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A Letter from the Editor

The year of 2022 has seen more catastrophic events. The global Covid
pandemic is not yet over. There immediately came a big war in Europe,

drought and famine in Africa, a short-lived UK government, and a political
backward movement in China, etc. Energy crises, economic crises, and
political crises! One after another. Prices hit record highs. Millions and
millions of people have suffered and have been badly hurt! All this cries
for better rules, better institutions, better governments, better international
organizations, and better design of them.
Despite all the mentioned bad developments on global scales, we still have
some good news to share with you about our Society for the Promotion of
Mechanism and Institution Design on which we can have some influence. The
Society has had a successful Conference onMechanism and Institution Design
at the National University of Singapore, Singapore, July 11–15, 2022. There
were 246 scheduled talks and four keynote speeches given by Fuhito Kojima,
Dan Kovenock, Alessandro Pavan, and Rakesh Vohra. We wish to express
our gratitude to Jingfeng Lu, the organizer, and his colleagues for their time,
efforts, and enthusiasm. Our next bi-annual conference will take place in
Budapest, Hungary, in the summer of 2024. Corvinus University is the host
and Peter Biro is the main organizer. We are looking forward to this event.
Finally, I would like to say a bit more about our Society. It is an indepen-
dent learned society, a recognized UK charity body, managing the bi-annual
Conference on Mechanism and Institution Design and its flagship Journal of
Mechanism and Institution Design. Its mission is to advance and promote
education and research for the public benefit in the subject of mechanism
and institution design. The Journal aims to publish high quality articles in
the stated fields and subjects. It is radically different from those journals of
commercial publishers in that it is totally free of charge to authors and readers,
and provides free open online access to everyone. Our Society fully and inde-
pendently manages its referring, editing, designing, and production. We rely
on voluntary contributions by our Society’s members and believe this mode
of scientific publishing serves our profession and our society better. We hope
more and more people will share our vision and support us.

Zaifu Yang, York, December 3rd, 2022.
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ABSTRACT

In this paper and its companion paper, Board & Chung (2021), we provide
foundations for a model of unawareness that can be used to distinguish be-
tween what an agent is unaware of and what she simply does not know. At
an informal level, this distinction plays a key role in a number of recent pa-
pers such as Tirole (2009) and Chung & Fortnow (2016). Here we provide
a set-theoretic (i.e., non-linguistic) version of our framework. We use our
object-based unawareness structures to investigate two applications. The first
application provides a justification for the contra proferentem doctrine of con-
tract interpretation, under which ambiguous terms in a contract are construed
against the drafter. Our second application examines speculative trade.
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2 Object-Based Unawareness: Theory and Applications

1. INTRODUCTION

THERE are two strands of literature on unawareness and it seems that they
are unaware of each other.

The first unawareness literature (let’s call it the applied literature) consists
of applied models, such as Tirole (2009) and Chung & Fortnow (2016), where
agents are uncertain whether they are aware of everything that their opponents
are aware of, and have to strategically interact under these uncertainties. For
example, in Tirole (2009), a buyer and a seller negotiate a contract as in the
standard hold-up problem. At the time of negotiation, there may or may not
exist a better design for the product. Even if a better design exists, however,
the contracting parties may not be aware of it. If a party is aware of it, he
can choose whether or not to point it out to the other party. But even if he is
not aware of it, he is aware that a better design may exist and his opponent
may be aware of this better design. In Tirole’s words, “parties are unaware,
but aware that they are unaware”; and they have to negotiate under this uncer-
tainty. Chung & Fortnow (2016) consider the plight of an American founding
father drafting a Bill of Rights that will be interpreted by a judge 200 years
later. The founding father is aware of some rights, but is uncertain whether or
not there are other rights that he is unaware of. Here, as in Tirole (2009), the
founding father is unaware, but aware that he may be unaware; and he has to
decide how to write the Bill of Rights under this uncertainty.

The second unawareness literature (let’s call it the foundational literature)
attempts to provide a more rigorous account of the properties of unawareness:
see, e.g., Fagin & Halpern (1987), Modica & Rustichini (1994), Modica &
Rustichini (1999), Dekel et al. (1998), Halpern (2001), Li (2009), Halpern &
Rêgo (2006), Sillari (2006), and Heifetz et al. (2006), Heifetz et al. (2013).
These authors are motivated by the concern that ad hoc applied models, if not
set up carefully enough, may go awry in the sense that agents in those models
may violate rationality in some way, as captured by various introspection ax-
ioms first articulated in Modica & Rustichini (1994) and Dekel et al. (1998)
(which we shall refer to as the DLR axioms hereafter).1 The rest of this liter-
ature proposes various models that are set up carefully enough to take these
concerns into account.

1 In particular, two of the key DLR axioms are KU-introspection (“the agent cannot know that
he is unaware of a specific event”) and AU-introspection (“if an agent is unaware of an event
E , then he must be unaware of being unaware of E”).

Journal of Mechanism and Institution Design 7(1), 2022
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Oliver J. Board, Kim-Sau Chung 3

These two literatures are somewhat disconnected. For example, Tirole
makes no reference to any work in the foundational literature, nor does he
explain whether or not his agents satisfy the DLR axioms that are the main
concerns of that literature. Similarly, none of the studies in the foundational
literature explains whether Tirole’s model fits in their framework, and if not,
whether Tirole’s agents violate some or all of the DLR axioms. This paper
and Board & Chung (2021) attempt to connect these two literatures.

There is a reason why it is difficult to directly compare Tirole’s model with
the majority of the models proposed in the foundational literature. To propose
a model and to provide foundations for it, an author needs to explain how her
model should be interpreted. This is typically done by showing how her model
assigns truth conditions to each sentence in a particular formal language; i.e.,
by the procedure of systematically giving yes/no answers to a laundry list
of questions such as: “at state w, does agent i know that it is sunny in New
York?”2 Note, however, the formal language chosen by the author defines the
laundry list of questions she is ready to give yes/no answers to. A question not
expressible in her chosen formal language is hence not a legitimate question.
The answer to it is neither yes nor no—she simply is not ready to say.

Unfortunately, questions such as “at state w, is agent i aware that he is
not aware of everything?” are not expressible in the formal languages chosen
by many authors in the foundational literature (notable exceptions include
Halpern & Rêgo (2006) and Sillari (2006), which we shall return to shortly).
The formal languages chosen by these authors do not contain quantifiers such
as “everything”, thus rendering “aware of everything” an inexpressible con-
cept. In other words, while in Tirole’s model, “parties are unaware, but aware
that they are unaware”, it is difficult to tell whether this is also true of the
agents in most of the models proposed in the foundational literature. The
answer is neither yes nor no—these authors simply are not ready to say.

Several contributions to the foundational literature, mostly coming from
logicians and computer scientists, do work with formal languages that con-
tain quantifiers; see, e.g., Halpern & Rêgo (2006) and Sillari (2006). Their
proposed models, however, look very different from applied economic mod-
els used in, for example, Tirole (2009) and Chung & Fortnow (2016). For

2 In many of the studies more familiar to economists (see e.g., Li (2009)), although this proce-
dure is not performed explicitly, there is still a clear way to assign truth conditions within an
appropriately-specified formal language according to the author’s description of her proposed
model.

Journal of Mechanism and Institution Design 7(1), 2022
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4 Object-Based Unawareness: Theory and Applications

example, in the model proposed by Halpern & Rêgo (2006), there is a syn-
tactic awareness function that assigns to every state and every agent a set of
sentences in their chosen formal language. The interpretation is that this set is
the set of facts that the agent is aware of at that state. This “list of sentences”
approach to construct models is very flexible, but may be deemed unhelpful
by economists. This may explain why this approach, while not uncommon
among logicians, is rarely seen in economics.3

In the specific case of Halpern & Rêgo (2006), there is a deeper reason
why their proposed model is not the same as the models used in the applied
literature. Recall that in the latter models, although agents know what they
are aware of, they may be uncertain whether or not they are aware of every-
thing. Such uncertainty cannot arise in the model proposed by Halpern &
Rêgo (2006), however.4

To summarize, while the assumption that “agents are unaware, but are
aware that they are unaware” plays a key role in much of the applied literature
of unawareness, the foundations of these models remain unclear. We do not
know whether agents in these models violate some or all of he DLR axioms
that are the main concerns of the foundational literature. This paper and Board
& Chung (2021) aim to provide this missing foundation.

In these two papers, we describe a model, or more precisely a class of

3 To provide an analogy that may help elucidate this comparison, consider the difference be-
tween Aumann’s information partition model, where a partition of the state space is used to
encode an agent’s knowledge of events, and a “list of sentences” approach where knowledge
is instead modeled by a list of sentences describing exactly what that agent knows.

4 For readers who are familiar with Halpern & Rêgo (2006), this can be proved formally as fol-
lows. Recall the following definition in Halpern & Rêgo (2006): “Agents know what they are
aware of if, for all agents i and all states s, t such that (s, t) ∈ Ki we have that Ai(s) = Ai(t).”
So it suffices to prove that, in any instance of Halpern & Rêgo (2006) structure, if there is a
state t such that agent i is uncertain whether or not there is something he is unaware of, then
there must be another state s such that (s, t)∈Ki but Ai(s) 6=Ai(t). Let α = ∃x¬Aix represent
“there is something that agent i is unaware of”. Therefore, ¬α means “there is nothing that
agent i is unaware of”. Let β = Aiα ∧Ai¬α ∧¬Xiα ∧¬Xi¬α represent “agent i is aware of
both α and¬α but he does not know whether α or¬α is true (recall that Xi is Halpern & Rêgo
(2006)’s explicit knowledge operator). In short, β means “agent i is uncertain whether or not
there is something he is unaware of”. Let M be any instance of Halpern & Rêgo (2006)’s
structure, and t is a state such that (M, t) |= β . Then we have (M, t) |= ¬Kiα ∧¬Ki¬α (recall
that Ki is Halpern & Rêgo (2006)’s implicit knowledge operator). Therefore, there exists a
state s such that (t,s) ∈ Ki and (M,s) |= ¬α , and another state s′ such that (t,s′) ∈ Ki, and
(M,s′) |= α . Since α = ∃x¬Aix, there exists φ such that φ ∈ Ai(s) and φ 6∈ Ai(s′). But that
means at least of one Ai(s) and Ai(s′) is different from Ai(t).

Journal of Mechanism and Institution Design 7(1), 2022
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Oliver J. Board, Kim-Sau Chung 5

models, called object-based unawareness structures (OBU structures). Read-
ers will find that these structures encompass models used in the applied litera-
ture. In comparison with the applied literature, however, we provide complete
and rigorous foundations for these structures. The formal language we choose
to work with is rich, and in particular contains quantifiers, enabling us to de-
scribe explicitly whether or not agents are aware that they are unaware. We
provide an axiomatization for these structures and verify that all of the DLR
axioms are satisfied. The value of thinking about agents who exhibit this kind
of uncertainty has already been demonstrated by the existing applied litera-
ture; we demonstrate the tractability of our framework by considering further
applications.

A key feature of our structures is that unawareness is object-based: A
seller may be unaware of a better design, or a founding father may be un-
aware of a particular right. In contrast, in models of unforeseen contingencies,
agents cannot foresee every contingency, or every state. This raises the ques-
tion of whether the agents in our structures are aware of every state. We do not
have an answer to this question. As we explained above, our understanding of
any proposed model is constrained by the formal language we choose to work
with. Although we have already chosen to work with a formal language much
richer than most in the foundational literature, there are still questions that fall
outside of it. We do not have answers to these questions, simply because we
do not speak that language.

The division of labor between this paper and Board & Chung (2021) is
as follows. In Board & Chung (2021), we give the model-theoretic descrip-
tion of OBU structures by showing how they assign truth conditions to every
sentence of a formal language. We then prove a model-theoretic soundness
and completeness theorem, which characterizes OBU structures in terms of
a system of axioms. We then verify that agents in OBU structures do not
violate any of the DLR axioms that are generally considered to be necessary
conditions for a plausible notion of unawareness. Board & Chung (2021) also
contain a more complete literature review, as well as a discussion of several
variants of OBU structures.

In this paper, we give a set-theoretic description of the OBU structures.
Although less formal than the model-theoretic treatment, we hope this will
be more accessible to the general audience. In parallel to the model-theoretic
soundness and completeness theorem in Board & Chung (2021), we prove
set-theoretic completeness results in this paper.

Journal of Mechanism and Institution Design 7(1), 2022
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6 Object-Based Unawareness: Theory and Applications

The second half of this paper considers two applications. First, we use the
model to provide a justification for the contra proferentem doctrine of con-
tract interpretation, commonly used to adjudicate ambiguities in insurance
contracts. Under contra proferentem, ambigous terms in a contract are con-
strued against the drafter. Our main result is that when the drafter (the insurer)
has greater awareness than the other party (the insured), and when the insured
is aware of this asymmetry, contra proferentem minimizes the chances that the
insured forgoes gain of trade for fear of being exploited. On the other hand,
when there is no asymmetric awareness, efficiency considerations suggest no
reason to prefer contra proferentem over an alternative interpretive doctrine
that resolves ambiguity in favor of the drafter.

From the perspective of our theory, an argument common among legal
scholars as far back as Francis Bacon, that contra proferentem encourages the
insurer to write clearer contracts, misses the point. If a more precise contract
increases the surplus to be shared between the insurer and the insured, market
forces provide incentives to draft such a contract regardless of the interpretive
doctrine employed by the court. The advantage of contra proferentem is rather
that it enables the insurer to draft more acceptable contracts, by expanding the
set of events that he can credibly insure.

Our second application examines speculative trade. We first generalize the
classical No Trade Theorem to situations where agents are delusional but nev-
ertheless act so as to satisfy a weaker condition called terminal partitionality.
We then introduce the concepts of living in denial (i.e., agents believe, per-
haps incorrectly, that there is nothing that they are unaware of) and living in
paranoia (i.e., agents believe, perhaps incorrectly, that there is something that
they are unaware of). We show that both living in denial and living in para-
noid, in the absence of other forms of delusion, imply terminal partitionality,
and hence the no trade theorem result obtains.

The structure of this paper is as follows. Section 2 describes our OBU
structures, and Section 3 shows how to incorporate probabilities. Section 4
presents the first application, and Section 5 the second. Section 6 concludes.

Journal of Mechanism and Institution Design 7(1), 2022
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Oliver J. Board, Kim-Sau Chung 7

2. OBU STRUCTURES

In thi section we introduce OBU structures and present set-theoretic complete-
ness results5 that provide a precise characterization of the properties of knowl-
edge, unawareness etc. For the sake of transparency, and to aid interpretation,
we also include in Appendix A the model-theoretic description of these struc-
tures; i.e., we show how OBU structures assign truth conditions for a formal
language (a version of first-order modal logic).

2.1. Modeling knowledge and unawareness

An OBU structure for n agents is a tuple 〈W,O,{Ow},{Ii},{Ai}〉, where:

• W is a set of states;

• O is a set of objects;

• Ow ⊆ O is the set of objects that really exist at state w;

• Ii : W → 2W is an information function for agent i; and

• Ai : W → 2O is an awareness function for agent i.

Intuitively, Ii (w) indicates the states that agent i considers possible when
the true state is w, while Ai (w) indicates the objects she is aware of. The sets
Ow will not be used until we describe quantified events in section 2.3 below.

In the standard information partition model familiar to economists, events
are represented as subsets of the state space, corresponding to the set of states
in which some given proposition is true. In OBU structures, we try to carry
around one more piece of information when we represent an event, namely
the set of objects referred to in the verbal description of that event. Formally,
an event is an ordered pair (R,S) , where R ⊆ 2W is a set of states and S ⊆ 2O

is a set of objects; we call R the reference of the event (denoted by re f (R,S)),
corresponding (as before) to the set of states in which the proposition is true;
and S is the sense of the event (denoted by sen(R,S)), listing the set of objects
referred to in the proposition. (To give an example, the events representing
the propositions “the dog barked” and “the dog barked and the cat either did

5 This purely semantic approach to epistemic logic was pioneered by Halpern (1999).

Journal of Mechanism and Institution Design 7(1), 2022

“jMID-vol7(1)-01” — 2022/12/6 — 6:24 — page 7 — #11



8 Object-Based Unawareness: Theory and Applications

or did not meow” have the same reference but difference senses.) We some-
times abuse notation and write (R,a) instead of (R,{a}), and (w,S) instead of
({w} ,S). We use E to denote the set of all events, with generic element E.

