g(p) < 0 for some k or g(p− χZ j)− g(p) < 0 for some j. (2)
This is immediate from (1).

Theorem 7.15. Let g : ZN → R∪{+∞} be an L\-convex function. For p,q ∈
domg we have

g(q)≥ g(p)+
m

∑
k=1

[g(p+χYk)−g(p)]+
l

∑
j=1

[g(p−χZ j)−g(p)], (7.20)

where40 /0 6= Y1 ⊆ Y2 ⊆ ·· · ⊆ Ym = supp+(q− p), /0 6= Z1 ⊆ Z2 ⊆ ·· · ⊆ Zl =
supp−(q− p), and

q− p =
m

∑
k=1

χYk−
l

∑
j=1

χZ j . (7.21)

Proof. (1) If supp+(q− p) is nonempty, (7.6) for (q, p) implies

g(q)≥ g(p+χY1)+g(q−χY1)−g(p) = [g(p+χY1)−g(p)]+g(q2),

where q2 = q−χY1 . If supp+(q2− p) is nonempty, (7.6) for (q2, p) implies

g(q2)≥ g(p+χY2)+g(q2−χY2)−g(p) = [g(p+χY2)−g(p)]+g(q3),

where q3 = q2− χY2 = q− χY1 − χY2 . Repeating this, we obtain q′ = q−
∑m

k=1 χYk = p∧q and

g(q)≥ g(q′)+
m

∑
k=1

[g(p+χYk)−g(p)]. (7.22)

By the similar procedure starting with (p,q′) we obtain p = q′+∑l
j=1 χZ j and

g(q′)≥ g(p)+
l

∑
j=1

[g(p−χZ j)−g(p)]. (7.23)

Adding (7.22) and (7.23) we obtain (7.20).
40 The decomposition (7.21) is uniquely determined: m = max(0,q1− p1, . . . ,qn− pn), Yk =
{i | qi− pi ≥ m+1− k} (k = 1, . . . ,m); l = max(0, p1−q1, . . . , pn−qn), Z j = {i | pi−qi ≥
l +1− j} ( j = 1, . . . , l).

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 212 — #216

“p˙05” — 2016/12/18 — 22:56 — page 212 — #62

212 Discrete convex analysis

7.3.1. Algorithms for L\-convex minimization

Algorithms for L\-convex function minimization are considered by Murota
(2000a), Kolmogorov & Shioura (2009), Murota & Shioura (2014, 2016),
Murota et al. (2016), and Shioura (2017); see also Murota (2003, Section 10.3).
Among others we present here the following two algorithms.41

Algorithm GREEDY

Step 0: Find a vector p◦ ∈ domg and set p := p◦.
Step 1: Find ε ∈ {+1,−1} and X ⊆ N that minimize g(p+ εχX).
Step 2: If g(p)≤ g(p+ εχX), then output p and stop.
Step 3: Set p := p+ εχX and go to Step 1.

Algorithm GREEDYUPMINIMAL

Step 0: Find a vector p◦ ∈ domg such that {q | q≥ p◦}∩ argming 6= /0
and set p := p◦.
Step 1: Find the minimal minimizer X ⊆ N of g(p+χX).
Step 2: If X = /0, then output p and stop.
Step 3: Set p := p+χX and go to Step 1.

The algorithm GREEDY can start with an arbitrary initial vector p◦ in
the effective domain, and the vector p may increase or decrease depending
on ε = +1 or −1. The output of the algorithm GREEDY is not uniquely
determined, varying with the choice of ε and X in case of ties in minimizing
g(p+εχX) in Step 1. Step 1 amounts to minimizing two set functions ρ+(X)=
g(p+χX)−g(p) and ρ−(X) = g(p−χX)−g(p) over all subsets X of N. As
a consequence of submodularity of g, both ρ+ and ρ− are submodular set
functions and they can be minimized efficiently (i.e., in strongly polynomial
time). The second algorithm, GREEDYUPMINIMAL, keeps increasing the
vector p, until it reaches the smallest minimizer of g that is greater than
or equal to p◦. Accordingly, the initial vector p◦ must be small enough to
ensure {q | q≥ p◦}∩ argming 6= /0. If g has the minimal minimizer p∗min and
p◦ ≤ p∗min, then the algorithm GREEDYUPMINIMAL outputs p∗min.

The correctness of the algorithms, at their termination, is guaranteed by
Theorem 7.14, whereas the following exact bounds for the number of updates
of p are established recently in Murota & Shioura (2014).

41 Algorithm GREEDY is called “steepest descent algorithm” in Murota (2003, Section 10.3.1).
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Theorem 7.16.
(1) The number of updates of p in the algorithm GREEDY is exactly equal to

µ(p◦) = min{‖p◦− p∗‖+∞ +‖p◦− p∗‖−∞ | p∗ ∈ argming} (7.24)

under the assumption of argming 6= /0, where ‖q‖+∞ = max(0,q1,q2, . . . ,qn)
and ‖q‖−∞ = max(0,−q1,−q2, . . . ,−qn).
(2) The number of updates of p in the algorithm GREEDYUPMINIMAL is
exactly equal to42

µ̂(p◦) = min{‖p◦− p∗‖∞ | p∗ ∈ argming, p◦ ≤ p∗} (7.25)

under the assumption of {q | q≥ p◦}∩argming 6= /0. If the minimal minimizer
p∗min exists and p◦ ≤ p∗min, then µ̂(p◦) = ‖p◦− p∗min‖∞.

We can conceive variants of GREEDYUPMINIMAL by changing “UP” to
“DOWN” and/or “MINIMAL” to “MAXIMAL” according to Table 1 (a). For ex-
ample, the algorithm GREEDYDOWNMINIMAL is obtained from GREEDYUP-
MINIMAL by changing Steps 0 and 1 to:

Step 0: Find a vector p◦ ∈ domg such that {q | q≤ p◦} ∩argming 6= /0
and set p := p◦.
Step 1: Find the maximal minimizer X ⊆ N of g(p−χX).

Starting with an initial vector p◦ large enough to ensure {q | q ≤ p◦} ∩
argming 6= /0, this algorithm keeps decreasing the vector p. If g has the mini-
mal minimizer p∗min, the algorithm stops when it reaches p∗min. The number
of updates of p in GREEDYDOWNMINIMAL is exactly equal to ‖p◦− p∗min‖∞
(Murota et al., 2016, Proposition 3.7). Table 1 (b) shows the output and the
number of updates of p for the four algorithms.

In Section 8 we shall discuss connection of L\-convex function minimiza-
tion to iterative auctions. The algorithm GREEDYUPMINIMAL corresponds to
ascending (English) auctions, and GREEDYDOWNMAXIMAL to descending
(Dutch) auctions. In connection to two-phase (English–Dutch) auctions it is
natural to consider two-phase algorithms for L\-convex function minimization.

The combination of GREEDYUPMINIMAL and GREEDYDOWNMAXIMAL

results in the following algorithm:

42 We have µ̂(p◦) = +∞ if there is no p∗ ∈ argming with p∗ ≥ p◦. It can be shown that
µ̂(p◦) ∈ {µ(p◦),+∞} holds for all p◦ ∈ Zn; see Shioura (2017) for the proof.
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Table 1: Algorithms GREEDY-{UP, DOWN}-{MINIMAL, MAXIMAL}
(a) Description of the algorithms

GREEDY MINIMAL MAXIMAL

UP Step 0 p◦ such that {q | q≥ p◦}∩ argming 6= /0 (i.e., p∗max ≥ p◦)
Step 1 minimal minimizer X of g(p+χX) maximal minimizer X of g(p+χX)

DOWN Step 0 p◦ such that {q | q≤ p◦}∩ argming 6= /0 (i.e., p∗min ≤ p◦)
Step 1 maximal minimizer X of g(p−χX) minimal minimizer X of g(p−χX)

(b) Output and the exact number of updates of p
GREEDY MINIMAL MAXIMAL

UP Output p∗min if p∗min ≥ p◦; otherwise p∗max
min({q | q≥ p◦}∩ argming)

# Updates ‖p◦− p∗min‖∞ if p∗min ≥ p◦; ‖p◦− p∗max‖∞
otherwise µ̂(p◦)

DOWN Output p∗min p∗max if p∗max ≤ p◦; otherwise
max({q | q≤ p◦}∩ argming)

# Updates ‖p◦− p∗min‖∞ ‖p◦− p∗max‖∞ if p∗max ≤ p◦;
otherwise µ̌(p◦)

p◦: initial vector, p∗min: minimal minimizer of g, p∗max: maximal minimizer of g
µ̂(p◦) = min{‖p◦− p∗‖∞ | p∗ ∈ argming, p◦ ≤ p∗}
µ̌(p◦) = min{‖p◦− p∗‖∞ | p∗ ∈ argming, p◦ ≥ p∗}

Algorithm TWOPHASEMINMAX

Step 0: Find a vector p◦ ∈ domg and set p := p◦. Go to Up Phase.
Up Phase:

Step U1: Find the minimal minimizer X ⊆ N of g(p+χX).
Step U2: If X = /0, then go to Down Phase.
Step U3: Set p := p+χX and go to Step U1.

Down Phase:
Step D1: Find the minimal minimizer X ⊆ N of g(p−χX).
Step D2: If X = /0, then output p and stop.
Step D3: Set p := p−χX and go to Step D1.

It can be shown from Theorem 7.1 (d) that, at the end of the up phase,
the vector p satisfies the condition {q | q ≤ p} ∩ argming 6= /0 required
for an initial vector of GREEDYDOWNMAXIMAL. Therefore, the output of
TWOPHASEMINMAX is guaranteed to be a minimizer of g. An upper bound
on the number of updates of p is given in Murota et al. (2016, Theorem 4.13)
which is improved to the following statement by Murota & Shioura (2016);
see also Remark 7.8. Recall the definition of µ(p◦) from (7.24).
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Theorem 7.17. For any initial vector p◦, the algorithm TWOPHASEMINMAX

terminates by outputting some minimizer of g. The number of updates of the
vector p is bounded by µ(p◦) in the up phase and by µ(p◦) in the down phase;
in total, bounded by 2µ(p◦).

For the analysis of the Vickrey–English–Dutch auction algorithm (Section
8.3), it is convenient to consider the combination of GREEDYUPMINIMAL

and GREEDYDOWNMINIMAL. The resulting two-phase algorithm is called
TWOPHASEMINMIN, which is the same as TWOPHASEMINMAX except that
Step D1 is replaced by

Step D1: Find the maximal minimizer X ⊆ N of g(p−χX).

An upper bound on the number of updates of p is given in Murota et al.
(2016, Theorem 4.12), which is improved by Murota & Shioura (2016) to
the following statement; see also Remark 7.9. Recall the notation ‖q‖+∞ =
max(0,q1,q2, . . . ,qn) for q ∈ Zn.

Theorem 7.18. For any initial vector p◦, the algorithm TWOPHASEMINMIN

terminates by outputting the minimal minimizer p∗min of g, if p∗min exists. The
number of updates of the vector p is bounded by µ(p◦) in the up phase and
is exactly equal to ‖p◦− p∗min‖+∞ in the down phase; in total, bounded by
µ(p◦)+‖p◦− p∗min‖+∞ .

Remark 7.8. For the algorithm TWOPHASEMINMAX, Murota et al. (2016,
Theorem 4.13) show that the number of updates of p is bounded by η(p◦, p∗)=
‖p◦− p∗‖+∞ +‖p◦− p∗‖−∞ in the up phase, by 2η(p◦, p∗) in the down phase,
and in total by 3η(p◦, p∗), where p∗ denotes the output of the algorithm.
Theorem 7.17 gives an improved bound since η(p◦, p∗)≥ µ(p◦). Murota et al.
(2013a, Theorem 3.2) state a bound for a two-phase auction algorithm, saying
that the number of updates of p in TWOPHASEMINMAX is bounded by µ(p◦)
in the up phase, by 2µ(p◦) in the down phase, and in total by 3µ(p◦); see
Murota et al. (2013b) for the proof.

Remark 7.9. For the algorithm TWOPHASEMINMIN, Murota et al. (2016,
Theorem 4.12) show that the number of updates of p is bounded by η(p◦, p∗min)=
‖p◦− p∗min‖+∞ + ‖p◦− p∗min‖−∞ in the up phase, by 2η(p◦, p∗min) in the down
phase, and in total by 3η(p◦, p∗min). Theorem 7.18 gives an improved bound
since η(p◦, p∗min)≥ µ(p◦) and η(p◦, p∗min)≥ ‖p◦− p∗min‖+∞ .
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Remark 7.10. Besides TWOPHASEMINMAX and TWOPHASEMINMIN, we
can obtain other variants of two-phase algorithms by choosing appropriate
combinations from among the algorithms GREEDY-{UP, DOWN}-{MINIMAL,
MAXIMAL} listed in Table 1.

7.4. Concluding remarks of section 7

In this paper we put more emphasis on M\-concave functions and give L\-
convex functions only a secondary role as the conjugate of M\-concave functi-
ons, though, in fact, they are equally important and play symmetric roles in
discrete convex analysis.

The concept of L-convex functions is formulated by Murota (1998), compa-
tibly with the accepted understanding of the relationship between submodula-
rity and convexity expounded by Lovász (1983). Then L\-convex functions are
introduced by Fujishige & Murota (2000) as a variant of L-convex functions,
together with the observation that they coincide with submodular integrally
convex functions considered earlier by Favati & Tardella (1990). The concept
of quasi L-convex functions is also introduced by Murota & Shioura (2003),
in accordance with quasisupermodularity of Milgrom & Shannon (1994). L-
convex functions in continuous variables are defined by Murota & Shioura
(2000, 2004a), partly motivated by a phenomenon inherent in the network
flow/tension problem described in Murota (2003, Section 2.2.1).

Recently, the concept of L-convex functions is extended to functions on
graph structures, which are more general than Zn. See Kolmogorov (2011),
Huber & Kolmogorov (2012), Fujishige (2014), and Hirai (2015, 2016a,b) for
the recent development.