We now define two operators on events, corresponding to “not” and “and”:

¬(R,S) = (W \R,S) ,
∧ j

(
R j,S j

)
=

(
∩ jR j,∪ jS j

)
.

The negation of an event holds at precisely those states at which the event
does not hold, but it refers to the same set of objects. The conjunction of
several events holds only at those states at which all of those events hold, and
it refers to each set of objects. It will often be convenient to use disjunction
(“or”) as well, defined in terms of negation and conjunction as follows:

∨ j
(
R j,S j

)
= ¬

(
∧ j¬

(
R j,S j

))

=
(
∪ jR j,∪ jS j

)
.

In OBU structures, there are three modal operators for each agent, repre-
senting awareness, implicit knowledge, and explicit knowledge:

Ai (R,S) = ({w | S ⊆ Ai (w)} ,S) (awareness) (1)
Li (R,S) = ({w | Ii (w) ⊆ R} ,S) (implicit knowledge) (2)
Ki (R,S) = Ai(R,S)∧Li (R,S) (explicit knowlege) (3)

Intuitively, an agent is aware of an event at w if she is aware of every
object in the sense of the event; and the agent implicitly knows an event at
state w if the reference of the event includes every state she considers possible.
However, implicit knowledge is not the same as explicit knowledge, and the
latter is our ultimate concern. Implicit knowledge is merely a benchmark
that serves as an intermediate step to modeling what an agent actually knows.
Intuitively, an agent does not actually (i.e., explicitly) know an event unless
he is aware of the event and he implicitly knows the event. Notice that Ai, Li,
and Ki do not change the set of objects being referred to.

It is easy to verify that awareness and implicit knowledge satisfy the fol-
lowing properties (where we suppress the agent-subscripts):

A1 ∧ jA
(
R,S j

)
= A

(
R,∪ jS j

)

A2 A(R,S) = A(R′,S) for all R,R′

Journal of Mechanism and Institution Design 7(1), 2022
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Oliver J. Board, Kim-Sau Chung 9

A3 A(R,∅) = (W,∅)

A4 A(R,X) = (R′,X) for some R′

L1 L(W,O) = (W,O)

L2 ∧ jL
(
R j,S

)
= L

(
∩ jR j,S

)

L3 L(R,S) = (R′,S) for some R′

L4 if L(R,S) = (R′,S) then L(R,S′) = (R′,S′)

The following results show that L1–L4 and A1–A4 also provide a precise
characterization of awareness and implicit knowledge, respectively.

Proposition 1. Suppose that Ai is defined as in (1). Then:

1. Ai satisfies A1–A4; and

2. if A′
i is an operator on events which satisfies A1–A4, we can find an

awareness function Ai such that A′
i and Ai coincide.

Proposition 2. Suppose that Li is defined as in (2). Then:

1. Li satisfies L1–L4; and

2. if L′i is an operator on events which satisfies L1–L4, we can find an
information function Ii such that L′i and Li coincide.

The proofs of these and all other results can be found in the appendix.

2.2. Introducing Properties

In an OBU structure, we take as primitives not individual events such as “John
is tall”, but rather individual properties such as “. . . is tall”. Intuitively, the
property “. . . is tall” can be thought of as a correspondence from objects to
states, telling us for each object at which states it possesses this property.
More generally, properties can be represented as functions from objects to
events: p : O → E such that

p(a) = (Rp
a ,S

p∪{a}) for some Rp
a ⊆W and some Sp ⊆ O.

Journal of Mechanism and Institution Design 7(1), 2022
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10 Object-Based Unawareness: Theory and Applications

Intuitively, Rp
a is the set of states where object a possesses property p,

and Sp is the set of objects referred to in the description of the property; for
example, if p is the property “. . . is taller than Jim”, then Sp = {Jim}. Note
that Sp could be the empty set, for example if p is the property “. . . is tall”.
Let P denote the class of all these functions.

REMARK: In many applications, such as the one we will study in Section
4, the set of properties that are relevant to the problem at hand is a much
smaller set than P , and hence not every (R,S) pair is a representation of a
proposition like “John is tall”.

REMARK: Although we have only described 1-place properties, this is
without loss of generality, because we can build up n-place properties from
n 1-place properties. Suppose we want to construct the 2-place property
taller (a,b), to be interpreted as “a is taller than b”. We start with a family
of 1-place properties {pa : O → E }a∈O, to be interpreted “a is taller than . . . ”.
Define f : O→P as f (a) = pa. Then the two-place property taller : O2 → E
is defined by taller (a,b) = f (a)(b). Notice that, in particular, the sense of
the event taller (a,b) is {a,b}, because

sen( f (a)(b)) = S f (a)∪{b}= {a}∪{b} .

We can also take negations, conjunctions, and disjunctions of properties:

¬p : O → E such that (¬p) (a) = ¬(p(a))
p∧q : O → E such that (p∧q)(a) = p(a)∧q(a)
p∨q : O → E such that (p∨q)(a) = p(a)∨q(a)

We also use p → q as shorthand for ¬p∨q.
REMARK: It is worth noting that the concept of negation defined above

does not coincide with the everyday English notion of “opposites” (as in
“short is the opposite of tall”). There are two reasons for this: first, even if we
restrict attention to people (humans), we might argue some people are neither
tall nor short (for instance, an white male who is 5 foot tall); second, there
are objects which are neither tall nor short simple because they don’t have a
height at all (for instance, an abstract object such as “a thought”. Therefore
we prefer to think of tall and short as two separate properties, allowing for the
possibility that short is not the same as not tall.
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2.3. Quantified Events

In many applications, we want to deal not only with events such as “a is a
better design” and “agent i knows that a is a better design”, but also events
such as “agent i is not aware of any better design” and “agent i does not
know whether there is a better design that he is unaware of”. These events
involve quantification. In this section, we show how they are handled in OBU
structures.

To begin with, we should note that everyday English admits multiple inter-
pretations of quantifiers (such as the word “all”), corresponding to different
scopes implicit in the conversation: the “universe of objects” referred to by
the word “all” can vary. We often freely switch back and forth among differ-
ent interpretations, without making the scope explicit, and leaving it for the
context to resolve the ambiguity. In a formal model, however, these different
interpretations must be explicitly distinguished by different quantifiers. Two
particular quantifiers that may get confused are the possibilitist quantifier and
the actualist quantifier; the former has a scope that spans all possible objects,
while the latter has a scope that spans only those objects that really exist at a
given state. The quantifier that is used in OBU structures is the actualist one.

To illustrate the difference between these two quantifiers, consider the fol-
lowing application. Suppose we want to model Hillary’s uncertainty regard-
ing whether or not Bill has an illegitimate child. The simplest way to do it is
to have Hillary consider as possible two different states, w1 and w2, but Bill’s
illegitimate child really exists at only one of these states. Using a to denote
“Bill’s illegitimate child”, it means a ∈ Ow1 ⊂ O but a 6∈ Ow2 . Since Hillary
cannot tell apart these two states, she does not know for sure whether Bill has
an illegitimate child or not. However, such a simple model of Hillary’s un-
certainty “works” only because the existential quantifier used by this simple
model is the actualist one. If a reader misinterprets the model as using the
possibilitist quantifier, he would have regarded it as a poor model of Hillary’s
uncertainty: “Since Bill’s illegitimate child ‘exists’ at every state that Hillary
considers possible, Hillary knows for sure that Bill has an illegitimate child,
and hence there is no uncertainty at all!”

We define possibilitist-quantified events first, because they are simpler,
and can be used as an intermediate step to define actualist-quantified events.
For any property p ∈ P , let All p denote the event that “all objects satisfy
property p”, where “all” is interpreted in the possibilitist sense. Formally, All
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12 Object-Based Unawareness: Theory and Applications

is a mapping from properties to events, such that

All p = (∩a∈ORp
a ,S

p) .

So All p holds at precisely those worlds where p(a) is true for each objects a
in the universal set O, and it refers only to those objects referred to by property
p.

We defined actualist-quantified events, or simply quantified events. First
recall that an OBU structure specifies, for each state w, the set Ow ⊆ O of
objects that really exist at that state. We define a special property re (“. . . is
real”) in terms of these sets:

re(a) = ({w | a ∈ Ow} ,a) . (4)

Let All p denote the event that “all objects satisfy property p”, where “all”
is interpreted in the actualist sense. Formally, All is a mapping from properties
to events, such that

All p = (∩a∈ORre→p
a ,Sp) . (5)

Intuitively,All p holds at every state where all real objects possess property
p; and the sense of All p is precisely the objects used to describe property p. It
is easy to verify that the actualist quantifier satisfies the following properties:

All1 All
(
∧ j p j

)
= ∧ j

(
All p j

)

All2 if w ∈ Rp
a for every a ∈ O, then w ∈ re f (All p)

All3 if Rp
a = Rq

a for every a ∈ O, then re f (All p) = re f (All p)

All4 sen(All p) = Sp

The following result shows that All1 – All4 also provide a precise charac-
tization of the actualist quantifier.

Proposition 3. Suppose that All is defined as in (4) and (5). Then:

1. All satisfies All1 – All4; and

2. if All′ is a mapping from properties to events which satisfies All1 – All4,
we can find a collection of real objects {Ow} such that All′ and All
coincide.
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3. OBU STRUCTURES WITH PROBABILITIES

It is easy to introduce probabilistic beliefs into the OBU structures, although
Board & Chung (2021)’s axiomatization does not include this part. We first
introduce implicit beliefs, once again as a benchmark case that serves as an
intermediate tool to modeling what the agent actually believes. The relation
between explicit beliefs (i.e., an agent’s actual beliefs) and implicit beliefs is
then analogous to the relation between explicit knowledge and implicit knowl-
edge.

Let us begin with an OBU structure 〈W,O,{Ow} ,{Ii} ,{Ai}〉. To avoid
unnecessary complications, let’s assume that W is finite. Augment the OBU
structure with {qi}i∈N , where each qi is a probability assignment that asso-
ciates with each state w a probability distribution on W satisfying qi (w)(Ii (w)))=
1 (i.e., an agent (implicitly) assigns probability 1 to those states that he con-
siders possible when the true state is w). For any real number r, we introduce
two belief operators for each agent, mapping any given event E = (R,S) ∈ E
to the events that an agent implicitly and explicitly, respectively, believes that
E holds with probability at least r:

B
r
i (R,S) = ({w | qi (w)(R)≥ r} ,S) (implicit belief) (6)

Br
i (R,S) = Ai (R,S)∧B

r
i (R,S) (explicit belief). (7)

An augmented OBU structure is a tuple 〈W,O,{Ow} ,{Ii} ,{Ai} ,{qi}〉.
The common prior assumption is considered controversial, even in the

absence of unawareness (Morris, 1995; Gul, 1998). Nevertheless, to facil-
itate comparison with the existing literature in Section 5, we introduce it
here. We say that an augmented OBU structure satisfies the common prior
assumption if there exists a probability distribution q on W such that, when-
ever q(Ii (w))> 0, we have

qi (w)(·) = q(· | Ii (w)) ,

where q(· | Ii (w)) is the conditional probability distribution on W given Ii (w).
When an augmented OBU structure satisfies the common prior assumption,
we can represent it as the tuple 〈W,O,{Ow} ,{Ii} ,{Ai} ,q〉, and simply call
it an OBU structure with common prior.

Journal of Mechanism and Institution Design 7(1), 2022

“jMID-vol7(1)-01” — 2022/12/6 — 6:24 — page 13 — #17



14 Object-Based Unawareness: Theory and Applications

4. THE CONTRA PROFERENTEM DOCTRINE

Verba fortius accipiuntur contra proferentem (literally, “words are to be taken
most strongly against him who uses them”) is a rule of contractual interpreta-
tion which states that ambiguities6 in a contract should be construed against
the party who drafted the contract. This rule (henceforth cp doctrine) finds
clear expression in the First Restatement of Contracts7 (1932) as follows:

Where words or other manifestations of intention bear more than
one reasonable meaning an interpretation is preferred which op-
erates more strongly against the party from whom they proceed,
unless their use by him is prescribed by law.

Although the principles for resolving ambiguity are more nuanced in the
Second Restatement (1979), the cp doctrine is widely applied in the context
of insurance contracts; indeed, Abraham (1996) describes it as “the first prin-
ciple of insurance law”.

In this section, we use OBU structures to formalize the rationale behind
this rule. In particular, we compare it with the opposite doctrine that resolves
ambiguity in favor of the drafter. We first show that there is a form of sym-
metry between these two doctrines, and neither systematically outperforms
the other if there is no asymmetric unawareness. We then introduce asym-
metric unawareness and explain in what sense the cp doctrine is a superior
interpretive doctrine.

Let an OBU structure with common prior 〈W,O,{Ow} ,{Ii} ,{Ai} ,q〉 be
given.8 Assume that there are two agents. Agent 1 is a (female) risk-neutral

6 “Ambiguity” is an ambiguous term in economics, and often refers to situations where deci-
sion makers entertain multiple prior probability distributions. Here, we are referring to the
layman’s use of the word, that is to a situation where language is susceptible to multiple
interpretations.

7 The Restatements of the Law are treatises published by the American Law Institute as schol-
arly refinements of black-letter law, to “address uncertainty in the law through a restatement
of basic legal subjects that would tell judges and lawyers what the law was.” Although non-
binding, the authoritativeness of the Restatements is evidenced by their near-universal accep-
tance by courts throughout the United States.

8 Given our earlier comments about the common prior assumption, the reader may wonder why
we impose this assumption here. The common prior assumption allows us to state our results
neatly. But we otherwise do not believe that the comparison between different doctrines
depends on this assumption.
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insurer and agent 2 is a (male) risk-averse insured. In the absence of any
insurance contract between the agents, agent 1’s income is $0 in every world,
while agent 2’s income is $0 in some worlds and $1 in other worlds. We can
think of 0 income as the result of some negative income shock, which the risk-
averse agent 2 would like to insure against. Agent 1’s utility is equal to her
income, and agent 2’s utility is U(·), which is strictly increasing and strictly
concave in his income.

One of the elements in O, denoted by ι , is agent 2’s income. (We will
explain what else is contained in O later.) Let Z (W be the (nonempty) set of
states in which agent 2 suffers an income shock. The event “agent 2 suffers
an income shock” is hence E = (Z, ι). It is natural to assume that agent 2 is
always aware of his own income (i.e., ι ∈ A2(w) for every w), and so agent
2 can always form an explicit probabilistic belief about event E (given by
q(re f (E))=q(Z)).

To make the setup as noncontroversial as possible, we make a couple of
standard assumptions:

1. Each agent i’s Ii forms a partition of the state space W ; i.e., w ∈Ii (w)
for every w ∈W , and w′ ∈ Ii (w) implies Ii (w′) = Ii (w).

2. Each agent i (implicitly) knows what he is aware of; i.e., w′ ∈ Ii (w)
implies Ai(w′) = Ai(w).

We also make an additional assumption motivated by the current application:

3. Agent 1 is aware of more objects than agent 2 is: A2 (w) ⊆ A1 (w) for
every w ∈W .

The third assumption captures the idea that agent 1 (the insurer) is the
more sophisticated party in this transaction. In what follows we analyze
a special case that satisfies these assumptions: agent 1 is aware of every-
thing while agent 2 is aware of nothing except his own income: A1 (w) = O
and A2 (w) = {ι} for all w; and both agents are completely uninformed:
Ii(w) = W for all w and i = 1,2. This allows us to abstract away from the
classical adverse selection problem, which is already well understood, and fo-
cus instead on the interaction between contractual ambiguity and asymmetric
awareness.

Note that, although we make the extreme assumption that agent 2 is aware
of nothing (except his own income), we do not preclude that he is aware of his
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16 Object-Based Unawareness: Theory and Applications

own unawareness. For example, as long as Ow \ {ι} 6= ∅ for all w, the event
“agent 1 is aware of something that agent 2 is unaware of” (where “some” is
interpreted in the actualist sense) is the event (W,∅). Since

K2(W,∅) = A2(W,∅)∧L2(W,∅) = (W,∅)∧ (W,∅) = (W,∅), (8)

agent 2 explicitly knows that “agent 1 is aware of something that agent 2 is
unaware of” in every state w.

If we further assume that Ow = Ô ⊂ O for all w, then agent 2 knows how
many objects there are that agent 1 is aware of but agent 2 is not. Although
this assumption is not realistic (even if the insured is certain that there are
some objects that he is unaware of, he will typically be uncertain about the
exact number of such objects), it simplifies the analysis considerably. In this
preliminary investigation of the cp doctrine, therefore, we add this assump-
tion. To further simplify, we assume that Ô = O until section 4.3.2 where it
becomes important to distinguish the two sets.

The timing of the contracting game is as follows. In stage one, agent 1
proposes an insurance contract. The contract specifies a premium, a payment,
and the circumstances under which agent 1 (the insurer) has to pay the in-
surance payment to agent 2 (the insured). A critical assumption is that the
payout circumstances have to be described in an exogenously given language,
to be defined shortly, and cannot make reference to agent 2’s income. With-
out this assumption, the insurance problem would be trivial. This assumption
makes sense when, for example, agent 2’s income is not verifiable and hence
not contractible, or if contracting on income would create a serious moral
hazard problem. In stage two, agent 2 either accepts the contract and pays
the premium, or rejects it. If he accepts, we move to stage three, the contract
enforcement stage, where nature randomly picks a state according to the prob-
ability distribution q, and agent 1 has to pay agent 2 the insurance payment
unless she can prove to a court that the payout circumstances do not obtain.

4.1. Contracts and Interpretations

We now define the contractual language, which is built up from the following
elements (the vocabulary):

• a,b,c . . . — an exogenously given, nonempty list of (names of) objects,
which together with agent 2’s income ι form the the set O in our OBU
structure (i.e., O\{ι}= {a,b,c, . . .}).
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• P1,P2, . . . — an exogenously given, nonempty list of predicates, each
of which will later on be construed (by the court) as corresponding to a
specific property.9

• ¬ (not), ∧ (and), ∨ (or) — Boolean operators.

Note that by identifying the set of objects’ names with the objects themselves,
we are assuming that there is no ambiguity in the interpretation of these
names; we make the simplifying assumption that all contractual ambiguity
relates to which properties the various predicates stand for.

Formally, the contractual language is a collection of sentences, each of
which is a finite string of letters (i.e., elements of the vocabulary) satisfying
a certain grammatical structure. We define this collection recursively as fol-
lows:

(i) for each object a and predicate P, P(a) (to be interpreted as “object a
is P”) is a sentence;

(ii) if φ and ψ are sentences, then ¬φ , φ ∧ψ , and φ ∨ψ are sentences.

The contractual language, denoted by L , is the smallest set satisfying (i) and
(ii).10 If b and r are objects and F and L are predicates, an example of a
sentence in L is F(b)∧L(r), with a possible interpretation of “the basement
is flooded and the roof is leaking”.

An insurance contract is a triple (g,h,φ), where g ∈ R+ is the insurance
premium that agent 2 pays agent 1 ex ante, and φ ∈ L is a sentence that
describes the circumstances under which agent 1 pays h ∈ R+ to agent 2 ex
post.

Although a predicate P (in the vocabulary of the contractual language) is
supposed to correspond to a specific property, whether an object satisfies that
property or not is often ambiguous ex post. For example, consider a health
insurance contract that covers the cost of a hip replacement just when it is
medically necessary. Is a patient who is able to walk, but only with a great
deal of pain, covered? Some people might say yes, while others would say no.

9 Without loss of generality, we assume that all these predicates are 1-place. See Section 2 for
discussion.

10 We could further expand our contractual language to include quantifiers. We conjecture that
this would not affect our main results.
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18 Object-Based Unawareness: Theory and Applications

Without this kind of ambiguity, the cp doctrine would be moot. So we now
introduce this kind of ambiguity into our model.

We capture this kind of ambiguity by supposing that there may be dis-
agreement about which property (in an OBU structure) a given predicate cor-
responds to. Formally, an interpretation is a mapping l from predicates to
properties. To keep things simple, imagine that there are two sub-populations
of society, and each has its own interpretation of every predicate P. Let l1 and
l2 denote these two interpretations. It is natural to assume that Sl1(P) = Sl2(P).

An interpretation l that maps predicates to properties can be extended to a
mapping from the contractual language L to events in the obvious way:

l1 l(P(a)) =
(

Rl(P)
a ,Sl(P)∪{a}

)
;

l2 l(¬φ) = ¬l(φ);

l3 l(φ ∧ψ) = l (φ)∧ l (ψ);

l4 l (φ ∨ψ) = l (φ)∨ l (ψ).

We can now formalize the cp doctrine. The cp doctrine instructs the court
to resolve any ambiguity against the party who drafted the contract (i.e., agent
1 in this model). In the example above, if the hip replacement is medically
necessary given one interpretation but not the other, then under cp doctrine the
court should rule in favor of agent 2 and require agent 1 to payout. Formally,
the cp doctrine is a mapping from L to events given by

dcp(φ) = l1(φ)∨ l2(φ) for all φ ∈ L .

Note that dcp is not an interpretation, since it may not satisfy l2 or l3.
For sake of comparison, we set up a strawman and define the mirror image

of the cp doctrine, the anti-cp doctrine, which instructs the court to resolve
any ambiguity in favor of agent 1. Formally, danti−cp is given by

danti−cp(φ) = l1(φ)∧ l2(φ) for all φ ∈ L .

The interpretive doctrine of the court is commonly known. Given this
interpretive doctrine d, agent 1’s problem in stage three (the contract enforce-
ment stage) is to prove to the court that the payout circumstances do not obtain,
or equivalently that event d(φ) has not happened.
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We assume that, once the true state w is realized, agent 1 has sufficient
evidence to prove that object a satisfies property p if and only if (1) a is real
(a ∈ Ow), and (2) a does in fact satisfy property p (w ∈ RP

a ). Under our earlier
simplifying assumption that Ow = Ô = O for every w, condition (1) is always
satisfied.

Finally, we need to explain how agent 2 evaluates a given contract and
makes his accept/reject decision accordingly in stage two. This can be tricky,
as it depends on how agent 2’s awareness changes after he reads the contract
(which may mention objects that agent 2 was unaware of before he read it).
We postpone this discussion to section 4.3 below, and first consider a bench-
mark case where there is symmetric awareness between the two agents. The
central message from the benchmark case is this: linguistic ambiguity alone
(without asymmetric unawareness) is not sufficient to justify the cp doctrine.

EXAMPLE: Let’s use an example to illustrate our setup. Consider the
simplest case where there is only one object name, a, and one predicate, P,
in the contractual language. One can think of a as “the basement”, and P
as “. . . is flooded”. Suppose there are only two states: w1 and w2. At w1,
there is a lot of water in the basement, and everyone in the society would
agree that the basement is flooded. But at w2, the basement is merely wet,
and not everyone in the society would think that it is flooded. Therefore we
have l1(P(a)) = ({w1,w2},a) and l2(P(a)) = ({w1},a). Suppose the contract
says that the insured will be compensated when the basement is flooded; i.e.,
the contract takes the form of (g,h,P(a)). Under the cp-doctrine, the insured
will be compensated at both states; whereas under the anti-cp doctrine, he will
be compensated only at state w1. As another example, suppose the contract
says that the insured will be compensated when the basement is not flooded;
i.e., the contract takes the form of (g,h,¬P(a)). Under the cp-doctrine, the
insured will be compensated at state w2; whereas under the anti-cp doctrine,
he will never be compensated.

4.2. Benchmark: Symmetric Awareness

Before we continue the description of our model, let’s first consider the bench-
mark case of symmetric awareness, where O1(w) = O2(w) = O for every
w ∈ W . In this case, agent 2 is aware of every object that agent 1 is aware
of. Since both agents are aware of every object, implicit knowledge/beliefs
and explicit knowledge/beliefs coincide. This reduces our model back to a
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20 Object-Based Unawareness: Theory and Applications

standard exercise in contract theory. The introduction of an exogenous con-
tractual language does not pose a new methodological challenge, because its
only effect is to restrict the contracting parties’ ability to approximate a first-
best contract. Different interpretive doctrines imply different restrictions on
the contracting parties. However, as we shall see shortly, there is a strong sym-
metry between the restrictions implied by the cp doctrine and those implied
by the anti-cp doctrine, and hence no systematic advantage for the former over
the latter.

A first best contract is any contract that requires the insurer to pay $1 to the
insured exactly in those states where he suffers an income shock.11 Recall that
Z denotes the set of states where the insured suffers an income shock. Since
the contracting parties cannot write contracts that directly refer to agent 2’s
income, they have to look for (contractible) events that correlate with agent
2’s income shock. In other words, they have to look for a φ ∈ L such that,
under a given interpretive doctrine d, the set re f (d(φ)) approximates Z. How
well re f (d(φ)) approximates Z depends on the prior probability q; or, more
precisely, on q(re f (d(φ))\Z) and q(Z \ re f (d(φ))).

To make this more precise, let Rcp = {re f (dcp(φ)) | φ ∈ L } denote the
set of references that can be described under the cp doctrine; similarly, let
Ranti−cp = {re f (danti−cp(φ)) | φ ∈L }. Then say that the cp doctrine system-
atically out-performs the anti-cp doctrine if and only if Ranti−cp ( Rcp.

To see that this definition captures the correct intuition, suppose first that
Ranti−cp 6⊆ Rcp. Then there is some (non-empty)12 R ∈ Ranti−cp \Rcp. If
Z = R and q is the uniform prior, then full insurance is possible only under
the anti-cp doctrine. On the other hand, if Ranti−cp ( Rcp, any insurance
outcome achievable under the anti-cp doctrine can be replicated under the cp
doctrine, while we can find a case where full insurance is possible only under
the cp doctrine.

EXAMPLE CONTINUED: Let’s use our earlier example to illustrate what
is at stake when the society chooses between the two doctrines. In that exam-
ple,

Rcp = {∅,{w2},{w1,w2}}.
Note that the singleton set {w1} is not in Rcp. Therefore, full insurance is not
always possible under the cp doctrine. In particular, if Z = {w1} (i.e., the in-

11 The insurance premium is a pure transfer and hence has no efficiency implications.
12 It is easy to see that ∅ ∈ Ranti−cp ∩Rcp.
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sured’s wealth drop is correlated with how severely his basement is flooded),
the contractual language would be found inadequate for the purpose of pro-
viding insurance—in fact, the optimal insurance contract will be no insurance
in such an unfortunate case. Now, consider the counterfactual case where the
parties anticipate that the court would interpret their contract using the anti-
cp doctrine. Under such anticipation, they can sign a contract of the form
(g,h,P(a)); and with danti−cp(P(a)) = ({w1},a) = (Z,a), perfect insurance
can be achieved. But does it mean that the anti-cp doctrine is better than the
cp doctrine? The answer is no, because by a symmetric argument we can see
that, in case Z = {w2}, perfect insurance can be achieved under the cp doc-
trine but not under the anti-cp doctrine. Without further information regarding
which case is more likely, it is impossible to rank the two doctrines.

The following proposition says that |Ranti−cp|= |Rcp|, and so it cannot be
the case that the cp doctrine systematically outperforms the anti-cp doctrine.

Proposition 4. |Ranti−cp|= |Rcp|.

Proof. It suffices to show that R ∈ Ranti−cp if and only if W \R ∈ Rcp. Sup-
pose R ∈ Ranti−cp. Then there exists φ ∈ L such that re f (danti−cp(φ)) = R.
But φ ∈ L implies ¬φ ∈ L . Since re f (dcp(¬φ)) = re f (l1(¬φ)∨ l2(¬φ)) =
re f (¬l1(φ)∨¬l2(φ))= re f (¬l1(φ))∪re f (¬l2(φ))= (W \re f (l1(φ)))∪(W \
re f (l2(φ))) =W \ (re f (l1(φ))∩ re f (l2(φ))) =W \ re f (l1(φ)∧ l2(φ)) =W \
re f (danti−cp(φ)) =W \R, we have W \R ∈ Rcp. The other direction is simi-
lar.

We find it illuminating to contrast Proposition 4 with an argument com-
mon among legal scholars as far back as Francis Bacon, that the advantage
of contra proferentem is to provide incentives for the insurer to write precise
contracts. Carolina Care Plan Incorporated v. McKenzie (2007) provides a
succinct statement of this argument in a recent ruling: “Construing ambigu-
ity against the drafter encourages administrator-insurers to write clear plans
that can be predictably applied to individual claims, countering the temptation
to boost profits by drafting ambiguous policies and construing them against
claimants.” However, in light of Propositon 4, this argument misses the point.
According to our theory, more precise contracts will be rewarded by higher
premiums regardless of the interpretative doctrine employed by the court.
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4.3. Asymmetric Awareness

We now return to the case of asymmetric awareness: A1(w)=O and A2(w) =
{ι} for all w ∈W . Here, an important modelling question to address is: how
would agent 2’s awareness changes after he reads a contract which mentions
objects that he was previously unaware of?

If agent 2 was unaware of those objects because they slipped his mind,
then it would be natural to assume that he becomes aware of them once he
reads about them in the contract. If, instead, he was unaware of them be-
cause he genuinely had no idea what they were, then it would be more natural
to assume that his awareness would not change even after reading the con-
tract. In reality there would likely be some objects in each category, which
begs a richer model that distinguishes a slip-the-mind object from a genuinely-
clueless object. For the sake of simplicity, we keep the two cases distinct and
analyze each in turn.

Although the the slip-the-mind case is not the only case where unaware-
ness can arise, it is the only case that has been considered by other authors
so far.13 However, in the current setup, it turns out that the slip-the-mind
case and the benchmark case (with symmetric awareness) generate the same
outcome. Hence linguistic ambiguity, even when coupled with unawareness,
is not sufficient justification for the cp doctrine, if the unawareness is of the
slip-the-mind variety. In the genuinely-clueless case, on the other hand, we
show that a case can be made in favor of the CP doctrine.

4.3.1. The Slip-the-Mind Case

When agent 2 reads a contract that mentions objects that he was previosuly
unaware of, and if he was unaware of them simply because they slipped his
mind, he will become aware of those objects after he reads the contract. Sup-
pose the contract is (g,h,φ). Let S be the set of objects mentioned in the
sentence φ ; i.e., S = sen(l1(φ)) = sen(l2(φ)) = sen(d(φ)) for both interpre-
tive doctrines d. Before agent 2 reads the contract, his awareness function
is A2(w) = {ι} for all w; after he reads the contract, his awareness function
becomes A2(w) = {ι}∪S for all w.

Recall that E = (Z, ι) is the event “agent 2 suffers an income shock”. So

13 See, for example, Filiz-Ozbay (2012), Ozbay (2007), and Tirole (2009).
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the four events

E ∧d(φ), E ∧¬d(φ), ¬E ∧d(φ), ¬E ∧¬d(φ),

that are relevant for agent 2’s accept/reject decision all have the same sense,
namely {ι}∪S. Since after reading the contract, A2(w) = {ι}∪S for every w,
agent 2 can form explicit probabilistic beliefs about these events. This allows
him to calculate the expected utilities resulting from accepting and rejecting
the contract.