8. ITERATIVE AUCTIONS

This section presents a unified method of analysis for iterative auctions (dy-
namic auctions) by combining the Lyapunov function approach of Ausubel
(2006) with discrete convex analysis. We are mainly concerned with the multi-
item multi-unit model, where there are multiple indivisible goods for sale
and each good may have several units. The bidders’ valuation functions are
assumed to have gross substitutes property. This section is mostly based on
Murota et al. (2013a, 2016) with some new results from Murota & Shioura
(2016).

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 217 — #221

“p˙05” — 2016/12/18 — 22:56 — page 217 — #67

Kazuo Murota 217

8.1. Auction models and Walrasian equilibrium

Fundamental concepts about auctions are introduced here only briefly; see,
e.g., Gul & Stacchetti (2000), Milgrom (2004), Cramton et al. (2006), and
Blumrosen & Nisan (2007) for comprehensive accounts.

In the auction market, there are n types of items or goods, denoted by
N = {1,2, . . . ,n}, and m bidders, denoted by M = {1,2, . . . ,m}, where m ≥
2. We have ui units available for each item i ∈ N, where ui is a positive
integer. We denote the integer interval as [000,u]Z = {x ∈ Zn | 000 ≤ x ≤ u},
where u = (u1,u2, . . . ,un). Each vector x ∈ [000,u]Z is called a bundle; a bundle
x = (x1,x2, . . . ,xn) corresponds to a (multi-)set of items, where xi represents
the multiplicity of item i ∈ N. Each bidder j ∈M has his valuation function
f j : [000,u]Z→ R; the number f j(x) represents the value of the bundle x worth
to bidder j. The case with ui = 1 for all i ∈ N is referred to as single-unit
auction, while the general case with u ∈ Zn

++ as multi-unit auction. Note that
[000,111]Z = {0,1}n, where 111 = (1,1, . . . ,1). A further special case where each
bidder is interested in getting at most one item is called unit-demand auction.

In an auction, we want to find an efficient allocation and market clearing
prices. An allocation of items is defined as a set of bundles x1,x2, . . . ,xm ∈
[000,u]Z satisfying ∑m

j=1 x j = u. Given a price vector p ∈Rn
+, each bidder j ∈M

wants to have a bundle x which maximizes the value f j(x)− p>x. For j ∈M
and p ∈ Rn

+, define

D j(p) = D(p; f j) = argmax{ f j(x)− p>x | x ∈ [000,u]Z }. (8.1)

We call the set D j(p)⊆ [000,u]Z the demand set. The auctioneer wants to find a
pair of a price vector p∗ and an allocation x∗1,x

∗
2, . . . ,x

∗
m such that x∗j ∈ D j(p∗)

for all j ∈M. Such a pair is called a (Walrasian) equilibrium and p∗ is called
a (Walrasian) equilibrium price vector.

Although the Walrasian equilibrium possesses several desirable properties,
it does not always exist. Some condition has to be imposed on bidders’
valuation functions before the existence of a Walrasian equilibrium can be
guaranteed. Throughout this section we assume the following conditions for
bidders’ valuation functions f j ( j = 1,2, . . . ,m):

(A0) f j is monotone nondecreasing,
(A1) f j is an M\-concave function,
(A2) f j takes integer values.
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Recall from Sections 3.3 and 4.3 that a valuation function is M\-concave if
and only if it has the gross substitutes (GS) property (in its stronger form); see
Theorems 3.7 and 4.6, in particular.

Remark 8.1. Whereas we are mainly concerned with the multi-unit model
here, the single-unit model is treated more extensively in the literature, e.g.,
Kelso & Crawford (1982), Gul & Stacchetti (1999, 2000), Milgrom (2004),
Blumrosen & Nisan (2007), Cramton et al. (2006), and Milgrom & Strulovici
(2009). The method of analysis presented in this section remains meaningful
and interesting also for the single-unit model.

Remark 8.2. Iterative auctions for unit-demand auction are discussed exten-
sively in the literature, e.g., Vickrey (1961), Demange et al. (1986), Mo et al.
(1988), Sankaran (1994), Mishra & Parkes (2009), Andersson et al. (2013),
and Andersson & Erlanson (2013). Specifically, the Vickrey–English auction
by Demange et al. (1986), the Vickrey–Dutch auction by Mishra & Parkes
(2009), and the Vickrey–English–Dutch auction by Andersson & Erlanson
(2013) are such iterative auctions. Although these three algorithms are propo-
sed independently of the iterative auction algorithms for the multi-unit model,
it is possible to give a unified treatment of these iterative auction algorithms by
revealing their relationship to the Lyapunov function approach (Section 8.3).

8.2. Lyapunov function approach to iterative auctions

In this section we describe the Lyapunov function-based iterative auctions
developed by Ausubel (2006) and Sun & Yang (2009). Our objective is to
clarify the underlying mathematical structure with the aid of discrete convex
analysis, and to derive sharp upper or exact bounds on the number of iterations
in the iterative auctions.

For j ∈M and p ∈ Rn
+, we define the indirect utility function Vj : Rn

+→ R
by

Vj(p) = V (p; f j) = max{ f j(x)− p>x | x ∈ [000,u]Z }, (8.2)

and the Lyapunov function by

L(p) =
m

∑
j=1

Vj(p)+u>p (p ∈ Rn), (8.3)
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where the vector u ∈ Zn
+ represents the numbers of available units for items in

N.
Under the assumptions (A0)–(A2) it can be shown43 that there exists

an equilibrium price vector p∗ whose components are nonnegative integers.
Henceforth we assume that the price vector p in iterative auctions is always
chosen to be a nonnegative integer vector, i.e., p ∈ Zn

+. Accordingly, we
regard Vj and L as integer-valued functions defined on nonnegative integers,
i.e., Vj : Zn

+→ Z and L : Zn
+→ Z.

The ascending auction algorithm based on the Lyapunov function (Ausubel,
2006; Sun & Yang, 2009) is as follows:

Algorithm ASCENDMINIMAL

Step 0: Set p := p◦, where p◦ ∈ Zn
+ is an arbitrary vector satisfying

p◦ ≤ p∗min (e.g., p◦ = 000).
Step 1: Find the minimal minimizer X ⊆ N of L(p+χX).
Step 2: If X = /0, then output p and stop.
Step 3: Set p := p+χX and go to Step 1.

The above algorithm can be interpreted in auction terms as follows:44

Algorithm ASCENDMINIMAL (in auction terms)
Step 0: The auctioneer sets p := p◦, where p◦ ∈ Zn should satisfy p◦ ≤ p∗min.
Step 1: The auctioneer asks the bidders to report their demand sets
D j(p) ( j ∈M), and finds the minimal minimizer X ⊆ N of L(p+χX).
Step 2: The auctioneer checks if X = /0; if X = /0 holds, then the auctioneer

reports p as the final price vector and stop.
Step 3: The auctioneer sets p := p+χX and returns to Step 1.

The analysis of the algorithm ASCENDMINIMAL can be made transparent
by using concepts and results from discrete convex analysis. Before presenting
formal theorems, we enumerate the major mathematical ingredients.

• As pointed out by Ausubel (2006), the Walrasian equilibrium price
vector can be characterized as a minimizer of the Lyapunov function L
and an iterative auction algorithm can be understood as a minimization
process of the Lyapunov function L(p). See Theorem 8.1.

43 The integrality follows from the fact that an integer-valued M\-concave function f on Zn has
an integral subgradient (or supergradient) at every point x in dom f .

44 See Ausubel (2006, Appendix B) for details about the implementation of Steps 2 and 3.
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• The conjugate function of an M\-concave function is an L\-convex
function, and vice versa (the conjugacy theorem in Section 7.2). Hence
the indirect utility function Vj is an L\-convex function and therefore,
the Lyapunov function L is an L\-convex function. See Theorem 8.2.

• The L\-convexity of the Lyapunov function L implies a nice combinato-
rial structure of the equilibrium prices. The set of the equilibrium prices
is an L\-convex set (Remark 7.4), which is more special than just being
a sublattice. See Theorem 8.3.

• The L\-convexity of the Lyapunov function L enables us to utilize general
results on L\-convex function minimization (Section 7.3) to analyze
the behavior of iterative auction algorithms, such as convergence to
an equilibrium price and the number of iterations needed to reach the
equilibrium price. See Theorem 8.4 as well as Theorem 8.9.

We now present the theorems substantiating the above-mentioned points.
The conditions (A0)–(A2) are assumed implicitly in the following four theo-
rems. Recall that a Walrasian equilibrium exists under these conditions. The
first theorem is due to Ausubel (2006, Proposition 1); see Sun & Yang (2009,
Lemma 1) for a more general result.

Theorem 8.1. A vector p ∈ Zn
+ is an equilibrium price vector if and only if it

is a minimizer of the Lyapunov function L.

Proof. The key of the proof is the fact that the set of excess supply vectors
at a price vector p, i.e., {u−∑m

j=1 x j | x j ∈ D j(p) ( j = 1,2, . . . ,m)}, coincides
with the set of subgradients of the Lyapunov function L at p; see Ausubel
(2006).

Theorem 8.2.
(1) For each j ∈M, the indirect utility function Vj is an L\-convex function.
(2) The Lyapunov function L is an L\-convex function.

Proof. (1) When regarded as Vj : Zn
+→ Z, the definition (8.2) of Vj shows that

Vj is the conjugate function of f j in the sense of (7.14). That is, Vj = fOj in the
notation of Section 7.2. Then Theorem 7.9 (2) shows the L\-convexity of Vj.

(2) In the definition (8.3) of L, each Vj is L\-convex by (1), and the linear
term u>p is obviously L\-convex. The sum of L\-convex functions is again
L\-convex by Theorem 7.1. Hence the Lyapunov function L is L\-convex.
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Theorem 8.3. The equilibrium price vectors form a bounded L\-convex set.45

That is, for two equilibrium price vectors p∗, q∗ and any nonnegative integer
α , both (p∗−α1)∨ q∗ and p∗ ∧ (q∗+ α1) are equilibrium price vectors.
In particular, the minimal equilibrium price vector p∗min and the maximal
equilibrium price vector p∗max are uniquely determined.

Proof. This follows from the L\-convexity of the Lyapunov function (Theo-
rem 8.2) and the L\-convexity of the set of the minimizers (Remark 7.4); the
boundedness is easily shown.

Theorem 8.4. For an initial vector p◦ with p◦ ≤ p∗min, the algorithm ASCEND-
MINIMAL outputs the minimal equilibrium price vector p∗min and the number
of updates of the price vector is exactly equal to ‖p∗min− p◦‖∞.

Proof. The Lyapunov function L is an L\-convex function by Theorem 8.2,
and the algorithm ASCENDMINIMAL is nothing but the algorithm GREEDYUP-
MINIMAL in Section 7.3 applied to L. Since the minimal minimizer of the Lya-
punov function L is the minimal equilibrium price vector p∗min by Theorem 8.1,
the auction algorithm ASCENDMINIMAL yields the minimal equilibrium price
vector p∗min. The number of updates of the price vector is equal to ‖p∗min− p◦‖∞
by Theorem 7.16 (2).

Theorem 8.4 is due to Murota et al. (2016), while the finite termination
is noted in Ausubel (2006). The bound for the number of iterations in AS-
CENDMINIMAL is given as the `∞-distance from the initial price vector p◦

to the minimal equilibrium price vector p∗min. This implies, in particular, that
the trajectory of the price vector generated by the ascending auction is the
“shortest” path between the initial vector and the minimal equilibrium price
vector.

8.2.1. Variants of auction algorithms

A variant of the ascending auction algorithm, called ASCENDMAXIMAL, is
obtained through the application of the algorithm GREEDYUPMAXIMAL in
Section 7.3 to the Lyapunov function L. Two other variants of the descending
auction algorithm, called DESCENDMAXIMAL and DESCENDMINIMAL, are

45 See Remark 7.4 for L\-convex sets. If we consider real price vectors, the equilibrium price
vectors form an L\-convex polyhedron.
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obtained through the application of the algorithms GREEDYDOWNMAXIMAL

and GREEDYDOWNMINIMAL in Section 7.3 to the Lyapunov function L,
where DESCENDMAXIMAL coincides with the descending auction algorithm
in Ausubel (2006). The general results for L\-convex function minimization
summarized in Table 1 (b) in Section 7.3 imply the following exact bounds
(Murota et al., 2016).

Theorem 8.5.
(1) For an initial vector p◦ with p◦ ≤ p∗max, the algorithm ASCENDMAXIMAL

outputs p∗max and the number of updates of the price vector is exactly equal to
‖p∗max− p◦‖∞.
(2) For an initial vector p◦ with p◦≥ p∗max, the algorithm DESCENDMAXIMAL

outputs p∗max and the number of updates of the price vector is exactly equal to
‖p∗max− p◦‖∞.
(3) For any initial vector p◦ with p◦≥ p∗min, the algorithm DESCENDMINIMAL

outputs p∗min and the number of updates of the price vector is exactly equal to
‖p∗min− p◦‖∞.

A two-phase auction algorithm, consisting of an ascending auction phase
followed by a descending phase, can be obtained by applying the algorithm
TWOPHASEMINMAX in Section 7.3 to the Lyapunov function L. Another two-
phase auction algorithm can be obtained from TWOPHASEMINMIN. Then
Theorems 7.17 and 7.18 imply the following (Murota & Shioura, 2016).

Theorem 8.6.
(1) For any initial vector p◦, the two-phase algorithm TWOPHASEMINMAX

outputs some equilibrium price p∗. The number of updates of the vector p
is bounded by µ(p◦) in the ascending phase and by µ(p◦) in the descending
phase; in total, bounded by 2µ(p◦).
(2) For any initial vector p◦, the two-phase algorithm TWOPHASEMINMIN

outputs the minimal equilibrium price p∗min. The number of updates of the
vector p is bounded by µ(p◦) in the ascending phase and is exactly equal to
‖p◦− p∗min‖+∞ in the descending phase; in total, bounded by µ(p◦)+ ‖p◦−
p∗min‖+∞ .

Two-phase algorithms with more flexibility are given in Murota et al.
(2013a), and Murota & Shioura (2016).
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Remark 8.3. The algorithm TWOPHASEMINMAX, when applied to valuation
functions on {0,1}N (single-unit valuations), coincides with a special case of
“Global Dynamic Double-Track (GDDT) procedure” proposed in Sun & Yang
(2009). The “global Walrasian tâtonnement algorithm” proposed by Ausubel
(2006) repeats ascending and descending phases until some equilibrium is
found. Theorem 7.17 shows that the global Walrasian tâtonnement algorithm
terminates after only one ascending phase and only one descending phase.
Put differently, the behavior of the global Walrasian tâtonnement algorithm
coincides with that of TWOPHASEMINMAX.

Remark 8.4. Besides TWOPHASEMINMAX, we can obtain many variants of
two-phase algorithms by choosing appropriate combinations from among the
algorithms GREEDY-{UP, DOWN}-{MINIMAL, MAXIMAL} listed in Table 1.
In Section 8.3, for example, we consider the combination of GREEDYUPMI-
NIMAL and GREEDYDOWNMINIMAL.

8.3. Unit-demand auctions

Fundamental multi-item unit-demand auction algorithms such as the Vickrey–
English, Vickrey–Dutch, Vickrey–English–Dutch auctions can be reformulated
in the framework of the Lyapunov function approach. In so doing we can
derive bounds for the number of iterations in these auction algorithms from
the corresponding results about L\-convex function minimization presented in
Section 7.3.

The unit-demand auction model is a special case of the single-unit auction
model, where each bidder is a unit-demand bidder, being interested in getting
at most one item. We continue to use notations N = {1,2, . . . ,n} for the set of
items and M = {1,2, . . . ,m} for the set of bidders. For each item i and each
bidder j, we denote by v ji the valuation of item i by bidder j, which is assumed
to be a nonnegative integer, i.e., v ji ∈ Z+. The valuation function f j : 2N→ Z+

of bidder j is given by

f j(X) =

{
max{v ji | i ∈ X} (if X 6= /0),
0 (if X = /0). (8.4)

A valuation function of this form, often called a unit-demand valuation,46 is a
gross substitutes valuation, as pointed out by Gul & Stacchetti (1999). In other

46 See, e.g., Cramton et al. (2006, Section 9.2.2) and Blumrosen & Nisan (2007, Definition
11.17).
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words, a unit-demand valuation is M\-concave; see (3.21). We are interested in
finding the minimal Walrasian equilibrium price vector p∗min ∈ ZN

+ by iterative
auctions.

Fundamental iterative auction algorithms such as the Vickrey–English
auction of Demange et al. (1986) (the variant by Mo et al. (1988) and Sankaran
(1994), to be more specific), the Vickrey–Dutch auction of Mishra & Parkes
(2009), and the Vickrey–English–Dutch auction of Andersson & Erlanson
(2013) can be recast into the Lyapunov function-based framework. The follo-
wing theorem is due to Murota et al. (2016, Theorem 5.5); the specific forms
of the auction algorithms are described in Remark 8.5.

Theorem 8.7. Let L : ZN
+→ Z be the Lyapunov function associated with the

unit-demand valuations (8.4).
(1) For any initial price vector p◦ with p◦ ≤ p∗min, the sequence of price vec-
tors p generated by the algorithm VICKREY ENGLISH is the same as that of
GREEDYUPMINIMAL applied to L.
(2) For any initial price vector p◦ with p◦ ≥ p∗min, the sequence of price vec-
tors p generated by the algorithm VICKREY DUTCH is the same as that of
GREEDYDOWNMINIMAL applied to L.
(3) For any initial price vector p◦, the sequence of price vectors p generated
by the algorithm VICKREY ENGLISH DUTCH is the same as that of TWOP-
HASEMINMIN applied to L.

Theorem 8.7 above is established on the basis of the following technical
observations (Murota et al., 2016, Lemma 5.7), which relate the descending
directions of the Lyapunov function with “sets in excess demand” (see Re-
mark 8.5) used in the Vickrey–English, Vickrey–Dutch, Vickrey–English–
Dutch auction algorithms.

Proposition 8.8. Let p ∈ ZN
+ be a price vector.

(1) A set X ⊆ N is the maximal set in excess demand at price p if and only if X
is the minimal minimizer of L(p+χX)−L(p).
(2) A set Z ⊆ supp+(p) is the maximal set in positive excess demand at price p
if and only if X = supp+(p)\Z is the maximal minimizer of L(p−χX)−L(p).

Theorem 8.7 enables us to resort to the general results for L\-convex
function minimization in Section 7.3 to establish the following (exact or upper)
bounds on the number of iterations in the unit-demand auction algorithms,
where (1) and (2) are given in Andersson & Erlanson (2013, Corollary 2), and
(3) is in Murota & Shioura (2016).
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Theorem 8.9.
(1) For any initial price vector p◦ with p◦ ≤ p∗min, the number of updates
of the price vector in the algorithm VICKREY ENGLISH is exactly equal to
‖p◦− p∗min‖∞.
(2) For any initial price vector p◦ with p◦ ≥ p∗min, the number of updates
of the price vector in the algorithm VICKREY DUTCH is exactly equal to
‖p◦− p∗min‖∞.
(3) For any initial price vector p◦, the number of updates of the price vector
in the algorithm VICKREY ENGLISH DUTCH is bounded by µ(p◦) in the
ascending phase and is exactly equal to ‖p◦− p∗min‖+∞ in the descending phase;
in total, bounded by µ(p◦)+‖p◦− p∗min‖+∞ .

Proof. We prove the claims to illustrate the use of the general results in Section
7.3. (1) follows from Theorem 8.7 (1) and Theorem 7.16 (2). (2) follows from
Theorem 8.7 (2) and Table 1 (b). (3) follows from Theorem 8.7 (3) and
Theorem 7.18.

Remark 8.5. The Vickrey–English, Vickrey–Dutch, Vickrey–English–Dutch
auction algorithms are described here, following Andersson & Erlanson (2013)
and Andersson et al. (2013). Denote by 0 an artificial item (null-item) which
has no value (i.e., v j0 = 0 for all j ∈M) and is available in an infinite number of
units. For each bidder j∈M and a price vector p∈ZN

+, define D j(p)⊆N∪{0}
by

D j(p) = argmax{v ji− pi | i ∈ N∪{0}}
= {i ∈ N∪{0} | v ji− pi ≥ v ji′− pi′ (∀i′ ∈ N∪{0})},

where p0 = 0. For an item set Y ⊆ N and a price vector p ∈ ZN
+, define

O(Y, p) = { j ∈M | D j(p)⊆ Y},
U(Y, p) = { j ∈M | D j(p)∩Y 6= /0}.

The set O(Y, p) consists of bidders who only demand items in Y at price p,
while U(Y, p) is the set of bidders who demand some item in Y at price p.
Obviously, O(Y, p)⊆U(Y, p). A set X ⊆ N is said to be in excess demand at
price p if it satisfies

|U(Y, p)∩O(X , p)|> |Y | ( /0 6= ∀Y ⊆ X).
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For each price vector p there uniquely exists a maximal set in excess demand.47

The Vickrey-English auction algorithm due to Mo et al. (1988) and Sankaran
(1994), a variant of the one in Demange et al. (1986), is as follows:

Algorithm VICKREY ENGLISH

Step 0: Set p := p◦, where p◦ ∈ ZN
+ is an arbitrary vector satisfying

p◦ ≤ p∗min (e.g., p◦ = 000).
Step 1: Find the maximal set X ⊆ N in excess demand at price p.
Step 2: If X = /0, then output p and stop.
Step 3: Set p := p+χX and go to Step 1.

The Vickrey-Dutch auction algorithm refers to the variants of the sets
D j(p) and O(Y, p) defined as

D+
j (p) = D j(p)∩ supp+(p),

O+(Y, p) = { j ∈M | D+
j (p)⊆ Y}.

A set X ⊆ N is said to be in positive excess demand at price p if X ⊆ supp+(p)
and

|U(Y, p)∩O+(X , p)|> |Y | ( /0 6= ∀Y ⊆ X).

For each price vector p there uniquely exists a maximal set in positive excess
demand.48 The Vickrey–Dutch auction by Mishra & Parkes (2009) is as
follows:

Algorithm VICKREY DUTCH

Step 0: Set p := p◦, where p◦ ∈ ZN
+ is an arbitrary vector satisfying p◦ ≥ p∗min.

Step 1: Find the maximal set Z ⊆ N in positive excess demand at price p, and
set X := supp+(p)\Z.

Step 2: If X = /0, then output p and stop.
Step 3: Set p := p−χX and go to Step 1.

The Vickrey–English–Dutch auction by Andersson & Erlanson (2013) is a
combination of the Vickrey–English and Vickrey–Dutch auctions, as follows:

47 See Mo et al. (1988, Proposition 1), Andersson & Erlanson (2013, Proposition 1), and
Andersson et al. (2013, Theorem 1).

48 See Andersson & Erlanson (2013, Theorem 2).
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Algorithm VICKREY ENGLISH DUTCH

Step 0: Set p := p◦, where p◦ ∈ ZN
+ is an arbitrary vector. Go to Ascending

Phase.
Ascending Phase:

Step A1: Find the maximal set X ⊆ N in excess demand at price p.
Step A2: If X = /0, then go to Descending Phase.
Step A3: Set p := p+χX and go to Step A1.

Descending Phase:
Step D1: Find the maximal set Z ⊆ N in positive excess demand at

price p, and set X := supp+(p)\Z.
Step D2: If X = /0, then output p and stop.
Step D3: Set p := p−χX and go to Step D1.

8.4. Concluding remarks of section 8

Use of discrete convex analysis in the Lyapunov function approach is also
conceived by Drexl & Kleiner (2015). Besides the basic form of ascending
auction, the paper proposes and analyzes the “singleton-based tâtonnement”
which reflects a certain practice in auction design. It also discusses the double-
track adjustment process of Sun & Yang (2009) as an application of the
framework of Section 8.2; the underlying key fact here is that gross substitutes
and complements are represented by twisted M\-concave functions (Section
3.5). Lehmann et al. (2006) shows a connection between discrete convex
analysis and combinatorial auctions. Sun & Yang (2014) proposes a dynamic
auction for multiple complementary goods that goes beyond the framework
discussed in this paper.

9. INTERSECTION AND SEPARATION THEOREMS

9.1. Separation theorem

The duality principle in convex analysis can be expressed in a number of
different forms. One of the most appealing statements is in the form of the
separation theorem, which asserts the existence of a separating affine function
y = α∗+ 〈p∗,x〉 for a pair of convex and concave functions. In application to
economic problems, the separating vector p∗ gives the equilibrium price.

In the continuous case we have the following.
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Theorem 9.1. Let f : Rn→R∪{+∞} and h : Rn→R∪{−∞} be convex and
concave functions, respectively (satisfying certain regularity conditions). If

f (x)≥ h(x) (∀x ∈ Rn),

there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x)≥ α∗+ 〈p∗,x〉 ≥ h(x) (∀x ∈ Rn).

In the discrete case we are concerned with functions defined on integer
points: f : Zn→ R∪{+∞} and h : Zn→ R∪{−∞}. A discrete separation
theorem means a statement like:

For any f : Zn→ R∪{+∞} and h : Zn→ R∪{−∞} belonging
to certain classes of functions, if f (x)≥ h(x) for all x ∈ Zn, then
there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x)≥ α∗+ 〈p∗,x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued
α∗ ∈ Z and p∗ ∈ Zn.

In application to economic problems, the separating vector p∗ in a discrete
separation theorem often gives the equilibrium price in markets with indivisible
goods.

Discrete separation theorems capture deep combinatorial properties in
spite of the apparent similarity to the separation theorem in the continuous
case. In this connection we note the following facts that indicate the difficulty
inherent in discrete separation theorems.49 Let f :Zn→R∪{+∞} be a convex-
extensible function, with the convex closure f . Also let h : Zn→ R∪{−∞}
be a concave-extensible function, with the concave closure h. In the following
statements, =⇒6 stands for “does not imply.”

1. f (x)≥ h(x) (∀x ∈ Zn) =⇒6 f (x)≥ h(x) (∀x ∈ Rn).

2. f (x)≥ h(x) (∀x ∈ Zn) =⇒6 existence of α∗ ∈ R and p∗ ∈ Rn.

3. existence of α∗ ∈R and p∗ ∈Rn =⇒6 existence of α∗ ∈ Z and p∗ ∈ Zn.

49 See Murota (2003, Examples 1.5 and 1.6) for concrete examples.
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It is known that discrete separation theorems hold for M\-convex/M\-
concave functions and for L\-convex/L\-concave functions. The M\-separation
theorem (Theorem 9.2) is shown by Murota (1996a, 1998, 1999) in terms of
M-convex/concave functions, and the L\-separation theorem (Theorem 9.3) by
Murota (1998) in terms of L-convex/concave functions. The assumptions of
the theorems refer to the convex and concave conjugate functions of f and h
defined, respectively, by50

f •(p) = sup{〈p,x〉− f (x) | x ∈ Zn} (p ∈ Rn), (9.1)
h◦(p) = inf{〈p,x〉−h(x) | x ∈ Zn} (p ∈ Rn). (9.2)

Theorem 9.2 (M\-separation theorem). Let f : Zn → R∪{+∞} be an M\-
convex function and h : Zn→ R∪{−∞} be an M\-concave function such that
domZ f ∩ domZh 6= /0 or domR f • ∩ domRh◦ 6= /0. If f (x) ≥ h(x) (∀x ∈ Zn),
there exist α∗ ∈ R and p∗ ∈ Rn such that

f (x)≥ α∗+ 〈p∗,x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued α∗ ∈ Z and
p∗ ∈ Zn.