A simple backward induction argument then suggests that the insurer, who
is aware of every object throughout, will choose a φ ∈L such that re f (d(φ))
best approximates Z, and internalizes the gains from trade by setting the insur-
ance premium at the level that makes agent 2 indifferent between accepting
and rejecting. As in the benchmark case, the insurer’s ability to approximate
an arbitrary Z is restricted by the contractual language, and the exact restric-
tions depend on the interpretive doctrine d. This is captured by the fact that
both Rcp and Ranti−cp are in general strictly smaller than 2W .

By Proposition 4, we know that |Ranti−cp| = |Rcp|, so neither doctrine
systematically outperforms the other. Either Ranti−cp = Rcp (in which case
the choice of the interpretive doctrine is irrelevant), or Ranti−cp \Rcp 6= ∅
(in which case one can readily construct an example where full insurance is
possible only under the anti-cp doctrine).

4.3.2. The Genuinely-Clueless Case

To help understand the clueless case, consider the example of a pet insurance
policy. Such policies typically list the various diseases that are covered by
the policy.14 The list contains diseases such as balanoposthitis, esophagitis,
enteritis, enucleation, FIP, HGE, hemobartonella, histiocytoma, leptospirosis,
neoplasia, nephrectomy, pneumothorax, pyothorax, rickettsial, tracheobron-
chitis . . . . Most insureds have no idea what these diseases are even after
reading the insurance contract. This is exactly what we assume in the clueless
case, where agent 2’s awareness function is the same before as after reading
the contract; i.e., A2(w) = {ι} for all w.

A knee-jerk intuition may suggest that no contract with a positive pre-
mium will be accepted by agent 2, because he cannot fully understand it. “If

14 See, for example, the policies offered at www.petinsurance.com.
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I am offered a contract that reads ($10,$100,“Barney catches disease xxx”),”
the knee-jerk intuition argues, “then the chances are that Barney will never
catch xxx, and the insurer will never need to pay me anything.” We shall see
shortly that the knee-jerk intuition is half right but also half wrong. Under-
standing why it is half wrong is the key to understanding why the cp doctrine
is the superior interpretive doctrine.

Consider two different insurance policies, one covering balanoposthitis
but not tracheobronchitis, and the other covering tracheobronchitis but not
balanoposthitis. These two policies clearly differ, but the insured would not
be able to base his accept/reject decision on the basis of this difference if he
unaware of both diseases. Suppose he knows that some diseases are common
and expensive to treat, while others are rare and inexpensive to treat. If the
insured takes into account that the insurance policy is written by a rational
insurer, who in turn knows that the insured is unaware of either disease, then
a simple game-theoretic argument would enable the insured to figure out that
the disease covered in the actual contract he is offered must be the less ex-
pensive one. Note that agent 2’s pessimism does not follow logically from
unawareness per se, but rather from the analysis of his opponent’s strategic
behavior.

This informal argument suggests that we can analyze the clueless case by
representing it as an imperfect information game. Agent 1’s actions are the
different contracts she can write. Agent 2 does not perfectly observe agent
1’s action. But those actions are partitioned into different information sets
for agent 2. A contract that covers only balanoposthitis belongs to the same
information set as another contract that covers only tracheobronchitis (assum-
ing it has the same premium and payment as the first one), and both are in a
different information set from a third contract that covers both balanoposthitis
and tracheobronchitis, which in turn belongs to the same information set as
a fourth contract that covers leptospirosis and brucellosis, and so on. In any
(perfect Bayesian) equilibrium of such a game, agent 2 must hold pessimistic
beliefs with respect to any information set on the equilibrium path.

Let’s illustrate this idea using a simple example, which also serves to
counter the knee-jerk intuition above.

In this simple example, l1 is the same as l2, so there is no linguistic am-
biguity and the choice of interpretive doctrine is irrelevant (we are merely
trying to demonstrate that some insurance is possible even under asymmet-
ric unawareness). So there is no need to distinguish predicates and proper-
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ties. There are three states: W = {w1,w2,w3}. Agent 2 suffers an income
shock in states w1 and w2: E = ({w1,w2}, ι). There are infinitely many ob-
jects: O = {ι,a,b,c, . . .}, but Ow = Ô = {ι,a,b} for all w. There is only one
predicate/property: P, with P(a) = ({w1,w2},a), P(b) = (w1,b), and P(x) =
(∅,x) for x = c,d, . . . As stated above, we assume that I1(w) = I2(w) =W ,
A1(w) = O, and A2(w) = {ι} for all w. The prior q puts equal probability on
each state.

In this example, agent 2 explicitly knows that agent 1 is aware of some
objects that he is unaware of; indeed, he explicitly knows that the number of
such objects is exactly two (see the discussion following equation (8) above).
He explicitly knows that there exists something that satisfies property P most
of the time, although he is unaware of what it is. He also explicitly knows
that there exists something else that satisfies property P less often, but at least
whenever that something satisfies P he will also suffer an income shock. More
importantly, he explicitly knows that there does not exist anything that never
satisfies P. Thus when he sees a contract of the form (g,1,P(·)), where g
satisfies

3U(1−g)≥ 2U(1)+U(0), (9)

he will be willing to accept the contract even though he is unaware of the
specific object mentioned in the contract. In equilibrium, the insurer will
offer the contract (g∗,1,P(b)) such that g∗ satisfies (9) with equality.15

The above example is a counter-example to the knee-jerk intuition. Al-
though it is natural to think of the set O as being very large,16 Ô need not be,
or at least agent 2 need not believe that it is. If agent 2 believes that there are
not that many things that he is unaware of, he would be less worried about
being tricked. The initial appeal of the knee-jerk intuition comes from an im-
plicit assumption that Ô is big. We shall call this the rich-object assumption,
and formalize it as follows. For any sentence φ ∈ L , the events l1(φ), l2(φ),
dcp(φ), and danti−cp(φ) all have the same (nonempty) sense, call it S. Suppose
S = {a1, . . . ,an}, and write φ as φ [a1, . . . ,an] to make this explicit. From any

15 It is important to understand why the insurer will not offer, for instance, the contract
(g∗,1,P(c)), even though such a contract will also be accepted by the insured. There is
no real object that bears the name “c” that the insurer can point to to prove to the court that
P(c) does not obtain; given that the burden of proof in on the insurer to show that he does not
have to payout, he will have to payout in every state.

16 O is the set of hypothetical as well as real objects, and hence is limited only by our agents’
imagination.
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sentence φ [a1, . . . ,an], and any n distinct objects b1, . . . ,bn, we can construct
another sentence φ [b1, . . . ,bn] which is the same as φ [a1, . . . ,an] with each a j
replaced by b j. It is easy to verify that φ [b1, . . . ,bn] is also an element of L .

Assumption 5 (The Rich-Object Assumption). Let d denote the interpre-
tive doctrine used by the court. For any sentence φ [a1, . . . ,an] ∈ L , either
re f (d(φ [a1, . . . ,an])) = W , or there exist n distinct objects, b1, . . . ,bn, such
that

1. b1, . . . ,bn ∈ Ô, and

2. re f (d(φ [b1, . . . ,bn])) =∅.

Note that the Rich-Object Assumption is a joint assumption on Ô and the
interpretive doctrine d: fixing L , l1, and l2, Ô may satisfy the Rich-Object
Assumption under one doctrine d but not under another. The importance of
the Rich-Object Assumption is summarized by the following proposition, the
first part of which formalizes the knee-jerk intuition.

Proposition 6. Let d denote the interpretive doctrine used by the court.

1. If the Rich-Object Assumption holds, then in any perfect Bayesian equi-
librium, agent 2 receives no insurance.

2. If the Rich-Object Assumption does not hold, then there exists nonempty
R ⊆W such that, if agent 2 suffers an income shock exactly in states in
R, then there exists a perfect Bayesian equilibrium where agent 1 offers
a contract that fully insures agent 2, and agent 2 accepts it.

Proof. 1. Suppose (g,h,φ [a1, . . . ,an]) is a contract that is both offered and
accepted with positive probability in any equilibrium.
If re f (d(φ [a1, . . . ,an]))=W , then the fact that it is offered with positive
probability in equilibrium implies that h≤ g, and hence agent 2 receives
no insurance under this contract. Suppose re f (d(φ [a1, . . . ,an])) ( W .
Then (g,h,φ [b1, . . . ,bn]), where φ [b1, . . . ,bn] is as defined in the Rich-
Object Assumption, will also be accepted with positive probability. How-
ever, by the Rich-Object Assumption, agent 1 can always prove that the
event d(φ [b1, . . . ,bn]) does not obtain and hence avoid paying the in-
surance premium h. The fact that the original contract is offered with
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positive probability implies that agent 1 also never needs to pay the
insurance premium under that contract. Hence agent 2 receives no in-
surance from it.

2. Let φ [a1, . . . ,an] be a sentence that invalidates the Rich-Object Assump-
tion. Let (b∗1, . . . ,b

∗
n) be a solution of the following minimization prob-

lem:
min

b1, . . . ,bn︸ ︷︷ ︸
distinct

∈Ô
q(re f (d(φ [b1, . . . ,bn]))),

where the existence of a solution is guaranteed by the finiteness of
W . Finally, define R to be re f (d(φ [b∗1, . . . ,b

∗
n])). By assumption, R

is nonempty. Then, if agent 2 suffers an income shock exactly in states
in R, contracts of the form (g,1,φ [b∗1, . . . ,b

∗
n]) will fully insure agent 2.

A simple argument then establishes the existence of a perfect Bayesian
equilibrium where agent 1 offers this contract with the insurance pre-
mium g such that agent 2 is indifferent between accepting and rejecting,
and agent 2 accepts the contract. The fact that (b∗1, . . . ,b

∗
n) solves the

above minimization problem implies that agent 1 cannot profitably devi-
ate to other contracts within the equivalence class of {(g,1,φ [b1, . . . ,bn]) |
b1, . . . ,bn distinct}.

We can now formalize the benefit of the cp doctrine over the anti-cp doc-
trine: the cp doctrine minimizes the chance that the Rich-Object Assumption
holds.

Proposition 7. Whenever the Rich-Object Assumption holds under the cp doc-
trine, it will also hold under the anti-cp doctrine.

Proof. It suffices to observe that, for any φ ∈L , re f (danti−cp(φ))⊆ re f (dcp(φ)).

The converse of Proposition 7 is not true, as illustrated by the following
simple example.

EXAMPLE: In this example, there are two states, W = {w1,w2}, two con-
tractible objects, a and b, and one predicate, P. The two interpretations of P
are as follows:

l1(P(a)) = (w1,a), l1(P(b)) = (w2,b),
l2(P(a)) = (∅,a), l2(P(b)) = (W,b).
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Suppose Z = {w1}. Then, under the cp-doctrine, agent 1 can offer a con-
tract (g,h,P(a)), with appropriately g and h, and fully insures agent 2. (Full
insurance is achieved because dcp(P(a)) = (w1,a).) Even when agent 1 an-
ticipates that agent 2 will accept both contracts (g,h,P(a)) and (g,h,P(b)),
as he cannot distinguish the two, she will have no incentive to deviate to of-
fering contract (g,h,P(b)), because dcp(P(a)) = (W,a). The same is not true
under the anti-cp doctrine. Indeed, it is a mechanical exercise to check that
the Rich-Object Assumption is satisfied under the anti-cp doctrine. For exam-
ple, if agent 1 anticipates that agent 2 will accept the contract (g,h,P(b)), she
will deviate to contract (g,h,P(a)), because danti−cp(P(b)) = (w2,b), while
danti−cp(P(a)) = (∅,b). Similarly, if agent 1 anticipates that agent 2 will ac-
cept the contract (g,h,P(b)∧¬P(a)), she will deviate to contract (g,h,P(a)∧
¬P(b)), because danti−cp(P(b)∧¬P(a))= (w2,{a,b}), while danti−cp(P(a)∧
¬P(b)) = (∅,{a,b}).

4.4. Discussion

1. In the above analysis, we compared the cp doctrine only with the anti-cp
doctrine. Ideally, we would like to define a general class of interpretive
doctrines, and establish the cp doctrine as the optimal one among them.
This is a task for future research. Here, we briefly remark on what care
one should take when pursuing this problem. Consider a constant “doc-
trine”, d, that maps any contractual sentence to the same event with a
non-empty reference, say R. Under such a “doctrine”, the rich-object as-
sumption will never hold; and, with luck, Z may happen to be the same
of R, making perfect insurance possible. Should d be in the feasible set
of the optimal doctrine design problem? One may argue not, because
d is insensitive to society’s interpretations of contractual language, and
hence is hardly a legal interpretive doctrine. But then what is the appro-
priate definition for legal interpretive doctrines? This is a question that
a full-blown optimal doctrine design exercise needs to address first.
A reasonable approach would be to define a legal interpretive doctrine
as any function d such that d(φ) ∈ {l1(φ), l2(φ)} for every φ ∈L . Un-
der this definition, Proposition 7 can be strengthened as follows.

Proposition 8. Whenever the Rich-Object Assumption holds under the
cp doctrine, it will also hold under any legal interpretive doctrine.
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The proof is the same as that of Proposition 7.

2. Our rationale for the cp doctrine actually does not depend on the as-
sumption that the drafter of the contract has strictly richer awareness
than the other party. For example, our argument continues to go through
even if agent 2 is also aware of an array of (real) objects that agent 1 is
not aware of. Those objects will play no role in the analysis, because
the drafter, by definition, cannot write any sentence that makes refer-
ence to objects that she is unaware of. Additionally, suppose that there
is an array of (real) objects that both agents 1 and 2 are aware of. The
rationale behind the cp doctrine seems intuitive enough that it should
be robust with respect to this complication as well, although the state-
ments of the Rich-Object Assumption and of Proposition 6 would not
be as clean.

3. Our analysis of the slip-the-mind case may seem surprising to the reader,
especially in light of the recent literature where various authors have
obtained interesting results in insurance contract design when the in-
sured lacks full awareness. Let’s point out an implicit assumption that
differentiates our work from the rest. We assume that, after agent 2
reads a contract that reminds him of some objects that had previously
slipped his mind, he continues to assign the same probability to the
event of a negative income shock as before. If this assumption seems
implausible, recall that in our framework it is possible for an agent to
(explicitly) believe that something has slipped his mind, even though
he is not aware of anything that has; hence he is not surprised when he
later on comes across an example of such a thing. An agent’s aware-
ness and his (implicit) beliefs are logically distinct. While one could
also tell stories where there is some link between the two, our present
aim is to consider what difficulties are imposed on contracting parties
by lack of awareness alone. To this end, we work with a model that
captures this issue but isolates it from all others. We recognize that a
fully-fledged theory of insurance contracts would need to address more
systematically the question of how an agent’s knowledge, probabilistic
beliefs, and awareness change when he is exposed to new information
that makes reference to objects that he was unaware of earlier. Devel-
oping models that do just this is a priority for our future research.
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5. SPECULATIVE TRADE

In this section, we use the OBU structures to study the possibility of specula-
tive trade under unawareness.17 It is well known that, in classical state-space
models with a common prior, common knowledge of strict willingness to
trade is impossible when agents are non-delusional (i.e., if they never hold
false belief 18); on the other hand, when agents are delusional, speculative
trade may occur. This result remains true when there is unawareness. Here
we present two new results that we believe will be of some interest: either
if everyone is living in denial (i.e., believes, perhaps incorrectly, that there
is nothing they are unaware of), or if everyone is living in paranoia (i.e., be-
lieves, perhaps incorrectly, that there is something that they are unaware of),
common knowledge of strict willingness to trade is still impossible, notwith-
standing the fact that the agents may be delusional. The proof of this result
makes use of an auxiliary theorem which is of interest on its own. The auxil-
iary theorem states that speculative trade is impossible as long as agents are
terminally partitional, and hence generalizes the c6lassical no-trade theorem
even in standard state-space models.19

5.1. Review of the Classical No-Trade Theorem

An OBU structure with common prior is given by 〈W,O,{Ow},{Ii},{Ai},q〉,
where W is finite (see Section 3). For the remainder of this section we assume
that the information functions Ii satisfy belief consistency, i.e. for all w ∈W
and all i, Ii(w) 6=∅. Belief consistency guarantees that conditional expecta-
tions are well defined. Given any OBU structure with common prior, we shall

17 Heifetz et al. (2013) also study the possibility of speculative trade under unawareness, in
a rather different framework from our own. They do not study situations where agents are
living in denial or in paranoia.

18 So far, we have been talking about what an agent knows and does not know, and interpreting
Li and Ki as knowledge operators. But these operators can also be interpreted as representing
what an agent believes. Typically, it is assumed that one of the differences between knowl-
edge and belief is that while truth is a necessary condition for knowledge, one may believe
in something that is false. Since the main aim of this section is to analyze the implications of
various assumptions about what is true, it may be clearer and more appropriate to talk about
belief in this section, and be very explicit about truth/falsehood.

19 Geanakoplos (1989) provides other generalizations of the classical no-trade theorem. The five
conditions studied there (nondelusion, knowing that you know, nestedness, balancedness, and
positively balancedness) neither imply nor are implied by terminal partitionality.
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call the corresponding pair 〈W,{Ii}〉 its Kripke frame (after the logician Saul
Kripke).

With two additional restrictions on the information functions, Kripke frames
form the basis of the standard model of information used in the economics lit-
erature:

• Non-delusion: for all w ∈W and all i, w ∈ Ii(w).

• Stationarity: for all w,w′ ∈ W and all i, if w′ ∈ Ii(w) then Ii(w) =
Ii(w′).

We refer to these two assumptions jointly as partitionality, since together they
imply that Ii defines a partition on W . A Kripke frame that satisfies non-
delusion and stationarity is often referred to as an Aumann structure or infor-
mation partition model. Intuitively, non-delusion implies that if an agent (im-
plicitly) believes a fact, then that fact is true; stationarity implies that agents
believe that they believe what they actually do believe (positive introspection)
and also believe that they don’t believe what they actually don’t believe (neg-
ative introspection).

Let v : W → RI be a function that satisfies ∑i vi(w) = 0 for every state
w. The function v can be thought of as a trade contract that specifies the net
monetary transfer to each agent in each state. Let Fv

i denote the event with
empty sense (i.e., sen(Fv

i ) = ∅) and with reference equal to the subset of
worlds in which agent i’s conditional expection of v is strictly positive:

re f (Fv
i ) =

{
w

∣∣∣∣∣
∑w′∈Ii(w) q(w′)vi(w′)

∑w′∈Ii(w) q(w′)
> 0

}
.

Fv
i can be interpreted as the event that agent i has strict willingness to trade.

Let Fv be the conjunction of Fv
i ’s for every i (i.e., Fv =∧iFv

i ), so that Fv is the
event that every agent has strict willingness to trade. Let KnFv be recursively
defined as ∧iKiK

n−1Fv, with K0Fv = Fv. Finally, define

CKFv := ∧n≥1K
nFv.

Clearly, CKFv is the event that it is a common belief that every agent has
strict willingness to trade. The no-trade happens if re f (CKFv) =∅ for every
trade contract v. On the other hand, if w ∈ CKFv for some v and w, then
speculative trade occurs.

The following result is a straightforward translation of the classical no-
trade theorem to our setting. See, for example, Samet (1998) for a proof.
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Proposition 9. Take any OBU structure with common prior. If it satisfies non-
delusional and stationarity (i.e., if it is partitional), then the no-trade result
obtains.

It is also well known that stationarity alone, without non-delusion, does
not suffice to guarantee the no-trade result, nor does non-delusion alone with-
out stationarity. In the next subsection, we prove a stronger version of the
classical No-Trade Theorem, which says that the no-trade result still obtains
when partitionality is weakened to a condition we call terminal partitionality.

5.2. Terminal Partitionality

Given any OBU structure, let 〈W,{Ii}〉 be its Kripke frame. We first gener-
alize the notion of partitionality to subspaces of W : W ′ ⊆ W is partitional if
for all w,w′ ∈W ′, Ii(w)⊆W ′ for all i, and also non-delusion and stationarity
are satisfied. Next, for every subspace W ′ ⊆W , define

D(W ′) = {w ∈W |Ii(w)⊆W ′ for some agent i}.

D(W ′) is the collection of worlds in which at least one agent considers only
worlds in W ′ to be possible. We say that an OBU structure (and its Kripke
frame) satisfies terminal partitionality if there is a non-empty partitional sub-
space W ′ ⊆ W such that ∪n≥0Dn(W ′) = W , where Dn(W ′) is defined recur-
sively as D(Dn−1(W ′)), and D0(W ′) =W ′.

Note that terminal partitionaity is a strictly weaker condition than parti-
tionality. It says that there is a subset of states where agents satisfy non-
delusion and stationarity (i.e. where everything they believe is true and they
have access to their own beliefs), and in every other state, some agent either
believes that everyone satisfies non-delusion and stationarity, or believes that
someone believes that everyone satisfies non-delusion and stationarity, or be-
lieves that someone believes that someone believes that . . . .

The next proposition says that the condition of partitionality in the classi-
cal no-trade theorem can be replaced by terminal partitionality.

Proposition 10. Take any OBU structure with common prior. If it is termi-
nally partitional, then the no-trade result obtains.

Proof. Let 〈W,{Ii}〉 be the corresponding Kripke frame, and let W ′ be a
partitional subspace such that ∪n≥0Dn(W ′) =W . Such a partitional subspace
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exists by assumption. We prove by induction that

re f (CKFv)∩Dn(W ′) =∅ (10)

for every n, which implies that re f (CKFv) = re f (CKFv)∩W = ∅, complet-
ing the proof. For n = 0, this follows from Proposition 9 (applied to the
sub-structure with state space W ′).

For the inductive step, suppose equation (10) has been proved up to n;
we prove it for n+ 1. Consider any world w ∈ Dn+1(W ′); i.e., any world w
such that Ii(w) ⊆ Dn(W ′) for some agent i. Suppose w ∈ re f (CKFv). Then
w ∈ re f (KiK

mFv) for every m ≥ 1, and hence Ii(w) ⊆ re f (KmFv) for every
m ≥ 1. Therefore Ii(w) ⊆ re f (CKFv). But then re f (CKFv)∩Dn(W ′) ⊇
Ii(w) 6= ∅ yields a contradiction. So we have re f (CKFv)∩Dn+1(W ′) = ∅,
as required.

5.3. Living in Denial and Living in Paranoia

Informally, we say that an agent is living in denial if she always believes that
there is nothing she is unaware of (although there may be). Similarly, we say
that she is living in paranoia if she always believes that there is something
she is unaware of (although there may be none). Let’s illustrate these two
concepts with two examples before getting into the formality.

Example 1. Consider an OBU structure with only one agent; W = {w1,w2};
O = {o1,o2}, Ow1 = {o1}, Ow2 = {o1,o2}; A (w1) = A (w2) = {o1}; and
I (w1) = I (w2) = {w1}.

In this example, although the agent is aware of exactly the same object
in both states (i.e., A (w1) = A (w2)), different things are true in these states.
In particular, in w1 there is nothing that the agent is unaware of, while in w2
there is something that the agent is unaware of. Note that in both states, the
agent considers only w1 as possible. Therefore the agent is delusional in w2:
she believes that there is nothing she is unaware of when there actually is. In
this example, the agent always believes that there is nothing she is unaware of
(although there may be), and hence she is living in denial.

Example 2. Consider an OBU structure which is the same as in Example 1,
except for that the information function is now I (w1) = I (w2) = {w2}.
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34 Object-Based Unawareness: Theory and Applications

In this example, in both states w1 and w2, the agent considers only w2
possible. Therefore the agent is delusional in world w1: she believes that
there is something she is unaware of when there actually is none. In this
example, the agent always believes that there is something she is unaware of
(although there may be none), and hence she is living in paranoia.

Of course there is no reason why agents who are living in denial could not
coexist with agents who are living in paranoia. An interesting task for future
research is to study strategic interaction among these different kinds of agents.
For now, however, we focus on cases where everyone is living in denial, or
where everyone is living in paranoia.

Note that an agent who is living in denial may be delusional, and the
classical no-trade theorem (Proposition 9) does not rule out the possibility of
speculative trade. But living in denial, when it gives rise to delusion, results in
a very specific form of delusion. In fact, we show that if this is the only form
of delusion suffered by the agents, then speculative trade is still impossible.
A similar result holds for the case where everyone is living in paranoia.

Definition 11. An OBU structure satisfies WLID (weak living-in-denial) if,
for every state w and agent i,

1. Ai(w)⊆ Ow;

2. Ai(w′) = Ow′ for every w′ ∈ Ii(w); and

3. Ai(w) = Ow implies w ∈ Ii(w) and Ii(w′) = Ii(w) for w′ ∈ Ii(w).

The second part of the definition says that agent i considers possible only
states in which she is aware of everything, and so she believes (correctly or
incorrectly) that there is nothing she is unaware of. The third part says that if
this belief turns out to be correct in a given state, then she has no false beliefs
in that state and has access to her own beliefs.

Definition 12. An OBU structure satisfies WLIP (weak living-in-paranoia) if,
for every state w and agent i,

1. Ai(w)⊆ Ow;

2. Ai(w′)( Ow′ for every w′ ∈ Ii(w); and

3. Ai(w)( Ow implies w ∈ Ii(w) and Ii(w′) = Ii(w) for w′ ∈ Ii(w).
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WLIP is the opposite of WLID in some sense: every agent believes (cor-
rectly or incorrectly) that there is something she is unaware of; and if she turns
out to be correct about this, she is correct on every other matter and also has
access to her own beliefs.

Both WLID and WLIP are “weak” conditions in the sense that even a par-
titional OBU structure can satisfy WLID or WLIP (although it cannot satisfy
both simultaneously).

Before we state our main results, we need one more definition. We say
that an OBU structure satisfies LA-introspection if, for every state w and every
agent i, w′ ∈ Ii(w) implies Ai(w′) = Ai(w). LA-introspection is character-
ized by Board & Chung (2021)’s axioms LA1 and LA2, which jointly say
that every agent has correct beliefs about what she is aware of (see Board &
Chung (2021) for more details).

Proposition 13. Consider an OBU structure with common prior, and suppose
it satisfies WLID and LA-introspection. Then it also satisfies terminal parti-
tionality.

Proof. For any two worlds, w and w′, we say that w points to w′ if there is an
agent i such that w 6∈ Ii(w) and w′ ∈ Ii(w).

Suppose w points to w′. Then w 6∈ Ii(w) for some agent i. By WLID,
LA-introspection, and WLID again, we have

Ow′ = Ai(w′) = Ai(w)( Ow (11)

for some agent i. Therefore a world can only point to other worlds that have
strictly smaller sets of real objects. Then, by finiteness of W , there exist
worlds that do not point to any other worlds. Let W ′ be the collection of
these worlds.

If w belongs to W ′, then w ∈ Ii(w) for any agent i. Furthermore, for
any agent i, by the second and the third parts of WLID respectively, we have
Ai(w) = Ow and hence Ii(w′) = Ii(w) for any w′ ∈ Ii(w). But this means
w′ ∈Ii(w) implies w′ ∈Ii(w′), and hence w′ also does not point to any other
worlds. Therefore W ′ is a partitional subspace.

If W 6= W ′, then by finiteness of W \W ′, and by the observation that a
world can only point to worlds that have strictly smaller sets of real objects,
there must exist worlds in W \W ′ that do not point to any other worlds in
W \W ′. Let W ′′ be the collection of these worlds. It is easy to verify that
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D(W ′) =W ′′∪W ′ )W ′. Repeating this argument, one can show that if W 6=
Dn(W ′), then Dn+1(W ′) is a strict superset of Dn(W ′). Therefore, by finiteness
again, W = ∪n≥0Dn(W ′).

Proposition 14. Consider an OBU structure with common prior, and suppose
it satisfies WLIP and LA-introspection. Then it also satisfies terminal parti-
tionality.

Proof. The proof is similar to that of Proposition 13, except for equation (11).
Suppose w points to w′. Then w 6∈ Ii(w) for some agent i. By WLIP, LA-
introspection, and WLIP again, we have

Ow′ ) Ai(w′) = Ai(w) = Ow

for some agent i. Therefore a world can only point to other worlds that have
strictly larger sets of real objects. The rest of the proof now follows the same
arguments as in that of Proposition 13.

Corollary 15. Consider a regular OBU structure with common prior, and
suppose it satisfies LA-introspection. If it satisfies either WLID or WLIP, then
the no-trade result obtains.

Proof. This follows from Propositions 10, 13 and 14.

6. CONCLUSION

As we discussed in the introduction, there is large gap in the literature on
unawareness between the more applied studies that appeal to unawareness to
motivate the assumptions underlying their models, and the foundational stud-
ies that often pay little attention to the real-world applications. In this and
our companion papers, we have attempted to bridge this gap. In particular,
we have shown that the key assumption in the applied literature, namely that
agents are “unaware, but know that they are unaware”, can be captured in
a rational-agent framework; furthermore, this assumption is perfectly consis-
tent with the DLR axioms that much of the foundational literature tries to
accommodate.

Although the OBU structures described above derive an agent’s unaware-
ness of propositions from her unawareness of the objects mentioned in those
propositions, one can envisage an extension where unawareness of properties
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is also modeled. A property-unawareness function could work (roughly) as
follows: if an agent is unaware of a given property, then she would be un-
aware of any event containing one state but not another, where the two states
could only be distinguished by whether or not various objects satisfied that
property. Combining such a property-unawareness function with the object-
unawareness function analyzed above would allow us to separate two kinds
of unawareness: and agent could be unaware that “Yao Ming is tall” either
because she has no idea who Yao Ming is or because she does not understand
the concept of height.

In additional to providing foundations for a model of unawareness, in the
form of OBU structures, we have also presented two applications: the first
examines the legal interpretive doctrine contra proferentem, while the sec-
ond extends the classical no trade theorem to cover cases where agents are
mistaken in a particular away (they live in denial or in paranoia). These ap-
plications, we hope, will convince the reader that it is straightforward to use
OBU structures in applied work. We also believe that the results of these
applications are valuable in their own right.

Before we finish, we would also like to mention a recent experimental pa-
per that provides evidence suggesting that agents may be unsure whether they
are aware of everything or not. Blume & Gneezy (2010) have their subjects
play a game with each other. There is a less-obvious strategy that guarantees
a win, and a more-obvious strategy that results in a win half the time. Even
though a win paid out $10, some subjects rejected an outside option of $6 and
then played the more-obvious strategy, for an expected payout of $5. Presum-
ably these subjects were not aware of the less-obvious strategy. Why then did
they reject the outside option? Blume & Gneezy (2010) suggest that this is
because they believed such a strategy existed, and hoped to figure it out after
rejecting the outside option but before playing the game. In our language, we
would say that these agents believed there was something they were unaware
of, and hoped to become aware of it in the future.

Appendix A: Model-Theoretic Description of OBU Structures

For the sake of transparency, and to aid interpretation, we now show how
OBU structures assign truth conditions for a formal language, a version of
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first-order modal logic.20 We start with a set of (unary) predicates, P,Q,R, . . .,
and an (infinite) set of variables, x,y,z, . . .. Together with set of objects, O,
this generates a set Φ of atomic formulas, P(a),P(x),Q(a),Q(x), . . ., where
each predicate takes as its argument a single object or variable. Let F be the
smallest set of formulas that satisfies the following conditions:

• if φ ∈ Φ, then φ ∈ F ;

• if φ ,ψ ∈ F , then ¬φ ∈ F and φ ∧ψ ∈ F ;

• if φ ∈ F and x ∈ X , then ∀xφ ∈ F ;

• if φ ∈ F , then Liφ ∈ F and Aiα ∈ F and Kiα ∈ F for each agent i.