Theorem 9.3 (L\-separation theorem). Let g : Zn → R∪ {+∞} be an L\-
convex function and k : Zn→ R∪{−∞} be an L\-concave function such that
domZg∩ domZk 6= /0 or domRg• ∩ domRk◦ 6= /0. If g(p) ≥ k(p) (∀p ∈ Zn),
there exist β ∗ ∈ R and x∗ ∈ Rn such that

g(p)≥ β ∗+ 〈p,x∗〉 ≥ k(p) (∀p ∈ Zn).

Moreover, if g and k are integer-valued, there exist integer-valued β ∗ ∈ Z and
x∗ ∈ Zn.

As an immediate corollary of the M\-separation theorem we can obtain an
optimality criterion for the problem of maximizing the sum of two M\-concave
functions, which we call the M\-concave intersection problem. Note that the
sum of M\-concave functions is no longer M\-concave and Theorem 4.4 does
not apply. Recall the notation f [−p](x) = f (x)−〈p,x〉.

50 We have f •(p) =− f4(−p) and h◦(p) =−hO(p) in the notation of (7.12) and (7.13).
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Theorem 9.4 (M\-concave intersection theorem). For M\-concave functions
f1, f2 : Zn→ R∪{−∞} and a point x∗ ∈ domZ f1∩domZ f2 we have

f1(x∗)+ f2(x∗)≥ f1(x)+ f2(x) (∀x ∈ Zn)

if and only if there exists p∗ ∈ Rn such that

f1[−p∗](x∗)≥ f1[−p∗](x) (∀x ∈ Zn),

f2[+p∗](x∗)≥ f2[+p∗](x) (∀x ∈ Zn).

These conditions are equivalent, respectively, to

f1[−p∗](x∗)≥ f1[−p∗](x∗+χi−χ j) (∀ i, j ∈ {0,1, . . . ,n}),
f2[+p∗](x∗)≥ f2[+p∗](x∗+χi−χ j) (∀ i, j ∈ {0,1, . . . ,n}),

and for such p∗ we have

argmax
Z

( f1 + f2) = argmax
Z

f1[−p∗]∩ argmax
Z

f2[+p∗].

Moreover, if f1 and f2 are integer-valued, we can choose integer-valued p∗ ∈
Zn.

An extension of the M\-concave intersection theorem is given in Theorem
10.4, which constitutes the technical pivot in the Fujishige–Tamura model that
unifies the stable marriage and the assignment game (see Remark 10.1).

Remark 9.1. Three different proofs are available for the M\-concave inter-
section theorem. The original proof (Murota, 1996a) is based on the reduction
of the M\-concave intersection problem to the M-convex submodular flow
problem; see Remark 12.2 in Section 12.1. Then Theorem 9.4 is derived
from the negative-cycle optimality criterion (Theorem 12.2) for the M-convex
submodular flow problem. The second proof is based on the reduction to the
discrete separation theorem, which is proved by the polyhedral-combinatorial
method using the (standard) separation theorem in convex analysis; see the
proof of Murota (2003, Theorem 8.15). The third proof Murota (2004b) is a
direct constructive proof based on the successive shortest path algorithm.
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9.2. Fenchel duality

Another expression of the duality principle is in the form of the Fenchel duality.
This is a min-max relation between a pair of convex and concave functions
and their conjugate functions. Such a min-max theorem is computationally
useful in that it affords a certificate of optimality.

We start with the continuous case. For a function f : Rn→R∪{+∞} with
dom f 6= /0, the convex conjugate f • : Rn→ R∪{+∞} is defined by51

f •(p) = sup{〈p,x〉− f (x) | x ∈ Rn} (p ∈ Rn). (9.3)

For h : Rn→R∪{−∞}, the concave conjugate h◦ : Rn→R∪{−∞} is defined
by

h◦(p) = inf{〈p,x〉−h(x) | x ∈ Rn} (p ∈ Rn). (9.4)

Theorem 9.5. Let f : Rn→R∪{+∞} and h : Rn→R∪{−∞} be convex and
concave functions, respectively (satisfying certain regularity conditions). Then

inf{ f (x)−h(x) | x ∈ Rn}= sup{h◦(p)− f •(p) | p ∈ Rn}.

We now turn to the discrete case. For any functions f : Zn→ Z∪{+∞}
and h : Zn→ Z∪{−∞}, we define the discrete versions of (9.3) and (9.4) as

f •(p) = sup{〈p,x〉− f (x) | x ∈ Zn} (p ∈ Zn), (9.5)
h◦(p) = inf{〈p,x〉−h(x) | x ∈ Zn} (p ∈ Zn). (9.6)

Then we have a chain of inequalities:

inf{ f (x)−h(x) | x ∈ Zn} sup{h◦(p)− f •(p) | p ∈ Zn}≥ ≥

inf{ f (x)−h(x) | x ∈ Rn} ≥ sup{h◦(p)− f •(p) | p ∈ Rn},
(9.7)

where f and h are the convex and concave closures of f and h, respectively,
and f • and h

◦ are defined by (9.3) for f and (9.4) for h. We observe that

1. The second inequality (≥) in the middle of (9.7) is in fact an equality
(=) (under mild regularity conditions) by the Fenchel duality theorem in
convex analysis (Theorem 9.5);

51 We have f •(p) =− f4(−p) and h◦(p) =−hO(p) in the notation of (7.10) and (7.11).
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2. The first inequality ( ≥ ) in the left of (9.7) can be strict (i.e., 6=) even
when f is convex-extensible and h is concave-extensible, and similarly
for the third inequality ( ≥ ) in the right. See Examples 9.1 and 9.2
below.52

Example 9.1. For f ,h : Z2→ Z defined as

f (x1,x2) = |x1 + x2−1|, h(x1,x2) = 1−|x1− x2|
we have inf{ f −h}= 0, inf{ f −h}=−1. The conjugate functions (9.5) and
(9.6) are given by

f •(p1, p2)=

{
p1 ((p1, p2) ∈ S)
+∞ (otherwise), h◦(p1, p2)=

{
−1 ((p1, p2) ∈ T )
−∞ (otherwise)

with S = {(−1,−1),(0,0),(1,1)} and T = {(−1,1),(0,0),(1,−1)}. Hence
sup{h◦− f •}= h◦(0,0)− f •(0,0) =−1−0 =−1. Then (9.7) reads as

inf{ f −h} > inf{ f −h} = sup{h◦− f •} = sup{h◦− f •}.
(0) (−1) (−1) (−1)

Example 9.2. For f ,h : Z2→ Z defined as

f (x1,x2) = max(0,x1 + x2), h(x1,x2) = min(x1,x2)

we have inf{ f − h} = inf{ f − h} = 0. The conjugate functions (9.5) and
(9.6) are given as f • = δS and h◦ = −δT in terms of the (convex) indicator
functions53 of S = {(0,0),(1,1)} and T = {(1,0),(0,1)}. Since S∩T = /0,
the function h◦− f • is identically equal to −∞, whereas sup{h◦− f •} = 0
since f • = δS, h

◦
=−δT and S∩T = {(1/2,1/2)}. Then (9.7) reads as

inf{ f −h} = inf{ f −h} = sup{h◦− f •} > sup{h◦− f •}.
(0) (0) (0) (−∞)

The Fenchel-type duality holds for M\-convex/M\-concave functions and
L\-convex/L\-concave functions. The Fenchel-type duality theorem originates
in Murota (1996a) (see also Murota, 1998) and formulated into the following
form in Murota (2003). The essence of the theorem is the assertion that the first
and third inequalities in (9.7) are in fact equalities for M\-convex/M\-concave
functions and L\-convex/L\-concave functions.

52 These examples are taken from Murota (2009).
53 δS(p) = 0 for p ∈ S and =+∞ for p 6∈ S.

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 233 — #237

“p˙05” — 2016/12/18 — 22:56 — page 233 — #83

Kazuo Murota 233

Theorem 9.6 (Fenchel-type duality theorem).
(1) Let f : Zn→ Z∪{+∞} be an integer-valued M\-convex function and h :
Zn→ Z∪{−∞} be an integer-valued M\-concave function such that domZ f ∩
domZh 6= /0 or domZ f •∩domZh◦ 6= /0, where f • and h◦ are defined by (9.5)
and (9.6). Then we have

inf{ f (x)−h(x) | x ∈ Zn}= sup{h◦(p)− f •(p) | p ∈ Zn}. (9.8)

If this common value is finite, the infimum and the supremum are attained.
(2) Let g : Zn→ Z∪{+∞} be an integer-valued L\-convex function and k :
Zn→ Z∪{−∞} be an integer-valued L\-concave function such that domZg∩
domZk 6= /0 or domZg•∩ domZk◦ 6= /0, where g• and k◦ are defined by (9.5)
and (9.6). Then we have

inf{g(p)− k(p) | p ∈ Zn}= sup{k◦(x)−g•(x) | x ∈ Zn}. (9.9)

If this common value is finite, the infimum and the supremum are attained.

The Fenchel-type duality theorem can be formulated for real-valued functi-
ons f ,g : Zn → R∪ {+∞} and h,k : Zn → R∪ {−∞} as well; see Murota
(2003, Theorem 8.21).

Remark 9.2. For the Fenchel-type duality, the two functions must be consis-
tent with respect to the types (M\ or L\). In Example 9.1, f is M\-convex and
h is L\-concave. This is also the case in Example 9.2.

Remark 9.3. Whereas the L\-separation and M\-separation theorems are
parallel or conjugate to each other in their statements, the Fenchel-type duality
theorem is self-conjugate, in that the substitution of f = g• and h = k◦ into
(9.8) results in (9.9) by virtue of the biconjugacy g = (g•)• and k = (k◦)◦

(Theorem 7.9). With the knowledge of M-/L-conjugacy (Section 7.2), these
three duality theorems are almost equivalent to one another; once one of them
is established, the other two theorems can be derived by relatively easy formal
calculations.

9.3. Concluding remarks of section 9

The significance of the duality theorems of this section in combinatorial op-
timization is mentioned here. Frank’s discrete separation theorem (Frank,

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 234 — #238

“p˙05” — 2016/12/18 — 22:56 — page 234 — #84

234 Discrete convex analysis

1982) for submodular/supermodular set functions is a special case of the L\-
separation theorem. Frank’s weight splitting theorem (Frank, 1981) for the
weighted matroid intersection problem is a special case of the M\-concave
intersection problem. Edmonds’s intersection theorem (Edmonds, 1970) for
(poly) matroids in the integral case is a special case of the Fenchel-type duality
(Theorem 9.6 (1)). Fujishige’s Fenchel-type duality theorem (Fujishige, 1984)
for submodular set functions is a special case of Theorem 9.6 (2). Murota
(2003, Section 8.2.3) gives more details.

10. STABLE MARRIAGE AND ASSIGNMENT GAME

Two-sided matching (Roth & Sotomayor, 1990; Abdulkadiroğlu & Sönmez,
2013) affords a fairly general framework in game theory, including the stable
matching of Gale & Shapley (1962) and the assignment model of Shapley
& Shubik (1972) as special cases. An even more general framework has
been proposed by Fujishige & Tamura (2007) in which the existence of an
equilibrium is established on the basis of a novel duality-related property of
M\-concave functions. The results of Fujishige & Tamura (2007) are described
in this section.54

10.1. Fujishige–Tamura model

Let P and Q be finite sets and put

E = P×Q = {(i, j) | i ∈ P, j ∈ Q},

where we think of P as a set of workers and Q as a set of firms, respectively.
We suppose that worker i works at firm j for xi j units of time, gaining a salary
si j per unit time. Then the labor allocation is represented by an integer vector

x = (xi j | (i, j) ∈ E) ∈ ZE

and the salary by a real vector s = (si j | (i, j) ∈ E) ∈ RE . We are interested in
the stability of a pair (x,s) in the sense to be made precise later.

For i ∈ P and j ∈ Q we put

E(i) = {i}×Q = {(i, j) | j ∈ Q}, E( j) = P×{ j}= {(i, j) | i ∈ P},
54 This section is based on Murota (2009, Section 11.10).
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and for a vector y on E we denote by y(i) and y( j) the restrictions of y to E(i)
and E( j), respectively. For example, for the labor allocation x we obtain

x(i) = (xi j | j ∈ Q) ∈ ZE(i), x( j) = (xi j | i ∈ P) ∈ ZE( j)

and this convention also applies to the salary vector s to yield s(i) and s( j).
It is supposed that for each (i, j) ∈ E lower and upper bounds on the salary

si j are given, denoted by π i j ∈R∪{−∞} and π i j ∈R∪{+∞}, where π i j ≤ π i j.
A salary s is called feasible if π i j ≤ si j ≤ π i j for all (i, j) ∈ E. We put

π =(π i j | (i, j)∈E)∈ (R∪{−∞})E , π =(π i j | (i, j)∈E)∈ (R∪{+∞})E .

Each agent (worker or firm) k ∈ P∪Q evaluates his/her state x(k) of labor
allocation in monetary terms through a function fk : ZE(k) → R∪{−∞}. Here
the effective domain dom fk = {z ∈ ZE(k) | fk(z)>−∞} is assumed to satisfy
the following natural condition:

dom fk is bounded and hereditary, with unique minimal element 0, (10.1)

where dom fk being hereditary means that 0 ≤ z ≤ y ∈ dom fk implies z ∈
dom fk. In what follows we always assume that x is feasible in the sense that

x(i) ∈ dom fi (i ∈ P), x( j) ∈ dom f j ( j ∈ Q).

A pair (x,s) of feasible allocation x and feasible salary s is called an outcome.

Example 10.1. The stable marriage problem can be formulated as a special
case of the present setting. Put π = π = 0 and define fi : ZE(i) → R∪{−∞}
for i ∈ P and f j : ZE( j) → R∪{−∞} for j ∈ Q as

fi(y) =





ai j (y = χ j, j ∈ Q),
0 (y = 0),
−∞ (otherwise),

f j(z) =





bi j (z = χi, i ∈ P),
0 (z = 0),
−∞ (otherwise),

(10.2)

where the vector (ai j | j ∈ Q) ∈ RQ represents (or, is an encoding of) the pre-
ference of “man” i ∈ P over “women” Q, and (bi j | i ∈ P) ∈ RP the preference
of “woman” j ∈ Q over “men” P. Then a matching X is stable if and only if
(x,s) = (χX ,0) is stable in the present model.
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Example 10.2. The assignment model is a special case where π =(−∞, . . . ,−∞),
π = (+∞, . . . ,+∞) and the functions fi and f j are of the form of (10.2) with
some ai j,bi j ∈ R for all i ∈ P, j ∈ Q.