Formulas should be read in the obvious way; for instance, ∀xAiP(x) is to be
read as “for every x, agent i is aware that x possesses property P.” Notice,
however, that it is hard to make sense of certain formulas: consider P(x) as
opposed to P(a) or ∀xP(x). Although it may be reasonable to claim that a
specific object, a, is P, or that every x is P, the claim that x is P seems empty
unless we specify which object variable x stands for. In general, we say that
a variable x is free in a formula if it does fall under the scope of a quantifier
∀x, and define our language L to be the set of all formulas containing no
free variables.21 We use OBU structures to provide truth conditions only for
formulas in L , and not for formulas such as P(x) that contain free variables.

Take an OBU structure M = 〈W,O,{Ow},{Ii},{Ai}〉, and augment it
with an assignment π(w)(P) ⊆ O of objects to every predicate at every state
(intuitively, π(w)(P) is the set of objects that satisfy predicate P). If a formula
φ ∈ L is true at state w of OBU structure M under assignment π , we write
(M,w,π) � P(a); � is defined inductively as follows:

20 Board & Chung (2021) provide the (model-theoretic) soundness and complete axiomatiza-
tion.

21 More formally, we define inductively what it is for a variable to be free in φ ∈ F :

• if φ is an atomic formula of the form P(x) where x is a variable, then x is free in φ ;

• x is free in ¬φ , Kiφ , Aiφ , and Liφ iff x is free in φ ;

• x is free in φ ∧ψ iff x is free in φ or ψ ;

• x is free in ∀yα iff x is free in φ and x is different from y.
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(M,w,π) � P(a) iff a ∈ π(w)(P);

(M,w,π) � ¬φ iff (M,w,π) 6|= φ ;

(M,w,π) � φ ∧ψ iff (M,w,π) � φ and (M,w,π) � ψ;

(M,w,π) � ∀xφ iff (M,w,π) � φ [a\x] for every a ∈ Ow (where φ [a\x] is φ
with all free occurrences of x replaced with a);

(M,w,π) � Aiφ iff a ∈ Ai(w) for every object a in φ ;

(M,w,π) � Liφ iff (M,w′,π) � φ for all w′ ∈ Ii(w);

(M,w,π) � Kiφ iff (M,w,π) � Aiφ and (M,w,π) � Liφ .

Notice that there is a close connection between sentences of L and OBU
events: for any given φ ∈ L , the reference of the corresponding OBU event
is given by the set of states at which φ is true, while the sense is simply the
set of objects in φ .

Appendix B: Proofs

Proof of Proposition 1. 1. Straightforward.

2. Take some A′
i which satisfies A1–A4, and define Ai as follows: a ∈

Ai (w) iff w ∈ re fA′
i (W,a). We need to show that A′

i (R,S) = Ai (R,S).
We consider two cases:
Case 1: S 6=∅. Then

A′
i (R,S) = A′

i (W,S) (by A2)
= ∧a∈SA

′
i (W,a) (by A1)

= ∧a∈S ({w | x ∈ Ai (w)} ,a) (by A4 and the definition of Ai)
= ({w | S ⊆ Ai (w)} ,S) (definition of ∧)
= Ai (R,S) , as required.

Case 2: S =∅. Then

A′
i (R,∅) = (W,∅) (by A3)

= ({w ∈W |∅⊆ Ai (w)} ,∅)

= Ai (R,∅) , as required.
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Proof of Proposition 2. 1. Straightforward.

2. Take some L′i which satisfies L1–L4, and define Ii as follows:

Ii (w) =
{

w′ | w ∈ re f
(
¬L′i¬

(
w′,O

))}
.

Note that, by L4,

{
w′ | w ∈ re f

(
¬L′i¬

(
w′,O

))}
=
{

w′ | w ∈ re f
(
¬L′i¬

(
w′,S

))}

for all S ⊆ O, so w′ ∈ Ii (w) iff w ∈ re f (¬L′i¬(w′,S)), and hence

w′ /∈ Ii (w) iff w ∈ re f
(
L′i¬

(
w′,S

))
. (∗)

We need to show that L′i (R,S) = Li (R,S). We consider two cases:
Case 1: R 6=W . Then

L′i (R,S) = L′i
(
∩w 6∈RW \{w} ,S

)

= ∧w 6∈RL
′
i (W \{w} ,S) (by L2)

= ∧w 6∈RL
′
i¬(w,S) (definition of ¬)

= ∧w 6∈R
({

w′ | w /∈ Ii
(
w′)} ,S

)
(by (∗) and L3)

=
(
∩w 6∈R

{
w′ | w1 /∈ Ii

(
w′)} ,S

)
(definition of ∧)

=
({

w′ | Ii
(
w′)⊆ R

}
,S
)

= Li (R,S) , as required.

Case 2: R =W . Then L′i (W,O) = (W,O) (by L1), so L′i (W,S) = (W,S)
(by L4). And Li (W,S) = ({w | Ii (w)⊆W} ,S) = (W,S).

Proof of Proposition 3. 1. Straightforward.
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2. Take some All′ which satisfies All1–All4. For any w ∈ W and a ∈ O,
construct the property pwa such that:

pwa(b) =

{
(W,b) if b 6= a
(W \{w},b) if b = a

.

Observe for later use that, by All2, W \{w} ⊆ re f (All′ pwa), and hence,
for any R ⊆W ,

∩w 6∈R re f (All′ pwa) = {w|w ∈ re f (All′ pwa)}∪R. (12)

We define {Ow}w∈W using these pwa’s as follows:

Ow =
{

a | w 6∈ re f
(
All′ pwa

)}
.

These Ow’s define the property re:

Rre
a = {w | w 6∈ re f (All′ pwa)}.

This property re, of course, in turn defines the operator All. We need
to show that All′ = All. Take an arbitrary property p̃. From All4, we
have sen(All′ p̃) = S p̃; and sen(All p̃) = S p̃ from the definition of All. It
remains to show that re f (All′ p̃) = re f (All p̃).
From p̃, construct another property p̂ as follows:

p̂ := ∧a∈O ∧w 6∈Rp̃a pwa.

We claim that R p̂
b = R p̃

b for every b ∈ O, and hence by All3, we have
re f (All′ p̂) = re f (All′ p̃). To prove this claim, notice that, for any b ∈ O,

R p̂
b = ∩a∈O ∩w 6∈Rp̃

a
Rpwa

b

= (∩ a6=b
w 6∈Rp̃

a

Rpwa
b )∩ (∩ a=b

w 6∈Rp̃
a

Rpwa
b )

= (∩ a6=b
w 6∈Rp̃

a

W )∩ (∩w 6∈Rp̃
b
W \{w})

= R p̃
b , as required.
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Therefore, it suffices to prove that re f (All′ p̂) = re f (All p̃). By All1, we
have

re f (All′ p̂) = ∩a∈O ∩w 6∈Rp̃
a

re f (All′ pwa)

= ∩a∈O ({w | w ∈ re f (All′ pwa)}∪R p̃
a) (by (12))

= ∩a∈O (R¬re
a ∪R p̃

a)

= ∩a∈O R¬re∨ p̃
a

= ∩a∈O Rre→ p̃
a

= re f (All p̃), as required.

References
Abraham, K. S. (1996). A theory of insurance policy interpretation. Michigan Law

Review, 95(3), 531–569.
Blume, A., & Gneezy, U. (2010). Cognitive forward induction and coordination with-

out common knowledge: An experimental study. Games and Economic Behavior,
68(2), 488-511.

Board, O. J., & Chung, K.-S. (2021). Object-based unawareness: Axioms. Journal
of Mechanism and Institution Design, 6(6), 1–36.

Carolina Care Plan Incorporated v. McKenzie. (2007). 551 U.S. 1 (No. 06-1182
(R46-022)).

Chung, K.-S., & Fortnow, L. (2016). Loopholes. The Economic Journal, 126(595),
1774-1797.

Dekel, E., Lipman, B. L., & Rustichini, A. (1998). Standard state-space models
preclude unawareness. Econometrica, 66(1), 159–173.

Fagin, R., & Halpern, J. Y. (1987). Belief, awareness, and limited reasoning. Artificial
Intelligence, 34(1), 39-76.

Filiz-Ozbay, E. (2012). Incorporating unawareness into contract theory. Games and
Economic Behavior, 76(1), 181-194.

Geanakoplos, J. (1989). Game Theory Without Partitions, and Applications to Spec-
ulation and Consensus. Cowles Foundation Discussion Papers, 914.

Gul, F. (1998). A comment on Aumann’s Bayesian view. Econometrica, 66(4),
923–927.

Halpern, J. Y. (1999). Set-theoretic completeness for epistemic and conditional logic.
Annals of Mathematics and Artificial Intelligence, 26(1), 1-27.

Journal of Mechanism and Institution Design 7(1), 2022

“jMID-vol7(1)-01” — 2022/12/6 — 6:24 — page 42 — #46



Oliver J. Board, Kim-Sau Chung 43

Halpern, J. Y. (2001). Alternative semantics for unawareness. Games and Economic
Behavior, 37(2), 321-339.
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ABSTRACT
We consider financial networks where agents are linked to each other by fi-
nancial contracts. A centralized clearing mechanism collects the initial en-
dowments, the liabilities and the division rules of the agents and determines
the payments to be made. A division rule specifies how the assets of the agents
should be rationed. Since payments made depend on payments received, we
are looking for solutions to a system of equations. The set of solutions is
known to have a lattice structure, leading to the existence of a least and a great-
est clearing payment matrix. Previous research has shown how decentralized
clearing selects the least clearing payment matrix. We present a centralized
approach towards clearing in order to select the greatest clearing payment
matrix. To do so, we formulate the determination of the greatest clearing
payment matrix as a programming problem. When agents use proportional di-
vision rules, this programming problem corresponds to a linear programming
problem. We show that for other common division rules, it can be written as
an integer linear programming problem.
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1. INTRODUCTION

IN this paper, we consider financial networks where agents are linked to each
other by financial contracts. Like the seminal paper of Eisenberg & Noe

(2001), a financial network consists of agents corresponding to the financial
institutions, their initial endowments, and liabilities. An agent’s initial endow-
ment includes all the agent’s tangible and intangible assets but excludes the
claims and liabilities the agent has towards the other agents. For outstanding
surveys of this literature, we refer the reader to Glasserman & Young (2016)
and Jackson & Pernoud (2021).

In Eisenberg & Noe (2001), agents use proportional division rules to de-
termine payments in case of bankruptcy, i.e., payments are proportional to
liabilities. In practice, often priority principles are invoked, where a priority
order determines the seniority of the liabilities. Given a permutation determin-
ing the rank of the claims, under the priority rule (see e.g.,Moulin (2000) and
Chatterjee & Eyigungor (2015)) claimants are paid in a lexicographic order
determined by the permutation. Other common division rules are the con-
strained equal awards rule and the constrained equal losses rule (for updated
surveys, see Thomson (2013) and Thomson (2015)). Under the constrained
equal awards division rule,1 all claimants get the same amount, up to the
value of their claim. The constrained equal losses division rule is its dual and
imposes that all claimants face the same loss, up to the value of their claim.
The choice of the division rule may also balance the trade-off between wel-
fare maximization and payoff equalization (Gallice, 2019). Csóka & Herings
(2018) note that on top of financial networks, default contagion can also occur
in other applications (i.e. supply chains, international student exchange pro-
grams, servers processing job, time banks), where again other division rules
may be in place. We will extend the Eisenberg & Noe (2001) framework and
allow for general division rules.

In claims problems, there is a single, exogenously given, bankrupt agent
and a division rule is used to determine the payments to the claimants. In
financial networks, there can be multiple bankrupt agents. As an agent’s as-
set value, and therefore payments made, depends on payments received, the
actual payments are endogenously determined. Like the proportional rule for
claims problems can be extended to financial networks (Eisenberg & Noe,
2001), it is possible to extend any division rule for claims problems to fi-

1 For an axiomatization of its weighted version, see Flores-Szwagrzak (2015).
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nancial networks (Groote Schaarsberg et al., 2018). The resulting payment
matrix consists of first computing each agent’s asset value as the sum of the
initial endowments and the payments received and next making the payments
in accordance with the given division rule.

Following Csóka & Herings (2021), a so-called clearing payment matrix
satisfies the following three conditions. First, feasibility, which states that the
payments are in accordance with the given division rules. Second, limited
liability, which requires that the total payments made by an agent must never
exceed the asset value of the agent. Third, priority of creditors, which ex-
presses that default is only allowed if equity, i.e., asset value minus payments
made, is equal to zero. Since payments made depend on payments received,
the determination of a clearing payment matrix corresponds to the solution to
a fixed point problem.

In this paper, we use the system of equations as introduced in Csóka &
Herings (2021) to find a clearing payment matrix. The set of solutions to
this system forms a complete lattice, which implies that there is a least and a
greatest clearing payment matrix. Csóka & Herings (2018) show in a decen-
tralized set-up that a large class of decentralized clearing processes converges
to the least clearing payment matrix and Ketelaars & Borm (2021) derive an
analogous result in a continuous set-up. In this paper, we therefore examine
how a centralized approach can be used to select the greatest clearing payment
matrix. More precisely, we present a programming problem whose unique so-
lution is the greatest clearing payment matrix. The programming problem can
be written as a linear programming problem when all agents use proportional
division rules. For the other common division rules, we demonstrate how the
programming problem reduces to an integer linear programming problem.

The rest of the paper is organized as follows. Section 2 defines financial
networks and clearing payment matrices. Section 3 illustrates the possible
multiplicity of clearing payment matrices and how multiplicity may vary with
the division rules that are in place. Section 4 formulates the programming
problems. Section 5 makes some concluding remarks.

2. FINANCIAL NETWORKS

A financial network is a quadruple F = (N,z,L,d) with the following inter-
pretation.

The finite set N consists of the agents in the financial network.
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The vector z∈RN
+ represents the endowments of the agents, which are non-

negative real numbers. The endowments of an agent include all the agent’s
tangible and intangible assets, but exclude the claims the agent has on the
other agents.

The non-negative liability matrix L ∈ RN×N
+ describes the mutual claims

of the agents. Its entry Li j is the liability of agent i∈N towards agent j ∈N or,
equivalently, the claim of agent j on agent i. It is allowed that simultaneously
agent j has a claim on agent i and agent i has a claim on agent j, so Li j > 0
and L ji > 0 can both hold at the same time. Agent do not have claims on
themselves, so we set Lii = 0 for every i ∈ N.

The determination of the payments to be made by the agents takes place
by division rules d = (di)i∈N. The division rule di : R+ → RN

+ of agent i ∈ N
describes which payments agent i makes to the agents in N as a function of
agent’s i estate Ei. Payments are non-negative, bounded above by the liabili-
ties, and are such that the sum of the payments is equal to the minimum of
the estate and the sum of the liabilities, so it holds that, for every Ei ∈R+, for
every j ∈ N, di

j(Ei) ≤ Li j, and ∑ j∈N di
j(Ei) = min{Ei,∑ j∈N Li j}. Moreover,

for every j ∈ N, di
j is required to be weakly increasing in Ei. It is well-known

that the weak monotonicity of di implies that it is continuous, see for instance
Thomson (2003). The estate of an agent in a financial network depends on the
payments received on outstanding claims and is therefore determined endoge-
nously.

Important examples of division rules are the proportional, priority, con-
strained equal awards, and the constrained equal losses division rules.

The division rule di of agent i ∈ N is equal to the proportional division
rule if, for every Ei ∈ R+, it assigns to claimant j ∈ N the amount

di
j(Ei) =

{
0, if Li j = 0,
min{ Li j

∑k∈N Lik
Ei,Li j}, otherwise.

Under the proportional division rule, the estate is divided in a proportional
way over the claimants, up to the value of those claims.

The division rule di of agent i ∈ N is equal to a priority division rule if
there exists a permutation π : N → {1, . . . , |N|}, determining the rank of the
claims, such that, for every Ei ∈ R+,

di
j(Ei) = max{0,min{Li j,Ei − ∑

k∈N|π(k)<π( j)
Lik}},
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where {k ∈N|π(k)< π( j)} is the set of agents ranked before j according to π .
Under a priority division rule, claims are paid sequentially to agents π−1(1),
π−1(2), . . . as long as the estate of agent i permits this.