10.2. Market equilibrium

Given an outcome (x,s) the payoff of worker i ∈ P is defined to be the sum of
his/her evaluation of x(i) and the total income from firms:

fi(x(i))+ ∑
j∈Q

si jxi j (=: ( fi + s(i))(x(i))). (10.3)

Similarly, the payoff of firm j ∈ Q is defined as

f j(x( j))−∑
i∈P

si jxi j (=: ( f j− s( j))(x( j))). (10.4)

Each agent (i ∈ P or j ∈ Q) naturally wishes to maximize his/her payoff
function.55

A market equilibrium is defined as an outcome (x,s) that is stable under
reasonable actions (i) by each worker i, (ii) by each firm j, and (iii) by each
worker-firm pair (i, j). To be specific, we say that (x,s) is stable with respect
to i ∈ P if

( fi + s(i))(x(i)) = max{( fi + s(i))(y) | y≤ x(i)}. (10.5)

Similarly, (x,s) is said to be stable with respect to j ∈ Q if

( f j− s( j))(x( j)) = max{( f j− s( j))(z) | z≤ x( j)}. (10.6)

In technical terms (x,s) is said to satisfy the incentive constraint if it satisfies
(10.5) and (10.6).

The stability of (x,s) with respect to (i, j) is defined as follows. Suppose
that worker i and firm j think of a change of their contract to a new salary
α ∈ [π i j,π i j]R and a new working time of β ∈ Z+ units. Worker i will be
happy with this contract if there exists y ∈ ZE(i) such that

y j = β , yk ≤ xik (k ∈ Q\{ j}), (10.7)

( fi + s(i))(x(i))< ( fi +(s− j
(i) ,α))(y), (10.8)

55 We have ( fi + s(i))(x(i)) = fi[+s(i)](x(i)) and ( f j− s( j))(x( j)) = f j[−s( j)](x( j)) in the notation
of (4.20).
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where (s− j
(i) ,α) denotes the vector s(i) with its j-th component replaced by α .

Note that y means the new labor allocation of worker i with an increased payoff
given on the right-hand side of (10.8). Similarly, firm j is motivated to make
the new contract if there exists z ∈ ZE( j) such that

zi = β , zk ≤ xk j (k ∈ P\{i}), (10.9)

( f j− s( j))(x( j))< ( f j− (s−i
( j),α))(z), (10.10)

where (s−i
( j),α) is the vector s( j) with its i-th component replaced by α . Then

we say that (x,s) is stable with respect to (i, j) if there exists no (α,β ,y,z) that
simultaneously satisfies (10.7), (10.8), (10.9) and (10.10).

We now define an outcome (x,s) to be stable if, for every i ∈ P, j ∈ Q,
(x,s) is (i) stable with respect to i, (ii) stable with respect to j, and (iii) stable
with respect to (i, j). This is our concept of market equilibrium.

A remarkable fact, found by Fujishige & Tamura (2007), is that a market
equilibrium exists if the functions fk are M\-concave.

Theorem 10.1. Assume that π ≤ π and, for each k ∈ P∪Q, fk is an M\-
concave function satisfying (10.1). Then a stable outcome (x,s) ∈ ZE ×RE

exists. Furthermore, we can take an integral s ∈ ZE if π ∈ (Z∪ {−∞})E ,
π ∈ (Z∪{+∞})E , and fk is integer-valued for every k ∈ P∪Q.

10.3. Technical ingredients

The technical ingredients of the above theorem can be divided into the fol-
lowing two theorems, due to Fujishige & Tamura (2007). Note also that
sufficiency part of Theorem 10.2 (which we need here) is independent of
M\-concavity.

Theorem 10.2. Under the same assumption as in Theorem 10.1 let x be a
feasible allocation. Then (x,s) is a stable outcome for some s if and only if
there exist p ∈ RE , u = (u(i) | i ∈ P) ∈ (Z∪{+∞})E and v = (v( j) | j ∈ Q) ∈
(Z∪{+∞})E such that

x(i) ∈ argmax{( fi + p(i))(y) | y≤ u(i)}, (10.11)
x( j) ∈ argmax{( f j− p( j))(z) | z≤ v( j)}, (10.12)
π ≤ p≤ π, (10.13)
(i, j) ∈ E,ui j <+∞ =⇒ pi j = π i j,vi j =+∞, (10.14)
(i, j) ∈ E,vi j <+∞ =⇒ pi j = π i j,ui j =+∞. (10.15)
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Moreover, (x, p) is a stable outcome for any (x, p,u,v) satisfying the above
conditions.

Theorem 10.3. Under the same assumption as in Theorem 10.1 there exists
(x, p,u,v) that satisfies (10.11)–(10.15). Furthermore, we can take an integral
p ∈ ZE if π ∈ (Z∪{−∞})E , π ∈ (Z∪{+∞})E , and fk is integer-valued for
every k ∈ P∪Q.

It is worth while noting that the essence of Theorem 10.3 is an intersection-
type theorem for a pair of M\-concave functions, Theorem 10.4 below, due to
Fujishige & Tamura (2007). Indeed Theorem 10.3 can be derived easily from
Theorem 10.4 applied to

fP(x) = ∑
i∈P

fi(x(i)), fQ(x) = ∑
j∈Q

f j(x( j)). (10.16)

Theorem 10.4. Assume π ≤ π for π ∈ (R∪{−∞})E and π ∈ (R∪{+∞})E ,
and let f ,g : ZE → R∪{−∞} be M\-concave functions such that the effective
domains are bounded and hereditary, with unique minimal element 0. Then
there exist x∈ dom f ∩domg, p∈RE , u∈ (Z∪{+∞})E and v∈ (Z∪{+∞})E

such that

x ∈ argmax{( f + p)(y) | y≤ u}, (10.17)
x ∈ argmax{(g− p)(z) | z≤ v}, (10.18)
π ≤ p≤ π, (10.19)
e ∈ E,ue <+∞ =⇒ pe = πe,ve =+∞, (10.20)
e ∈ E,ve <+∞ =⇒ pe = πe,ue =+∞. (10.21)

Furthermore, we can take an integral p ∈ ZE if π ∈ (Z∪{−∞})E , π ∈ (Z∪
{+∞})E , and f and g are integer-valued.

Remark 10.1. Two special cases of Theorem 10.4 are worth mentioning.

• The first case is where π = (−∞, . . . ,−∞) and π = (+∞, . . . ,+∞). In
this case, (10.19) is void, and we must have ue = ve = +∞ for all e ∈
E by (10.20) and (10.21). Therefore, the assertion of Theorem 10.4
reduces to: There exist x ∈ dom f ∩ domg and p ∈ RE such that x ∈
argmax( f + p) and x ∈ argmax(g− p), which coincides with the M\-
concave intersection theorem (Theorem 9.4).
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• The second case is where π = π = 0, which corresponds to the discrete
concave stable marriage model of Eguchi et al. (2003). Let w be a vector
such that y ≤ w for all y ∈ dom f ∩ domg. By (10.19) we must have
pe = 0 for all e ∈ E. For each e ∈ E, we must have ue =+∞ or ve =+∞
(or both) by (10.20) and (10.21). Therefore, the assertion of Theorem
10.4 reduces to: There exist x ∈ dom f ∩domg, u∈ZE , and v∈ZE such
that w = u∨v, x ∈ argmax{ f (y) | y≤ u}, and x ∈ argmax{g(z) | z≤ v}.
This is the main technical result of Eguchi et al. (2003) that implies the
existence of a stable allocation in their model.

10.4. Concluding remarks of section 10

The Fujishige–Tamura model contains several recently proposed matching
models such as Eriksson & Karlander (2000), Fleiner (2001), Sotomayor
(2002) as well as Eguchi & Fujishige (2002), Eguchi et al. (2003), Fujishige &
Tamura (2006) as special cases. In particular, the hybrid model of Eriksson &
Karlander (2000), with flexible and rigid agents, is a special case where P and
Q are partitioned as P = P∞∪P0 and Q = Q∞∪Q0, and π i j =−∞, π i j =+∞
for (i, j) ∈ P∞×Q∞ and π i j = π i j = 0 for other (i, j). Realistic constraints
on matchings such as lower quotas can be expressed in terms of matroids
(Fleiner, 2001; Fleiner & Kamiyama, 2016; Kojima et al., 2014; Goto et al.,
2016; Yokoi, 2016).

11. VALUATED ASSIGNMENT PROBLEM

As we have seen in Sections 3.6 and 6.2, M\-concave set functions are amenable
to (bipartite) graph structures. As a further step in this direction we describe the
valuated (independent) assignment problem, introduced by Murota (1996b,c).
In contrast to the original formulation of the problem in terms of valuated
matroids (or M-convex set functions), we present here a reformulation in terms
of M\-concave set functions for the convenience of applications to economics
and game theory.

11.1. Problem description

The problem we consider is the following:56

56 This problem is a variant of the valuated independent assignment problem.
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V+ V−
A

Mf + f −

w

Figure 4: Valuated assignment problem

[M\-concave matching problem] Given a bipartite graph G=(V+,V−;A),
a pair of M\-concave set functions f+ : 2V+ → R∪{−∞} and f− : 2V+ →
R∪{−∞}, and a weight function w : A→ R (see Fig. 4), find a matching
M (⊆ A) that maximizes

w(M)+ f+(∂+M)+ f−(∂−M), (11.1)

where w(M) = ∑{w(a) | a ∈M}, and ∂+M (resp., ∂−M) denotes the set of
the vertices in V+ (resp., V−) incident to M. For (11.1) to be finite, we have
implicit constraints that

∂+M ∈ dom f+, ∂−M ∈ dom f−. (11.2)

In applications the empty set often belongs to dom f+ (resp., dom f−), in
which case dom f+ (resp., dom f−) forms the family of independent sets of a
matroid. If f+ ≡ 0 and f− ≡ 0 (with dom f+ = 2V+

and dom f− = 2V−), this
problem coincides with the conventional weighted matching problem.

An important special case of the M\-concave matching problem arises
from a very special underlying graph G≡ = (V+,V−;A≡) that represents a
one-to-one correspondence between V+ and V−. In other words, given a pair
of M\-concave set functions f1, f2 : 2V → R∪{−∞} and a weight function
w : V →R, let V+ and V− be disjoint copies of V and A≡ = {(v+,v−) | v∈V},
where v+ ∈V+ and v− ∈V− denote the copies of v ∈V . The given functions
f1 and f2 are regarded as set functions on V+ and V−, respectively. Then we
obtain the following problem:

[M\-concave intersection problem] Given a pair of M\-concave set functi-
ons f1, f2 : 2V → R∪{−∞} and a weight function w : V → R, find a subset X
that maximizes

w(X)+ f1(X)+ f2(X), (11.3)

where w(X) = ∑v∈X w(v).
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11.2. Optimality criterion by potentials

We show the optimality criterion for the M\-concave matching problem in
terms of potentials, where a potential means a function p : V+∪V−→R (or a
vector p ∈ RV+∪V−) on the vertex set V+∪V−. In the following theorem due
to Murota (1996c) (see also Murota, 2000b, Theorem 5.2.39), the statement (1)
refers to the existence of an appropriate potential, whereas its reformulation
in (2) reveals the duality nature.57 For each arc a = (u,v) ∈ A, ∂+a denotes
the initial (tail) vertex of a, and ∂−a the terminal (head) vertex of a, i.e.,
∂+a = u ∈ V+ and ∂−a = v ∈ V−, where all the arcs are assumed to be
directed from V+ to V−.

Theorem 11.1 (Potential criterion). Let M be a matching in G = (V+,V−;A)
satisfying (11.2) for the M\-concave matching problem to maximize (11.1).
(1) M is an optimal matching if and only if there exists a potential p : V+∪
V−→ R such that

(i) w(a)− p(∂+a)+ p(∂−a)
{
≤ 0 (a ∈ A),
= 0 (a ∈M),

(ii) ∂+M is a maximizer of f+[+p+],
(iii) ∂−M is a maximizer of f−[−p−],

where p+ and p− are the restrictions of p to V+ and V−, respectively, and
f+[+p+] and f−[−p−] are defined by

f+[+p+](X) = f+(X)+∑{p(u) | u ∈ X} (X ⊆V+),

f−[−p−](Y ) = f−(Y )−∑{p(v) | v ∈ Y} (Y ⊆V−).

(2)

maxM{w(M)+ f+(∂+M)+ f−(∂−M)}=
minp{max( f+[+p+])+max( f−[−p−]) |
w(a)− p(∂+a)+ p(∂−a)≤ 0 (a ∈ A)}.

(3) If f+, f− and w are all integer-valued, the potential p in (1) and (2) can
be chosen to be integer-valued.
(4) Let p be a potential that satisfies (i)–(iii) in (1) for some (optimal) matching
M = M0. A matching M′ is optimal if and only if it satisfies (i)–(iii) (with M
replaced by M′).

57 Compare the identity in (2) with the Fenchel-type duality in Theorem 9.6.
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In connection to (ii) and (iii) in (1) in Theorem 11.1, Theorem 3.4 shows:

X ∈ argmax( f+[+p+]) ⇐⇒



f+(X)− f+(X−u+ v)+ p(u)− p(v)≥ 0 (∀u ∈ X , ∀v ∈V+ \X),
f+(X)− f+(X−u)+ p(u)≥ 0 (∀u ∈ X),
f+(X)− f+(X + v)− p(v)≥ 0 (∀v ∈V+ \X),

(11.4)

Y ∈ argmax( f−[−p−]) ⇐⇒



f−(Y )− f−(Y −u+ v)− p(u)+ p(v)≥ 0 (∀u ∈ Y, ∀v ∈V− \Y ),
f−(Y )− f−(Y −u)− p(u)≥ 0 (∀u ∈ Y ),
f−(Y )− f−(Y + v)+ p(v)≥ 0 (∀v ∈V− \Y ).