We next define the constrained equal awards rule. Let i ∈ N. If Ei >

∑ j∈N Li j, then define the award λi = max j∈N Li j. Otherwise, define the award
λi ∈ [0,max j∈N Li j] as the unique solution to

∑
j∈N

min{Li j,λi}= Ei.

The division rule di of agent i is equal to the constrained equal awards divi-
sion rule if, for every Ei ∈ R+, it assigns to claimant j ∈ N the amount

di
j(Ei) = min{Li j,λi}.

Under the constrained equal awards division rule, all claimants get the same
amount, up to the value of their claim.

The constrained equal losses rule is the dual of the constrained equal
awards rule. If Ei > ∑ j∈N Li j, then define the loss µi = 0. Otherwise, define
the loss µi ∈ [0,max j∈N Li j] as the unique solution to

∑
j∈N

max{Li j −µi,0}= Ei.

The division rule di of agent i ∈ N is equal to the constrained equal losses
division rule if, for every Ei ∈ R+, it assigns to claimant j ∈ N the amount

di
j(Ei) = max{Li j −µi,0}.

Under the constrained equal losses division rule, all claimants face the same
loss, up to the value of their claim.

The set of all matrices in RN×N
+ with a zero diagonal is denoted by M .

The partial order ≤ on M is defined in the usual way: For P,P′ ∈ M it holds
that P ≤ P′ if and only if Pi j ≤ P′

i j for all (i, j)∈ N×N. For P ∈M and i ∈ N,
let Pi ∈RN denote row i of P. For Pi,P′

i ∈RN , we write Pi < P′
i if Pi j ≤ P′

i j for
all j ∈ N and there is k ∈ N such that Pik < P′

ik.
Consider a financial network F = (N,z,L,d). A payment matrix P ∈ M

describes the mutual payments to be made by the agents, that is, Pi j is the
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monetary amount to be paid by agent i ∈ N to agent j ∈ N. Given a payment
matrix P ∈ M , the asset value ai(P) of agent i ∈ N is given by

ai(P) = zi + ∑
j∈N

Pji.

Subtracting the payments made by an agent from the asset value yields an
agent’s equity. The equity ei(P) of an agent i ∈ N is given by

ei(P) = ai(P)− ∑
j∈N

Pi j = zi + ∑
j∈N

(Pji −Pi j).

It follows immediately from the above expression that the sum over agents of
their equities is the same as the sum over agents of their initial endowments.
We have that

∑
i∈N

ei(P) = ∑
i∈N

zi. (1)

The analysis of financial networks is complicated because the mutual lia-
bility structure may result in contagion effects of default.

Our first aim is to define a clearing payment matrix. To do so, we define
feasible payments of agent i ∈ N as payments which belong to the image
di(R+) of the division rule di of agent i. A payment matrix is feasible if every
row i ∈ N of the matrix belongs to the feasible set of payments of agent i,
that is, payments are made in accordance with the division rules. The set of
feasible payment matrices P is therefore defined as

P = {P ∈ M | ∀i ∈ N, Pi ∈ di(R+)}.

The following definition of a clearing payment matrix is due to Csóka & Her-
ings (2021). It extends the definition of Eisenberg & Noe (2001) for propor-
tional division rules in a continuous setting. For a discrete setting with the
smallest unit of account, see Csóka & Herings (2018).

Definition 2.1. The matrix P ∈ M is a clearing payment matrix of the finan-
cial network F = (N,z,L,d) if it satisfies the following three properties:

1. Feasibility: P ∈ P.

2. Limited liability: For every i ∈ N, ei(P)≥ 0.

3. Priority of creditors: For every i ∈ N, if Pi < Li, then ei(P) = 0.
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Limited liability requires all agents to end up with non-negative equity.
Priority of creditors states that agents are only allowed to default if their equity
is equal to zero.

Csóka & Herings (2021) prove the following result, which relates clearing
payment matrices to the solution of a particular system of equations.

Theorem 2.2. Let F = (N,z,L,d) be a financial network. The payment matrix
P ∈ M is a clearing payment matrix of F if and only if it solves the system of
equations:

Pi j = di
j(ai(P)), i, j ∈ N.

When calculating the clearing payment matrix as the solution to a system
of equations, for every agent we take the value of the estate equal to the agent’s
asset value and next use the respective division rule to spend this asset value.
Notice that agent i ∈ N is treated as a claimant on its own estate ai(P) with a
claim equal to Lii = 0, so a clearing payment matrix P satisfies Pii = 0.

3. MULTIPLICITY OF CLEARING PAYMENT MATRICES

We start by presenting two examples to show that clearing payment matrices
need not be unique.

Example 3.1. We consider a financial network F = (N,z,L,d) with three
agents N = {1,2,3}, zero endowments z = (0,0,0), and a liability matrix
equal to

L =




0 4 8
8 0 4
4 8 0


 .

We examine the possible clearing payment matrices for the four common spec-
ifications of division rules: proportional, priority, constrained equal awards,
and constrained equal losses.

We start with some general observations. Let P be a clearing payment
matrix of F. By Definition 2.1, a clearing payment matrix satisfies limited
liability, so, for every i ∈ N, it holds that ei(P) ≥ 0. Since by Equation (1)
the sum over all agents of their equities is equal to the sum over all agents
of their initial endowments, so ∑i∈N ei(P) = ∑i∈N zi = 0, it follows that, for
every i ∈ N, ei(P) = 0. The condition of priority of creditors in Definition 2.1
is therefore automatically satisfied and to find a clearing payment matrix, we
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should therefore identify those payment matrices where all agents end up with
zero equity while satisfying feasibility. A final observation is that in any clear-
ing payment matrix the estates of the agents are all between 0 and 12.

Assume all agents use proportional division rules and let P be a clearing
payment matrix of F. The estates of the agents satisfy the following system of
equations:

Ei = ∑
j∈N\{i}

Pji =
2
3Ei+1 +

1
3Ei−1, i ∈ N,

where we use the convention that agent 0 is identified with agent 3 and agent
4 with agent 1. It now follows from Gaussian elimination that E1 = E2 = E3.
Since estates of the agents are between 0 and 12, the set of clearing payment
matrices when all agents use proportional division rules is given by

Pprop = {P ∈ M | ∃E ∈ [0,12], ∀i ∈ N, Pi =
1

12ELi}.

There is a one-dimensional, convex set of clearing payment matrices, ranging
from no payments at all to full payments by all agents.

Next assume all agents use priority division rules, where the permutation
is chosen such that larger liabilities have priority. The estates of the agents
now satisfy the equations

Ei = min{Ei+1,8}+max{Ei−1 −8,0}, i ∈ N. (1)

Suppose not all estates are equal. Let j ∈ N be such that E j < E j+1. It follows
from the system of equations in (1) that E j ≥ 8, since the equation correspond-
ing to E j cannot hold with equality if E j < 8 and E j < E j+1. We also have
that

E j+1 = min{E j+2,8}+max{E j −8,0} ≤ 8+E j −8 = E j,

a contradiction to E j < E j+1. Consequently, it follows that all estates are
equal, so 0 ≤ E1 = E2 = E3 ≤ 12.

The set of clearing payment matrices when all agents use priority division
rules with the highest claim having priority is therefore given by

Pprior = {P ∈ M | ∃E ∈ [0,8], ∀i ∈ N, Pi,i−1 = E and Pi,i+1 = 0},
∪{P ∈ M | ∃E ∈ [8,12], ∀i ∈ N, Pi,i−1 = 8 and Pi,i+1 = E −8}.

There is again a one-dimensional multiplicity of clearing payment matrices,
ranging from no payments at all to full payments by all agents.
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We now study the case of constrained equal award division rules. If the
maximal estate across agents is less than or equal to 8, then the estates of the
agents satisfy the following system of equations:

Ei = ∑
j∈N\{i}

Pji =
1
2Ei+1 +

1
2Ei−1, i ∈ N.

It then follows that all estates must be equal, so 0 ≤ E1 = E2 = E3 ≤ 8. Any
of these values of the estate generates a clearing payment matrix.

Next consider the case where the maximal estate across agents is strictly
greater than 8. Let j ∈ N be such that E j > 8. Since E j = Pj+1, j +Pj−1, j ≤
Pj+1, j + 4, it holds that Pj+1, j > 4, so E j+1 > 8. We therefore find that all
estates are strictly greater than 8. The system of equations becomes

Ei = Ei+1 −4+4 = Ei+1, i ∈ N,

so solutions are given by 8 ≤ E1 = E2 = E3 ≤ 12. The set of clearing pay-
ment matrices when all agents use constrained equal awards division rules is
therefore given by

Pcea = {P ∈ M | ∃E ∈ [0,8], ∀i ∈ N, Pi,i−1 =
1
2E and Pi,i+1 =

1
2E},

∪{P ∈ M | ∃E ∈ [8,12], ∀i ∈ N, Pi,i−1 = E −4 and Pi,i+1 = 4}.

We again find a one-dimensional multiplicity of clearing payment matrices,
ranging from no payments to full payments.

Finally, we examine the constrained equal losses division rules. If the
maximal estate across agents is less than or equal to 4, then the estates of the
agents satisfy the following system of equations:

Ei = ∑
j∈N\{i}

Pji = Ei+1, i ∈ N,

so solutions are given by 0 ≤ E1 = E2 = E3 ≤ 4. Consider next the case where
at least one estate, say E j, exceeds 4. Then agent j makes a payment greater
than 4 to agent j−1, so E j−1 exceeds 4. It now follows that all estates exceed
4. We obtain the following system of equations:

Ei = 4+ 1
2(Ei+1 −4)+ 1

2(Ei−1 −4) = 1
2Ei+1 +

1
2Ei−1,
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so solutions are given by 4 ≤ E1 = E2 = E3 ≤ 12. The set of clearing pay-
ment matrices when all agents use constrained equal losses division rules is
therefore given by

Pcel = {P ∈ M | ∃E ∈ [0,4], ∀i ∈ N, Pi,i−1 = E and Pi,i+1 = 0},
∪{P ∈ M | ∃E ∈ [4,12], ∀i ∈ N, Pi,i−1 =

1
2E +2 and

Pi,i+1 =
1
2E −2}.

Again a one-dimensional multiplicity of payment matrices results, which ranges
from a least to a greatest clearing payment matrix. △

The next example shows that multiplicity of clearing payment matrices
may depend on the division rules that are being used. This example also
demonstrates the possibility of multiple clearing payment matrices when all
agents have strictly positive endowments.

Example 3.2. We consider a financial network F = (N,z,L,d) with three
agents N = {1,2,3}, endowments z = (3,6,7), and a liability matrix equal to

L =




0 6 4
12 0 5
0 0 0


 .

The highest possible asset value of agent 2 results when agent 1 pays the full
liability L12 = 6 to agent 2, which leads to asset value a2(P) = z2 + L12 =
6+6 = 12 of agent 2. Since agent 2 has liabilities of 12 towards agent 1 and
liabilities of 5 towards agent 3, agent 2 will always default and end up with
zero equity due to priority of creditors, irrespective of the division rules in
place.

We next examine the set of clearing payment matrices for the four most
common specifications of division rules and start with the case of proportional
division rules. From the system of equations presented in Theorem 2.2, we
have that

P12 = min{3
5(3+P21),6},

P21 = 12
17(6+P12).

This system of equations has P12 = 6 and P21 = 144/17 as its unique solution.
We find that the unique clearing payment matrix in the presence of propor-
tional division rules and the resulting vector of equities are given by

Pprop ≈




0 6 4
8.47 0 3.53
0 0 0


 e(Pprop)≈




1.47
0.00

14.53


 .
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In the case of priority division rules with higher claims having priority, Theo-
rem 2.2 leads to the following two equations:

P12 = min{3+P21,6},
P21 = 6+P12.

The unique solution is given by P12 = 6 and P21 = 12. We find that with prior-
ity division rules the unique clearing payment matrix and resulting vector of
equities are given by

Pprior =




0 6 4
12 0 0
0 0 0


 e(Pprior) =




5
0

11


 .

We continue with the examination of constrained equal awards division rules.
Suppose there is a clearing payment matrix such that the asset value of

agent 1 is below 8. This implies P21 = a1(P)− z1 < 8− 3 = 5. When using
the constrained equal awards division rule, agent 2 only makes a payment to
agent 1 less than 5 if the asset value of agent 2 is below 10. Theorem 2.2
yields the following equations:

P12 = 1
2(3+P21),

P21 = 1
2(6+P12).

The only solution to this system of equations has P12 = 4 and P21 = 5, which
is incompatible with an asset value of agent 1 below 8. Consequently, any
clearing payment matrix results in an asset value of agent 1 of at least 8.

We next examine the existence of a clearing payment matrix where the
asset value of agent 1 is at least equal to 8. To obtain such an asset value,
the payment of agent 2 to agent 1 must at least be equal to 5. Under the
constrained equal awards division rule, the asset value of agent 2 must then at
least be equal to 10. The result of Theorem 2.2 gives rise to the following two
equations:

P12 = min{3+P21 −4,6},
P21 = 6+P12 −5 = P12 +1.

We find a continuum of solutions, with the value of P12 ranging between 4
and 6 and P21 = P12 +1. For every E ∈ [8,10], we obtain a clearing payment
matrix and resulting equities

Pcea =




0 E −4 4
E −3 0 5

0 0 0


 e(Pcea) =




0
0

16


 .
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We conclude with the case of constrained equal losses division rules. Agent 1
has endowments equal to 3 and makes at least a payment of 2 to agent 2, so
will achieve equal losses on the payments to agents 2 and 3. The asset value
of agent 2 is at least equal to 8, so also agent 2 will achieve equal losses on
the payments to agents 1 and 3. Theorem 2.2 gives rise to the following two
equations:

P12 = min{2+ 1
2(3+P21−2),6}= min{21

2 +
1
2P21,6},

P21 = 7+ 1
2(6+P12−7) = 61

2 +
1
2P12.

The unique solution is given by P12 = 6 and P21 = 19/2. We obtain the fol-
lowing market clearing payment matrix and corresponding equity:

Pcel =




0 6 4
9.5 0 2.5
0 0 0


 e(Pprior) =




2.5
0.0

13.5


 .

△
In Example 3.2, different division rules imply significantly different struc-

tural properties as far as clearing payment matrices are concerned. Con-
strained equal award division rules lead to a one-dimensional multiplicity of
clearing payment matrices, whereas the clearing payment matrix is uniquely
determined under the other division rules. Agent 1 defaults in almost all clear-
ing payment matrices for constrained equal awards division rules, but not
when any of the other division rules are used. Agent 2 fully defaults with
respect to agent 3 under the priority division rule, fully pays the liability to
agent 3 under constrained equal awards rules, whereas the claim of agent 3 on
agent 2 is partially paid for under the other division rules.

A complete lattice is a partially ordered non-empty set in which every non-
empty subset has a supremum and an infimum. In both Example 3.1 and in
Example 3.2, the set of clearing payments matrices is a complete lattice. This
turns out to be a general result as has been shown in Csóka & Herings (2021).

Theorem 3.3. Let F = (N,z,L,d) be a financial network. The set of clearing
payment matrices of F is a complete lattice. In particular, there exists a least
clearing payment matrix P− and a greatest clearing payment matrix P+.

Eisenberg & Noe (2001) have shown Theorem 3.3 for the case of pro-
portional division rules. Csóka & Herings (2018) prove a similar result in a
discrete set-up.
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4. CENTRALIZED CLEARING AS A PROGRAMMING PROBLEM

Csóka & Herings (2018) show in a discrete set-up that decentralized clearing
results in the least clearing payment matrix. Ketelaars & Borm (2021) con-
sider the continuous set-up and show that decentralized clearing processes
converge to the least clearing payment matrix under mild conditions. Con-
sider a decentralized clearing process where all agents simultaneously make
the largest payments that are compatible with their cash at hand. In Exam-
ple 3.1 all agents start with zero endowments, there are no positive feasible
payments, and the decentralized clearing process stops at the least clearing
payment matrix with zero payments. For the case of constrained equal awards
division rules in Example 3.2, the decentralized clearing process is illustrated
in Table 1.

z L P1 P2 . . .
3 0 6 4 0 1.5 1.5 0 3 3 . . .
6 12 0 5 3 0 3 3.75 0 3.75 . . .
7 0 0 0 0 0 0 0 0 0 . . .