(11.5)

These expressions are crucial in deriving the second optimality criterion (The-
orem 11.3) in Section 11.3 and in designing efficient algorithms for the M\-
concave matching problem.

The optimality condition for the M\-concave intersection problem (11.3)
deserves a separate statement in the form of weight splitting, though it is an
immediate corollary of the above theorem.

Theorem 11.2 (Weight splitting for M\-concave intersection).
(1) A subset X ⊆V maximizes w(X)+ f1(X)+ f2(X) if and only if there exist
w1,w2 : V → R such that

(i) [“weight splitting”] w(v) = w1(v)+w2(v) (v ∈V ),
(ii) X is a maximizer of f1[+w1],
(iii) X is a maximizer of f2[+w2].

(2) max
X
{w(X)+ f1(X)+ f2(X)}

= min
w1,w2
{max( f1[+w1])+max( f2[+w2]) | w(v) = w1(v)+w2(v) (v ∈V )}.

(3) If f1, f2 and w are all integer-valued, we may assume that w1,w2 : V → Z.

11.3. Optimality criterion by negative-cycles

As the second criterion for optimality we describe the negative-cycle criterion.
First we need to introduce the auxiliary graph GM = (Ṽ ,AM) associated with a
matching M satisfying ∂+M ∈ dom f+ and ∂−M ∈ dom f− in (11.2). Define
X = ∂+M and Y = ∂−M.

The vertex set Ṽ of the auxiliary graph GM is given by Ṽ = V+∪V−∪
{s+,s−}, where s+ and s− are new vertices often referred to as “source vertex”
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and “sink vertex” respectively. The arc set AM consists of nine disjoint parts:

AM = (A◦∪M◦)∪ (A+∪F+∪S+)∪ (A−∪F−∪S−)∪R,

where58

A◦ = {a | a ∈ A} (copy of A),

M◦ = {a | a ∈M} (a: reorientation of a),

A+ = {(u,v) | u ∈ X , v ∈V+ \X , X−u+ v ∈ dom f+},
F+ = {(u,s+) | u ∈ X}, (11.6)

S+ = {(s+,v) | v ∈V+ \X},
A− = {(v,u) | u ∈ Y, v ∈V− \Y, Y −u+ v ∈ dom f−},
F− = {(s−,u) | u ∈ Y},
S− = {(v,s−) | v ∈V− \Y},
R = {(s−,s+)}.

The arc length `M(a) for a ∈ AM is defined by

`M(a) =





−w(a) (a ∈ A◦),
w(a) (a = (u,v) ∈M◦, a = (v,u) ∈M),
f+(X)− f+(X−u+ v) (a = (u,v) ∈ A+),
f+(X)− f+(X−u) (a = (u,s+) ∈ F+),
f+(X)− f+(X + v) (a = (s+,v) ∈ S+),
f−(Y )− f−(Y −u+ v) (a = (v,u) ∈ A−),
f−(Y )− f−(Y −u) (a = (s−,u) ∈ F−),
f−(Y )− f−(Y + v) (a = (v,s−) ∈ S−),
0 (a = (s−,s+) ∈ R).

(11.7)

A directed cycle in GM of a negative length with respect to the arc length
`M is called a negative cycle. As is well known in network flow theory, there
exists no negative cycle in (GM, `M) if and only if there exists a potential
p : Ṽ → R such that

`M(a)+ p(∂+a)− p(∂−a)≥ 0 (a ∈ AM), (11.8)

where ∂+a denotes the initial (tail) vertex of a, and ∂−a the terminal (head)
vertex of a. With the use of (11.4), (11.5) and (11.8), Theorem 11.1 is translated
into the following theorem; see Remark 11.1. This theorem gives an optimality
criterion in terms of negative cycles; see Murota (1996c) and Murota (2000b,
Theorem 5.2.42).

58 The reorientation of an arc a = (u,v) means the arc (v,u), to be denoted as a.
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Theorem 11.3 (Negative-cycle criterion). In the M\-concave matching pro-
blem to maximize (11.1), a matching M satisfying (11.2) is optimal if and only
if there exists in the auxiliary graph GM no negative cycle with respect to the
arc length `M.

Remark 11.1. The condition (11.8) for a ∈ (F+ ∪ S+)∪ (F− ∪ S−) refers
to p(s+) and p(s−), while the potential p in Theorem 11.1 is defined only
on V+ ∪V−. To derive (11.8) from Theorem 11.1 we may define p(s+) =
p(s−) = 0. Indeed, the conditions imposed on p(s+) by (11.8) are

f+(X)− f+(X−u)+ p(u)− p(s+)≥ 0 (u ∈ X),

f+(X)− f+(X + v)+ p(s+)− p(v)≥ 0 (v ∈V+ \X),

which are satisfied by (11.4) if p(s+) = 0. Similarly for p(s−).

11.4. Concluding remarks of section 11

Theorems 11.1 and 11.3 contain several standard results in matroid optimiza-
tion, such as Frank’s weight splitting theorem (Frank, 1981) for the weighted
matroid intersection problem. The proofs of Theorems 11.1 and 11.3 can be
found in Murota (1996c) and Murota (2000b, Section 5.2). There are two
key lemmas, called “upper-bound lemma” and “unique-max lemma,” which
capture the essential properties inherent in M-concavity. On the basis of these
optimality criteria efficient algorithms can be designed for the M\-concave
matching problem. For algorithmic issues, see Murota (1996b) and Murota
(2000b, Section 6.2).

The valuated matching problem treated in this section is generalized to the
submodular flow problem in Section 12.

12. SUBMODULAR FLOW PROBLEM

12.1. Submodular flow problem

Let G = (V,A) be a directed graph with vertex set V and arc set A. Suppose
that each arc a ∈ A is associated with upper-capacity c(a), lower-capacity c(a),
and cost γ(a) per unit flow. Furthermore, for each vertex v ∈V , the amount of
flow supply at v is specified by x(v).

The minimum cost flow problem is to find a flow ξ = (ξ (a) | a ∈ A)
that minimizes the total cost 〈γ,ξ 〉A = ∑a∈A γ(a)ξ (a) subject to the capacity
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constraint c(a)≤ ξ (a)≤ c(a) (a ∈ A) and the supply specification. Here the
supply specification means a constraint that the boundary ∂ξ of ξ defined by

∂ξ (v) = ∑{ξ (a) | a ∈ δ+v}−∑{ξ (a) | a ∈ δ−v} (v ∈V ) (12.1)

should be equal to a given value x(v), where δ+v and δ−v denote the sets of
arcs leaving (going out of) v and entering (coming into) v, respectively. We
can interpret x(v) = ∂ξ (v) as the net amount of flow entering the network at v
from outside.

We consider the integer flow problem, which is described by an integer-
valued upper-capacity c : A→ Z∪{+∞}, an integer-valued lower-capacity
c : A→Z∪{−∞}, a real-valued cost function γ : A→R, and an integer supply
vector x : V → Z, where it is assumed that c(a) ≥ c(a) for each a ∈ A. The
variable to be optimized is an integral flow ξ : A→ Z.

[Minimum cost flow problem MCFP (linear arc cost)]59

Minimize Γ0(ξ ) = ∑
a∈A

γ(a)ξ (a) (12.2)

subject to c(a)≤ ξ (a)≤ c(a) (a ∈ A), (12.3)
∂ξ = x, (12.4)
ξ (a) ∈ Z (a ∈ A). (12.5)

A generalization of the minimum cost flow problem MCFP is obtained
by relaxing the supply specification ∂ξ = x to the constraint that the flow
boundary ∂ξ should belong to a given subset B of ZV representing “feasible”
or “admissible” supplies:60

∂ξ ∈ B. (12.6)

Such problem is called the submodular flow problem, if B is an M-convex set
(integral base polyhedron; see Remark 4.2).61 This problem is introduced by
Edmonds & Giles (1977).

59 MCFP stands for Minimum Cost Flow Problem.
60 By the flow conservation law, the sum of the components of ∂ξ is equal to zero, i.e., ∂ξ (V )= 0,

for any flow ξ . Accordingly we assume that B is contained in the hyperplane {x ∈RV | x(V ) =
0}.

61 In the conventional formulation (Fujishige, 2005, Chapter III), the M-convex set B is given by
an integer-valued submodular set function that describes B; see also Murota (2003, Section
4.4).

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 246 — #250

“p˙05” — 2016/12/18 — 22:56 — page 246 — #96

246 Discrete convex analysis

[Submodular flow problem MSFP1 (linear arc cost)]62

Minimize Γ1(ξ ) = ∑
a∈A

γ(a)ξ (a) (12.7)

subject to c(a)≤ ξ (a)≤ c(a) (a ∈ A), (12.8)
∂ξ ∈ B, (12.9)
ξ (a) ∈ Z (a ∈ A). (12.10)

A further generalization of the problem is obtained by introducing a cost
function for the flow boundary ∂ξ rather than merely imposing the constraint
∂ξ ∈ B. Namely, with a function f : ZV → R∪{+∞} we add a new term
f (∂ξ ) to the objective function, thereby imposing constraint ∂ξ ∈ B = dom f
implicitly. If the function f is M-convex, the generalized problem is called the
M-convex submodular flow problem, introduced by Murota (1999).

[M-convex submodular flow problem MSFP2 (linear arc cost)]

Minimize Γ2(ξ ) = ∑
a∈A

γ(a)ξ (a)+ f (∂ξ ) (12.11)

subject to c(a)≤ ξ (a)≤ c(a) (a ∈ A), (12.12)
∂ξ ∈ dom f , (12.13)
ξ (a) ∈ Z (a ∈ A). (12.14)

The special case of the M-convex submodular flow problem MSFP2 with a
{0,+∞}-valued f reduces to the submodular flow problem MSFP1.

A still further generalization is possible by replacing the linear arc cost
in Γ2 with a separable convex function. Namely, using univariate convex
functions63 fa : Z→ R∪{+∞} (a ∈ A), we consider ∑

a∈A
fa(ξ (a)) instead of

∑
a∈A

γ(a)ξ (a) to obtain MSFP3 below.

[M-convex submodular flow problem MSFP3 (nonlinear arc cost)]

Minimize Γ3(ξ ) = ∑
a∈A

fa(ξ (a))+ f (∂ξ ) (12.15)

subject to ξ (a) ∈ dom fa (a ∈ A), (12.16)
∂ξ ∈ dom f , (12.17)
ξ (a) ∈ Z (a ∈ A). (12.18)

62 MSFP stands for M-convex Submodular Flow Problem. We use denotation MSFPi with
i = 1,2,3 to indicate the hierarchy of generality in the problems.

63 fa(t−1)+ fa(t +1)≥ 2 fa(t) for all integers t.
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Obviously, MSFP2 is a special case of MSFP3 with

fa(t) =
{

γ(a)t (t ∈ [c(a),c(a)]Z),
+∞ (otherwise). (12.19)

Conversely, MSFP3 can be put into the form MSFP2; see Remark 12.1.

Remark 12.1. Problem MSFP3 on G = (V,A) can be written in the form of
MSFP2 on a larger graph G̃ = (Ṽ , Ã). We replace each arc a = (u,v) ∈ A
with a pair of arcs, a+ = (u,v−a ) and a− = (v+a ,v), where v+a and v−a are
newly introduced vertices. Accordingly, we have Ã = {a+,a− | a ∈ A} and
Ṽ = V ∪{v+a ,v−a | a ∈ A}. For each a ∈ A we consider a function f̃a : Z2→
R∪{+∞} given by

f̃a(t,s) =
{

fa(t) (t + s = 0),
+∞ (otherwise),

and define f̃ : ZṼ → R∪{+∞} by

f̃ (x̃) = ∑
a∈A

f̃a(x̃(v+a ), x̃(v
−
a ))+ f (x̃|V ) (x̃ ∈ ZṼ ),

where x̃|V denotes the restriction of x̃ to V . For a flow ξ̃ : Ã→ Z, we have
ξ̃ (a+) = ξ̃ (a−) if (∂ ξ̃ (v+a ),∂ ξ̃ (v−a )) ∈ dom f̃a. Problem MSFP3 is thus redu-
ced to MSFP2 with objective function Γ̃2(ξ̃ ) = f̃ (∂ ξ̃ ), where the function f̃ is
M-convex.

Remark 12.2. The M\-concave intersection problem (Section 9.1) can be
formulated as an M-convex submodular flow problem. Suppose we want to
maximize the sum f1(x)+ f2(x) of two M\-concave functions f1, f2 :Zn→R∪
{−∞}. Let f̃1, f̃2 : Zn+1→ R∪{−∞} be the associated M-concave functions;
see (4.18). We consider an M-convex submodular flow problem on the bipartite
graph G = (V1∪V2,A) in Fig. 5, where Vi = {vi0,vi1, . . . ,vin} for i = 1,2 and
A = {(v1 j,v2 j) | j = 0,1, . . . ,n}. The boundary cost function f : ZV1×ZV2 →
R∪{+∞} is defined by f (x1,x2) =− f̃1(x1)− f̃2(−x2) for x1 ∈ ZV1 and x2 ∈
ZV2 , which is an M-convex function. The arc costs are identically zero and
no capacity constraints are imposed (γ(a) = 0, c(a) = +∞, c(a) =−∞ for all
a ∈ A). Since x1 =−x2 if (x1,x2) = ∂ξ for a flow ξ in this network, this M-
convex submodular flow problem is equivalent to the problem of maximizing
f1(x)+ f2(x). Theorem 9.4 for the M-convex intersection problem can be
regarded as a special case of Theorem 12.1 for the M-convex submodular flow
problem.
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Figure 5: M-convex submodular flow problem for M\-concave intersection
problem

In subsequent sections we show optimality criteria for the M-convex sub-
modular flow problem in terms of potentials and negative cycles.

12.2. Optimality criterion by potentials

We show the optimality criterion for the M-convex submodular flow problem
MSFP3 in terms of potentials. A potential means a function p : V → R (or
a vector p ∈ RV ) on the vertex set V . The coboundary of a potential p is a
function δ p : A→ R on the arc set A defined by

δ p(a) = p(∂+a)− p(∂−a) (a ∈ A), (12.20)

where, for each arc a∈ A, ∂+a denotes the initial (tail) vertex of a and, ∂−a the
terminal (head) vertex of a. The following theorem is due to Murota (1999);
see also Murota (2003, Section 9.4).

Theorem 12.1 (Potential criterion). Consider the M-convex submodular flow
problem MSFP3.
(1) For a feasible flow ξ : A→ Z, two conditions (OPT) and (POT) below are
equivalent.

(OPT) ξ is an optimal flow.
(POT) There exists a potential p : V → R such that64

(i) ξ (a) ∈ argmin fa[+δ p(a)] for every a ∈ A, and
(ii) ∂ξ ∈ argmin f [−p].

(2) Suppose that a potential p : V →R satisfies (i) and (ii) above for an optimal
flow ξ . A feasible flow ξ ′ is optimal if and only if

64 By notation (4.20), fa[+δ p(a)] means the function defined as fa[+δ p(a)](t) = fa(t) +
(p(∂+a)− p(∂−a))t for all t ∈ Z.

Journal of Mechanism and Institution Design 1(1), 2016



“jMID-vol1(1)-01” — 2016/12/19 — 7:59 — page 249 — #253

“p˙05” — 2016/12/18 — 22:56 — page 249 — #99

Kazuo Murota 249

(i) ξ ′(a) ∈ argmin fa[+δ p(a)] for every a ∈ A, and
(ii) ∂ξ ′ ∈ argmin f [−p].

(3) If the cost functions fa (a ∈ A) and f are integer-valued, there exists an
integer-valued potential p : V → Z in (POT). Moreover, the set of integer-
valued optimal potentials,

Π∗ = {p | p : integer-valued optimal potential },

is an L-convex set.65

In connection to (i) and (ii) in (POT) in Theorem 12.1, note the equivalen-
ces:

ξ (a) ∈ argmin fa[+δ p(a)] ⇐⇒ for d =±1
fa(ξ (a)+d)− fa(ξ (a))+d[p(∂+a)− p(∂−a)]≥ 0, (12.21)
∂ξ ∈ argmin f [−p] ⇐⇒
∆ f (∂ξ ;v,u)+ p(u)− p(v)≥ 0 (∀u,v ∈V ), (12.22)

where

∆ f (z;v,u) = f (z+χv−χu)− f (z) (z ∈ dom f ;u,v ∈V ). (12.23)

These expressions are crucial in deriving the second optimality criterion (The-
orem 12.2) in Section 12.3 and in designing efficient algorithms for the M-
convex submodular flow problem.

12.3. Optimality criterion by negative cycles

The optimality of an M-convex submodular flow can also be characterized by
the nonexistence of negative cycles in an auxiliary network. This fact leads to
the cycle-cancelling algorithm. We consider the M-convex submodular flow
problem MSFP2 that has a linear arc cost. This is not restrictive, since MSFP3
can be put in the form of MSFP2 (Remark 12.1).

For a feasible flow ξ : A→ Z we define an auxiliary network as follows.
Let Gξ = (V,Aξ ) be a directed graph with vertex set V and arc set Aξ =

65 A nonempty set P⊆ Zn is called an L-convex set if it is an L\-convex set (Remark 7.4) such
that p ∈ P implies p+1, p−1 ∈ P. See Murota (2003, Chapter 5) for details.
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A◦ξ ∪B◦ξ ∪Cξ consisting of three disjoint parts:

A◦ξ = {a | a ∈ A, ξ (a)< c(a)},
B◦ξ = {a | a ∈ A, c(a)< ξ (a)} (a: reorientation of a),

Cξ = {(u,v) | u,v ∈V, u 6= v, ∂ξ − (χu−χv) ∈ dom f}. (12.24)

We define an arc length function `ξ : Aξ → R by

`ξ (a) =





γ(a) (a ∈ A◦ξ ),
−γ(a) (a ∈ B◦ξ , a ∈ A),
∆ f (∂ξ ;v,u) (a = (u,v) ∈Cξ ).

(12.25)

We refer to (Gξ , `ξ ) as the auxiliary network.
A directed cycle in Gξ of a negative length with respect to the arc length `ξ

is called a negative cycle. As is well known in network flow theory, there exists
no negative cycle in (Gξ , `ξ ) if and only if there exists a potential p : V → R
such that

`ξ (a)+ p(∂+a)− p(∂−a)≥ 0 (a ∈ Aξ ). (12.26)

With the use of (12.21), (12.22) and (12.26), Theorem 12.1 is translated into
the following theorem which gives an optimality criterion in terms of negative
cycles; see Murota (1999) and also Murota (2003, Section 9.5).

Theorem 12.2 (Negative-cycle criterion). For a feasible flow ξ : A→ Z to the
M-convex submodular flow problem MSFP2, the conditions (OPT) and (NNC)
below are equivalent.

(OPT) ξ is an optimal flow.
(NNC) There exists no negative cycle in the auxiliary network (Gξ , `ξ )

with `ξ of (12.25).

12.3.1. Cycle cancellation

The negative-cycle optimality criterion states that the existence of a negative
cycle implies the non-optimality of a feasible flow. This suggests the possibility
of improving a non-optimal feasible flow by the cancellation of a suitably
chosen negative cycle.

Suppose that negative cycles exist in the auxiliary network (Gξ , `ξ ) for
a feasible flow ξ , where the arc length `ξ is defined by (12.25). Choose a
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negative cycle having the smallest number of arcs, and let Q (⊆ Aξ ) be the set
of its arcs. Modifying the flow ξ along Q by a unit amount we obtain a new
flow ξ defined by

ξ (a) =





ξ (a)+1 (a ∈ Q∩A◦ξ ),
ξ (a)−1 (a ∈ Q∩B◦ξ ),
ξ (a) (otherwise).

(12.27)

The following theorem66 shows that the updated flow ξ is a feasible flow with
an improvement in the objective function in (12.11):

Γ2(ξ ) = ∑
a∈A

γ(a)ξ (a)+ f (∂ξ ).

Theorem 12.3. For a feasible flow ξ : A→ Z to the M-convex submodular
flow problem MSFP2, let Q be a negative cycle having the smallest number of
arcs in (Gξ , `ξ ). Then ξ in (12.27) is a feasible flow and

Γ2(ξ )≤ Γ2(ξ )+ `ξ (Q)< Γ2(ξ ). (12.28)

12.4. Concluding remarks of section 12

On the basis of the optimality criteria in Theorems 12.1 and 12.2 we can
design efficient algorithms for the M-convex submodular flow problem, where
the expressions (12.21) and (12.22) are crucial. For algorithmic issues, see
Murota (1999), Murota (2003, Section 10.4), Iwata & Shigeno (2003), Murota
& Tamura (2003a), and Iwata et al. (2005).

13. DISCRETE FIXED POINT THEOREM

Discrete fixed point theorems in discrete convex analysis originate in the
theorem of Iimura et al. (2005) based on Iimura (2003), which is described in
this section. Subsequent development and other types of discrete fixed point
theorems are mentioned in Section 13.5.

66 The inequality (12.28) is by no means obvious. See Murota (1999) and Murota (2003, Section
10.4) for the proof.
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13.1. Discrete fixed point theorem

To motivate the discrete fixed point theorem of Iimura et al. (2005), we first
take a glimpse at Kakutani’s fixed point theorem.

Let S be a subset of Rn and F be a set-valued mapping (correspondence)
from S to itself, which is denoted as F : S→→ S (or F : S→ 2S). A point
x ∈ S satisfying x ∈ F(x) is said to be a fixed point of F . Kakutani’s fixed point
theorem reads as follows.

Theorem 13.1. A set-valued mapping F : S→→ S, where S⊆ Rn, has a fixed
point if

(a) S is a bounded closed convex subset of Rn,
(b) For each x ∈ S, F(x) is a nonempty closed convex set, and
(c) F is upper-hemicontinuous.

In the discrete fixed point theorem (Theorem 13.2 below) we are concerned
with F : S→→ S, where S is a subset of Zn. The three conditions (a) to (c) in
Theorem 13.1 above are “discretized” as follows.

• Condition (a) assumes that the domain of definition S is nicely-shaped
or well-behaved. In the discrete case we assume S to be “integrally
convex.”

• Condition (b) assumes that each value F(x) is nicely-shaped or well-
behaved. In the discrete case we assume that F(x) = F(x)∩Zn, where
F(x) denotes the convex hull of F(x).

• Condition (c) assumes that mapping F is continuous in some appropriate
sense. In the discrete case we assume F to be “direction-preserving.”

The key concepts, “integrally convex set” and “direction-preserving map-
ping,” are explained in Section 13.2. The discrete fixed point theorem of Iimura
et al. (2005) is the following.

Theorem 13.2. A set-valued mapping F : S→→ S, where S⊆ Zn, has a fixed
point if

(a) S is a nonempty finite integrally convex subset of Zn,
(b) For each x ∈ S, F(x) is nonempty and F(x) = F(x)∩Zn, and
(c) F is direction-preserving.
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y y

Figure 6: Integral neighbor N(y) of y (◦: point of N(y))

Integrally convex Not integrally convex Not integrally convex

Figure 7: Concept of integrally convex sets

13.2. Integrally convex set and direction-preserving mapping

13.2.1. Integrally convex set

The integral neighborhood of a point y ∈ Rn is defined as

N(y) = {z ∈ Zn | ‖z− y‖∞ < 1}. (13.1)

See Fig. 6. A set S⊆ Zn is said to be integrally convex if

y ∈ S =⇒ y ∈ S∩N(y) (13.2)

for any y ∈ Rn (Favati & Tardella, 1990). Figure 7 illustrates this concept. We
have S = S∩Zn for an integrally convex set S. It is known that L\-convex sets
and M\-convex sets are integrally convex. See Murota (2003, Section 3.4) and
Moriguchi et al. (2016) for more about integral convexity.

13.2.2. Direction-preserving mapping

Let S be a subset of Zn and F : S→→ S be a set-valued mapping (corre-
spondence) from S to S. For x = (x1, . . . ,xn) ∈ Zn we denote by π(x) =
(π1(x), . . . ,πn(x)) ∈Rn the projection of x to F(x); see Fig. 8. This means that
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x

❥
π(x)

F(x)

Figure 8: Projection π(x) with σ(x) = sign(π(x)− x) = (+1,−1)

π(x) is the point of F(x) that is nearest to x with respect to the Euclidean norm.
We define the direction sign vector σ(x) ∈ {+1,0,−1}n as

σ(x) = (σ1(x), . . . ,σn(x)) = (sign(π1(x)− x1), . . . ,sign(πn(x)− xn)),

where

sign(y) =





+1 (y > 0),
0 (y = 0),
−1 (y < 0).

Then we say that F is direction-preserving if for all x,z ∈ S with ‖x− z‖∞ ≤ 1
it holds that

σi(x)> 0 =⇒ σi(z)≥ 0 (i = 1, . . . ,n). (13.3)

Note that this is equivalent to saying that σi(x)σi(z) 6=−1 for each i = 1, . . . ,n
if x,z ∈ S and ‖x− z‖∞ ≤ 1. Being direction-preserving is interpreted as being
“continuous” in the discrete setting.

13.3. Illustrative examples

Example 13.1. The significance of being direction-preserving is most transpa-
rent in the case of n = 1. Let S = [a,b]Z be an integer interval with a,b ∈ Z
and a≤ b. Consider F : S→→ S represented as F(x) = [α(x),β (x)]Z, where
α(x),β (x) ∈ Z and a ≤ α(x) ≤ β (x) ≤ b. The projection π(x) and the di-
rection sign vector σ(x) are given by

π(x)=





x (α(x)≤ x≤ β (x)),
α(x) (x≤ α(x)−1),
β (x) (x≥ β (x)+1),

σ(x)=





0 (α(x)≤ x≤ β (x)),
+1 (x≤ α(x)−1),
−1 (x≥ β (x)+1).
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Figure 9: Necessity of the assumption of integral convexity

Suppose that F is direction-preserving, which means σ(x)σ(x+1) 6=−1 for
all x with a≤ x < b. There are three possibilities:

(i) σ(x) = +1 for all x ∈ S,
(ii) σ(x) =−1 for all x ∈ S,
(iii) σ(x) = 0 for some x ∈ S.

In the first case (i) we must have x+ 1 ≤ α(x) ≤ b for all x ∈ S, but this is
impossible for x = b. Similarly, the second case (ii) is not possible, either.
Therefore, we must have the third case (iii), and then the x satisfying σ(x) = 0
is a fixed point of F .

Example 13.2. The assumption (a) of integral convexity in Theorem 13.2
cannot be weakened to the “hole-free” property: S = S∩Zn. Let n = 3 and
consider a subset S of Z3 (Fig. 9) given by

S = {a = (0,1,0), b = (1,0,0), c = (2,0,0), d = (3,0,0), e = (4,0,1)},
which is not integrally convex, but satisfies S = S∩Zn. Define F : S→→ S by

F(a) = F(b) = {e}, F(c) = {a,e}, F(d) = F(e) = {a}.
For each x ∈ S, F(x) is a nonempty subset of S satisfying F(x) = F(x)∩Zn.
Furthermore, F is direction-preserving. Indeed we have

π(a)−a = ( 4, −1, 1),
π(b)−b = ( 3, 0, 1),
π(c)− c = ( 0, 1/2, 1/2),
π(d)−d = (−3, 1, 0),
π(e)− e = (−4, 1, −1),

σ(a) = (+1, −1, +1),
σ(b) = (+1, 0, +1),
σ(c) = ( 0, +1, +1),
σ(d) = (−1, +1, 0),
σ(e) = (−1, +1, −1)

and the condition (13.3) holds for every pair (x,z) with ‖x− z‖∞ ≤ 1, i.e., for
(x,z) = (a,b),(b,c),(c,d),(d,e). Thus, F meets the conditions (b) and (c) in
Theorem 13.2, but F has no fixed point.
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13.4. Proof outline

The proof of Theorem 13.2 consists of the following three major steps; the
reader is referred to Iimura et al. (2005) for the detail.

1. An integrally convex set S has a simplicial decomposition T with a nice
property. For each y ∈ Rn contained in the convex hull of S, let T (y)
denote the smallest simplex in T that contains y. Then the simplicial
decomposition T has the property that all the vertices of T (y) belong to
the integral neighborhood N(y) of y. That is, the set of the vertices of
T (y), to be denoted by V (y), is given as V (y) = T (y)∩N(y).

2. With reference to the simplicial decomposition T , we define a piecewise
linear extension, say, f of the projection π by

f (y) = ∑
x∈V (y)

λxπ(x) (y = ∑
x∈V (y)

λxx, ∑
x∈V (y)

λx = 1, λx ≥ 0).

By Brouwer’s fixed point theorem applied to f : S→ S, we obtain a fixed
point y∗ ∈ S of f , i.e., y∗ = f (y∗).

3. From the equations

∑
x∈V (y∗)

λx(π(x)− x) = ∑
x∈V (y∗)

λxπ(x)− ∑
x∈V (y∗)

λxx = f (y∗)− y∗ = 0

and the assumption of F being direction-preserving, we see that π(x)−
x = 0 for some x ∈ V (y∗). Let x∗ be such a point in V (y∗). Then x∗

is a fixed point of F , since x∗ = π(x∗) ∈ F(x∗), from which follows
x∗ ∈ F(x∗)∩Zn = F(x∗) by condition (b).

13.5. Concluding remarks of section 13

The discrete fixed point theorem initiated by Iimura (2003) and Iimura et al.
(2005) aims at a discrete version of Brouwer’s fixed point theorem. Related
work in this direction includes Laan van der et al. (2006), Danilov & Koshevoi
(2007), Chen & Deng (2006, 2008, 2009), Yang (2008, 2009), Talman & Yang
(2009), Iimura & Yang (2009), Iimura (2010), Deng et al. (2011), Laan van
der et al. (2010, 2011), and Iimura et al. (2012). Discrete fixed point theorems
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are used successfully in showing the existence of a competitive equilibrium
under indivisibility, a pure Nash equilibrium with discrete strategy sets, etc.

Efforts are made to weaken the condition (c) of “direction preserving” in
Theorem 13.2. Weaker conditions called “locally gross direction preserving”
and “simplicially locally gross direction preserving” are considered by Yang
(2008, 2009), Iimura & Yang (2009), and Iimura (2010). Further variants are
found in Talman & Yang (2009), Laan van der et al. (2011), and Iimura et
al. (2012). These studies, however, share the framework of mappings and
correspondences defined on integrally convex sets or their simplicial divisions.

The proof of Theorem 13.2 by Iimura et al. (2005) is not constructive,
relying on Brouwer’s fixed point theorem. Constructive proofs are given by
Laan van der et al. (2006) and Laan van der et al. (2011). Computational com-
plexity of finding a fixed point for direction-preserving mappings is discussed
by Chen & Deng (2006, 2008, 2009) and Deng et al. (2011).

Another type of (discrete) fixed point theorem, the lattice-theoretical fixed
point theorem of Tarski (1955), is a powerful tool used extensively in eco-
nomics and game theory; see Milgrom & Roberts (1990), Vives (1990), and
Topkis (1998). For stable matchings, use and power of Tarski’s fixed point
theorem are demonstrated by Adachi (2000), Fleiner (2003), and Farooq et
al. (2012). It may be said, however, that Tarski’s fixed point theorem is rather
independent of discrete convex analysis.

Yet another type of discrete fixed point theorems are considered in the
literature, including Robert (1986), Shih & Dong (2005), Richard (2008), Yang
(2008), Sato & Kawasaki (2009) and Kawasaki et al. (2013).

14. OTHER TOPICS

14.1. Matching market and economy with indivisible goods

Since the seminal paper by Kelso & Crawford (1982), the concept of gross
substitutes with its variants has turned out to be pivotal in discussing matching
market and economy with indivisible goods. The literature includes, e.g., Roth
& Sotomayor (1990), Bikhchandani & Mamer (1997), Gul & Stacchetti (1999),
Ausubel & Milgrom (2002), Fujishige & Yang (2003), Milgrom (2004), Hat-
field & Milgrom (2005), Ausubel (2006), Sun & Yang (2006, 2009), Milgrom
& Strulovici (2009), Hatfield et al. (2016).

Application of discrete convex analysis to economics was started by Da-
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nilov et al. (1998, 2001) for the Walrasian equilibrium of indivisible markets
(see also Murota, 2003, chapter 11). The interaction between economics and
discrete convex analysis was reinforced decisively by the observation of Fu-
jishige & Yang (2003) that M\-concavity (of set functions) is equivalent to
the gross substitutes property (Theorem 3.7 in Section 3.3). This equivalence
is extended to functions in integer variables (Section 4.3). While the reader
is referred to Tamura (2004) and Murota (2003, chapter 11) for this earlier
development, we mention more recent papers below.

As described in Section 10, the Fujishige-Tamura model of two-sided
matching markets, proposed by Fujishige & Tamura (2006, 2007), is a common
generalization of the stable marriage model (Gale & Shapley, 1962) and the
assignment game (Shapley & Shubik, 1972).

Inoue (2008) uses the property of M\-convex sets that they are closed
under (Minkowski) summation, to show that the weak core in a finite exchange
economy is nonempty if every agent’s upper contour set is M\-convex. Kojima
et al. (2014) present a unified treatment of two-sided matching markets with
a variety of distributional constraints that can be represented by M\-concave
functions. It is shown that the generalized deferred acceptance algorithm is
strategy-proof and yields a stable matching. Yokote (2016) considers a market
in which each buyer demands at most one unit of commodity and each seller
produces multiple units of several types of commodities. The core and the
competitive equilibria are shown to exist and coincide under the assumption
that the cost function of each seller is M\-convex.

Algorithmic aspects of Walrasian equilibria are investigated by Paes Leme
& Wong (2016) in a general setting, in which the algorithms from discrete
convex analysis are singled out as efficient methods for the gross substitutes
case. See also Paes Leme (2014), Murota & Tamura (2003a) and Murota (2003,
Section 11.5).

14.2. Trading networks

M\-concavity plays a substantial role in the modeling and analysis of vertical
trading networks (supply chain networks) introduced by Ostrovsky (2008) and
further studied by Hatfield et al. (2013), Fleiner (2014), Fleiner et al. (2015),
Ikebe et al. (2015), Ikebe & Tamura (2015), and Candogan et al. (2016) in
more general settings.

In a trading network, an agent is identified with a vertex (node) of the
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network. In-coming arcs to a vertex represent the trades in which the agent
acts as a buyer and out-going arcs represent the trades in which the agent acts
as a seller. Each vertex v of the network is associated with a choice function
Cv and/or a valuation function fv of the agent, defined on the set Uv∪Wv of
the arcs incident to v, where Uv is the set of in-coming arcs to the vertex v and
Wv is the set of out-going arcs from v. In particular, the function fv is a set
function on Uv∪Wv in the single-unit case, whereas it is a function on ZUv∪Wv

in the multi-unit case.
In the single-unit case, Ostrovsky (2008) identifies the key property of a

choice function, called the same-side substitutability (SSS) and the cross-side
complementarity (CSC), which are discussed in Section 3.5. These properties
are satisfied by the choice function induced from a unique-selecting twisted
M\-concave valuation function fv, with twisting by Wv; see Theorem 3.13. The
multi-unit case is treated by Ikebe & Tamura (2015). The conditions (SSS)
and (CSC) are generalized to (SSS-CSC1[Z]) and (SSS-CSC2[Z]), and these
conditions are shown to be satisfied by the choice function induced from a
unique-selecting twisted M\-concave valuation fv; see Theorem 4.14 in Section
4.5.

Discrete convex analysis is especially relevant and useful when valuation
functions and the price vector p are explicitly involved in the model as in
Hatfield et al. (2013); Ikebe et al. (2015); Candogan et al. (2016). Specifically,
we can use the results from discrete convex analysis as follows:

• The existence of a competitive equilibrium (Hatfield et al., 2013, De-
finition 3) can be proved with the aid of the M\-concave intersection
theorem (Theorem 9.4).

• The lattice structure of the equilibrium price vectors can be shown
through the conjugacy relationship between M\-concavity and L\-convexity
(Section 7.2).

• The equivalence of chain stability and stability can be established with
the aid of the negative-cycle criterion for the M-convex submodular flow
problem (Theorem 12.2). Recall from Remark 12.2 that the M\-concave
intersection problem can be formulated as an M-convex submodular
flow problem.

• Fundamental computational problems for a trading network, such as
checking stability, computing a competitive equilibrium, and maximizing
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the welfare, can often be solved with the aid of algorithms known in
discrete convex analysis, such as those for maximizing M\-concave
functions and for solving the M-convex submodular flow problem. See
Candogan et al. (2016) as well as Murota & Tamura (2003a), Murota
(2003, Chapter 11), and Ikebe et al. (2015).

14.3. Congestion games

Congestion games (Rosenthal, 1973), which are equivalent to (exact) “finite”
potential games (Monderer & Shapley, 1996), are a class of games possessing
a Nash equilibrium in pure strategies. There are various generalizations of
potential games, such as: ordinal and generalized ordinal (Monderer & Shapley,
1996) and best-response (Voorneveld, 2000) potential games. For algorithmic
aspects of congestion games, we refer to Roughgarden (2007) and Tardos &
Wexler (2007).

Recently, a connection is made by Fujishige et al. (2015) between con-
gestion games on networks and discrete convex analysis. It has been known
(Fotakis, 2010) that for every congestion game on an extension-parallel net-
work, considered by Holzman & Law-yone (2003), any best-response sequence
reaches a pure Nash equilibrium of the game in n steps, where n is the number
of players. It is pointed out by Fujishige et al. (2015) that the fast convergence
of best-response sequences is a consequence of M\-convexity of the associated
potential function, which is a laminar convex function and hence is M\-convex;
see (4.35) in Section 4.6.

In economics, potential games on some subset of a Euclidean space are
more widely studied. A maximizer of (some sort of) potential function is
a Nash equilibrium. We also have the converse if the potential function
is “concave,” since local optimality implies the global optimality there. Ui
(2006, 2008) studies the condition for a local maximizer of a function on
the integer lattice to become a global maximizer of the function as well, with
application to best-response potential games on the integer lattice. In Ui (2008),
it is shown that a condition analogous to midpoint concavity, called “larger
midpoint property,” is sufficient for the equivalence of local optimality and
global optimality, and shows the equivalence of a Nash equilibrium and a
maximizer of the best-response potential function. A more general condition
for the equivalence of local and global optimality is studied in Ui (2006), along
with its relation to M-, L-, L\-, and M\-convex functions.
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14.4. Integrally concave games

Another study on the games on the integer lattice Zn is found in Iimura &
Watanabe (2014), which deals with n-person symmetric games with integrally
concave payoff functions defined on the n-product of a finite integer interval.
Here, the integral concavity is in the sense of Favati & Tardella (1990); see also
Murota (2003, Section 3.4). It is shown that every game in this class of games
has a (not necessarily symmetric) Nash equilibrium, which is located within a
unit distance from the diagonal of strategy space. Although assuming concavity
on the entire strategy space is somewhat stringent, this result generalizes the
result of Cheng et al. (2004) that every n-person symmetric “two-strategy”
game has a (not necessarily symmetric) Nash equilibrium, because any real-
valued function on the n-product of a doubleton is integrally concave. A further
generalization has been made by Iimura & Watanabe (2016), which implies the
existence of an equilibrium in discrete Cournot game with concave industry
revenue, convex cost, and nonincreasing inverse demand.

14.5. Unimodularity and tropical geometry

Unimodular coordinate transformations are a natural operation for discrete
convexity; see Sun & Yang (2008) and Baldwin & Klemperer (2016). In
Section 4.7 we have mentioned that a function f is twisted M\-concave if and
only if it is represented as f (x) = g(Ux) with U = diag(1, . . . ,1,−1, . . . ,−1)
for some M\-concave function g. Another such example is a class of mul-
timodular functions in Hajek (1985) which are used in discrete-event con-
trol (Altman et al., 2000). A function f : Zn → R∪ {+∞} is said to be
multimodular if the function f̃ : Zn+1 → R∪ {+∞} defined by f̃ (x0,x) =
f (x1− x0,x2− x1, . . . ,xn− xn−1) for x0 ∈ Z and x ∈ Zn is submodular in n+1
variables. This means that f is multimodular if and only if the function
g(x) = f (Dx) is L\-convex, where D = (di j | 1 ≤ i, j ≤ n) is a bidiagonal
matrix defined by dii = 1 (i = 1, . . . ,n) and di+1,i = −1 (i = 1, . . . ,n− 1).
This matrix D is unimodular, and its inverse D−1 is an integral matrix with
(D−1)i j = 1 for i ≥ j and (D−1)i j = 0 for i < j. Therefore, a function f is
multimodular if and only if it is represented as f (x) = g(Ux) with U = D−1

for some L\-convex function g.
The fundamental role of unimodularity for discrete convexity, beyond

unimodular coordinate transformations, is investigated in Danilov & Koshevoy
(2004) under the name of “unimodular systems.” An application of unimodular
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systems to competitive equilibrium is found in Danilov et al. (2001).
Another recent topic, of a similar flavor, is tropical geometry. Baldwin

& Klemperer (2016) investigate indivisibility issues in terms of tropical ge-
ometry. The Ricardian theory of international trade is treated by Shiozawa
(2015), mechanism design by Crowell & Tran (2016), and dominant strategy
implementation by Weymark (2016). The interaction of tropical geometry with
economics may yield unexpected results.67
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