P10 . . . P−

0 3.996 3.996 . . . 0 4 4
4.995 0 4.995 . . . 0 4 4

0 0 0 . . . 0 0 0

Table 1: The sequence of payment matrices using constrained equal awards
division rules in Example 3.2.

In P1, both agent 1 and agent 2 make equal payments to their creditors.
Then, the new asset value of agent 1 becomes 3 and the new asset value of
agent 2 becomes 1.5. In the next iteration, agents again make additional pay-
ments P2−P1 in accordance with the constrained equal awards division rules.
The payment matrices along the sequence show total payments made so far.
P10 is rounded to three decimals. The process will take an infinite number of
steps to converge to the least clearing payment matrix P−.

As Examples 3.1 and 3.2 demonstrate, the amount of default can be signifi-
cantly higher in the least clearing payment matrix than in the greatest clearing
payment matrix. This triggers the natural question of whether it is possible
to find the greatest clearing payment matrix. Since decentralized clearing
processes end up in the least clearing payment matrix, doing so requires a
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centralized approach. We show in this section that the greatest clearing pay-
ment matrix can be found by solving a particular maximization problem. For
the division rules considered in this paper, this maximization problem can be
written as a linear programming problem or an integer linear programming
problem.

Throughout this section, 1 denotes a vector of ones of appropriate dimen-
sion. Theorems 4.1, 4.3, and 4.5 correspond to unpublished parts of Csóka &
Herings (2017).

Theorem 4.1. Let F = (N,z,L,d) be a financial network. The greatest clear-
ing payment matrix of F is the unique solution to the following maximization
problem:

maxP∈P ∑i∈N ∑ j∈N Pi j,
subject to
z+P⊤

1−P1≥ 0.
(1)

Proof. Let P′ be a solution to (1) and let some i ∈ N be given. We show that
P′

i = di(ai(P′)).
If P′

i = Li, then we have that

ai(P′) = zi + ∑
j∈N

P′
ji ≥ ∑

j∈N
P′

i j = ∑
j∈N

Li j,

where the inequality follows from (1). From the definition of a division rule,
it follows that di(ai(P′)) = Li, so it holds that P′

i = di(ai(P′)).
Consider the case P′

i < Li. We show that ei(P′) = 0. Suppose ei(P′) > 0.
Since P′ ∈ P there exists E ′ ∈ R+ such that P′

i = di(E ′). Since di is continu-
ous and ei(P′)> 0 there exists ε > 0 such that

zi +∑ j∈NP′
ji −∑ j∈Ndi

j(E
′+ ε)≥ 0.

The payment matrix P′′ ∈ P defined by

P′′
i = di(E ′+ ε),

P′′
j = P′

j, j 6= i,

satisfies the constraints in (1) and leads to a strictly higher value of the objec-
tive function than P′, a contradiction. Consequently, it holds that ei(P′) = 0.
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Since P′ ∈P there exists E ′ ∈R+ such that P′
i = di(E ′) and from P′

i < Li
and the definition of a division rule, we have ∑ j∈N di

j(E
′) = E ′. Since ei(P′) =

0, we therefore see that

E ′ = ∑
j∈N

di
j(E

′) = ∑
j∈N

P′
i j = zi + ∑

j∈N
P′

ji = ai(P′).

It follows that P′
i = di(E ′) = di(ai(P′)).

We use Theorem 2.2 to conclude that P′ is a clearing payment matrix.
Let P be any clearing payment matrix. By feasibility, it holds that P ∈P.

By limited liability, it holds that, for every i ∈ N,

ei(P) = zi + ∑
j∈N

Pji − ∑
j∈N

Pi j ≥ 0.

Any clearing payment matrix therefore satisfies the constraints in (1). We see
that P′ is the clearing payment matrix with the largest sum of the payments
made, so we can use Theorem 3.3 to conclude that P′ must be the greatest
clearing payment matrix.

The maximization over P ∈ P in the program (1) guarantees that pay-
ments are feasible. The constraint ensures that no agent ends up with negative
equity. The property that an agent is not allowed to default when having pos-
itive equity follows from the fact that the solution maximizes the objective
function. Otherwise, it would be possible to increase the value of the objec-
tive function by having the defaulting agent make additional payments. The
maximization of the objective function also guarantees that the greatest clear-
ing payment matrix is selected.

When the financial network has proportional division rules, the greatest
clearing payment matrix can be found as the solution to a linear programming
problem. The following result has been shown in Eisenberg & Noe (2001). It
follows as a special case of Theorem 4.1 when the feasibility constraint P∈P
is replaced by explicit constraints that ensure payments are made according
to proportional division rules.

Theorem 4.2. Let F = (N,z,L,d) be a financial network with proportional di-
vision rules. The greatest clearing payment matrix of F is the unique solution
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to the following linear programming problem:

maxP∈RN×N
+ ,λ∈RN

+
∑i∈N ∑ j∈N Pi j,

subject to
Pi j = λiLi j, i, j ∈ N,
λi ≤ 1, i ∈ N,

z+P⊤
1−P1≥ 0.

(2)

The first and second constraint in the linear program (2) guarantee that
payments are proportional to the liabilities and at most equal to those liabil-
ities. These constraints replace the requirement P ∈ P of the maximization
problem (1). Demange (2018) uses a similar program to create a threat index
by calculating the marginal effects of endowment increases.

Also for constrained equal awards division rules, we can replace the re-
quirement P ∈ P of the program in (1) by a set of simple constraints. We
define, for every i ∈ N, Li = max j∈N Li j. Using Theorem 4.1, the following
result follows in a straightforward way.

Theorem 4.3. Let F = (N,z,L,d) be a financial network with constrained
equal awards division rules. The greatest clearing payment matrix of F is the
unique solution P+ to the following maximization problem:

maxP∈RN×N
+ ,λ∈RN

+
∑i∈N ∑ j∈N Pi j,

subject to
Pi j = min{λi,Li j}, i, j ∈ N,
λi ≤ Li, i ∈ N,
z+P⊤

1−P1≥ 0.

(3)

The program in (3) maximizes the total payments as made by the agents
subject to three conditions. The first condition expresses that agent i pays
all of its claimants the amount λi, except when λi would exceed the value of
the claim. This yields the feasibility condition of clearing payment matrices
under the constrained equal awards rule. The second condition serves to pin
down a unique value of λi in all circumstances. It is possible to omit this
constraint in the optimization problem, although one loses the property that
λi is uniquely determined as well as the interpretation of λi as the highest
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payment made by agent i. The third condition requires that no agent ends up
with negative equity.

It is well-known that the constraint in (3) involving a minimum operator
can be avoided by introducing binary decision variables qi j for every i, j ∈ N.
If qi j = 0, then the payment Pi j is equal to Li j and if qi j = 1, then Pi j is equal
to λi ≤ Li j. This leads to the following result.

Theorem 4.4. Let F = (N,z,L,d) be a financial network with constrained
equal awards division rules. The greatest clearing payment matrix of F is the
unique solution P+ to the following integer linear programming problem:

maxP∈RN×N
+ ,λ∈RN

+,q∈{0,1}N×N ∑i∈N ∑ j∈N Pi j,

subject to
Pi j ≤ λi, i, j ∈ N,
Pi j ≤ Li j, i, j ∈ N,
Pi j ≥ λi −Li(1−qi j), i, j ∈ N,
Pi j ≥ Li j −Liqi j, i, j ∈ N,
λi ≤ Li, i ∈ N,
z+P⊤

1−P1≥ 0.

(4)

Proof. We show first that any (P,λ ,q) ∈ RN×N
+ ×RN

+×{0,1}N×N satisfying
the constraints in (4) is such that, for every i, j ∈ N, Pi j = min{λi,Li j}. We
show next that for any (P,λ ) ∈ RN×N

+ ×RN
+ satisfying the constraints in (3)

there is q ∈ {0,1}N×N such that (P,λ ,q) satisfies the constraints in (4).
Let (P,λ ,q) ∈ RN×N

+ ×RN
+×{0,1}N×N satisfy the constraints in (4). Let

i, j ∈ N be such that qi j = 0. The constraints Pi j ≤ λi, Pi j ≤ Li j, and Pi j ≥
Li j −Liqi j = Li j imply Pi j = min{λi,Li j}. Let i, j ∈ N be such that qi j = 1.
The constraints Pi j ≤ λi, Pi j ≤ Li j, and Pi j ≥ λi−Li(1−qi j) = λi imply Pi j =
min{λi,Li j}.

Let (P,λ )∈RN×N
+ ×RN

+ satisfy the constraints in (3). For every i, j ∈N, if
Pi j <Li j, then define qi j = 1, and if Pi j =Li j, then define qi j = 0. We show that
(P,λ ,q) satisfies the constraints in (4). Since Pi j =min{λi,Li j}, it follows that
Pi j ≤ λi and Pi j ≤ Li j. If Pi j < Li j, then qi j = 1 and Pi j = λi = λi−Li(1−qi j).
Clearly, it holds that Pi j ≥ 0 ≥ Li j −Li. If Pi j = Li j, then qi j = 0 and Pi j ≥ 0 ≥
λi −Li = λi −Li(1−qi j). It also holds that Pi j = Li j = Li j −Liqi j.

To obtain desirable ormulations, we have treated all payments Pi j for i, j ∈
N in the same way in the optimization problems (3) and (4). Of course, there
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is no need to introduce explicit variables Pi j and qi j when Li j = 0 since we
can simply substitute Pi j = 0.

Also for the constrained equal losses rule, we can replace the requirement
P ∈ P of the program in (1) by a set of simple constraints. Using Theo-
rem 4.1, we obtain the following result in a straightforward way.

Theorem 4.5. Let F = (N,z,L,d) be a financial network with constrained
equal losses division rules. The greatest clearing payment matrix of F is the
unique solution to the following maximization problem:

maxP∈RN×N
+ ,µ∈RN

+
∑i∈N ∑ j∈N Pi j,

subject to
Pi j = max{Li j −µi,0}, i, j ∈ N,
µi ≤ Li, i ∈ N,
z+P⊤

1−P1≥ 0.

(5)

The program in (5) maximizes the total payments as made by the agents
subject to three conditions. The first condition expresses that agent i pays
all creditors the amount of their claim minus µi, except when µi exceeds the
value of the claim. This corresponds to the feasibility condition of clearing
payment matrices under the constrained equal losses rule. Similar to the case
of constrained equal awards division rules, the second condition serves to pin
down the value of µi. The only case where µi would not be uniquely deter-
mined without this constraint is when agent i does not make any payments
in the greatest clearing payment matrix, a case that can only occur if zi = 0
and i does not receive any payments from any of the other agents or if i does
not have any creditors, both rather contrived situations. The third condition
requires that no agent ends up with negative equity.

Similar to the case for constrained equal awards division rules, it is pos-
sible to avoid the constraint in (5) involving the maximum operator by intro-
ducing binary decision variables qi j for every i, j ∈ N. If qi j = 0, then the
payment Pi j is equal to 0 and if qi j = 1, then Pi j is equal to Li j −µi. This leads
to the following result.

Theorem 4.6. Let F = (N,z,L,d) be a financial network with constrained
equal losses division rules. The greatest clearing payment matrix of F is the
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unique solution P+ to the following integer linear programming problem:

maxP∈RN×N
+ ,µ∈RN

+,q∈{0,1}N×N ∑i∈N ∑ j∈N Pi j,

subject to
Pi j ≥ Li j −µi, i, j ∈ N,
Pi j ≤ Li j −µi +Li(1−qi j), i, j ∈ N,
Pi j ≤ Liqi j, i, j ∈ N,
µi ≤ Li, i ∈ N,
z+P⊤

1−P1≥ 0.

(6)

Proof. We show first that any (P,µ,q) ∈ RN×N
+ ×RN

+×{0,1}N×N satisfying
the constraints in (6) is such that, for every i, j ∈ N, Pi j = max{Li j − µi,0}.
We show next that for any (P,µ) ∈ RN×N

+ ×RN
+ satisfying the constraints in

(5) there is q ∈ {0,1}N×N such that (P,µ,q) satisfies the constraints in (6).
Let (P,µ,q) ∈ RN×N

+ ×RN
+×{0,1}N×N satisfy the constraints in (6). Let

i, j ∈ N be such that qi j = 0. The constraints Pi j ≥ 0, Pi j ≥ Li j −µi, and Pi j ≤
Liqi j = 0 imply Pi j = max{Li j −µi,0}. Let i, j ∈ N be such that qi j = 1. The
constraints Pi j ≥ 0, Pi j ≥ Li j −µi, and Pi j ≤ Li j −µi +Li(1−qi j) = Li j −µi
imply Pi j = max{Li j −µi,0}.

Let (P,µ) ∈ RN×N
+ ×RN

+ satisfy the constraints in (5). For every i, j ∈ N,
if Pi j > 0, then define qi j = 1, and if Pi j = 0, then define qi j = 0. We show
that (P,µ,q) satisfies the constraints in (6). Since Pi j = max{Li j − µi,0}, it
follows that Pi j ≥Li j−µi. If Pi j > 0, then qi j = 1 and Pi j =Li j−µi = Li j−µi+
Li(1−qi j). Clearly, it holds that Pi j = Li j −µi ≤ Li j ≤ Li = Liqi j. If Pi j = 0,
then qi j = 0 and Pi j = 0 ≤ Li −µi ≤ Li j −µi +Li = Li j −µi +Li(1−qi j). It
also holds that Pi j = 0 = Liqi j.

Finally, we turn to priority division rules. The following result follows
immediately from Theorem 4.1.

Theorem 4.7. Let F = (N,z,L,d) be a financial network with priority division
rules. The greatest clearing payment matrix of F is the unique solution P+ to
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the following maximization problem:

maxP∈RN×N
+ ,E∈RN

+
∑i∈N ∑ j∈N Pi j,

subject to
Pi j = max{0,min{Ei −∑k∈N|π(k)<π( j) Lik,Li j}}, i, j ∈ N,
Ei ≤ ∑k∈N Lik, i ∈ N,

z+P⊤
1−P1≥ 0.

(7)

The program in (7) maximizes the total payments made by the agents sub-
ject to three conditions. The first condition expresses that agent i pays all
creditors at most their claim or what is left after creditors having priority are
paid off. The maximum makes sure that in case the latter amount is negative,
no payments are made. This corresponds to the feasibility condition of clear-
ing payment matrices under the priority rule. The second condition serves to
pin down the value of Ei for solvent agents. The third condition requires that
no agent ends up with negative equity.

The next result demonstrates that the problem of finding the greatest clear-
ing payment matrix can be written as an integer linear programming problem
as well in the case of priority division rules.

Theorem 4.8. Let F = (N,z,L,d) be a financial network with priority division
rules. The greatest clearing payment matrix of F is the unique solution P+ to
the following integer linear programming problem:

max
P∈RN×N

+ ,E∈RN
+,q∈{0,1}N×N ,r∈{0,1}N×N

∑
i∈N

∑
j∈N

Pi j, (8)

subject to
Pi j ≤ Li j, i, j ∈ N, (9)
Pi j ≤ Ei − ∑

k∈N|π(k)<π( j)
Lik + ∑

k∈N
Lik(1−qi j), i, j ∈ N, (10)

Pi j ≤ Liqi j, i, j ∈ N, (11)
Pi j ≥ Ei − ∑

k∈N|π(k)<π( j)
Lik − ∑

k∈N
Lik(1− ri j), i, j ∈ N, (12)

Pi j ≥ Li j −Liri j, i, j ∈ N, (13)
Ei ≤ ∑

k∈N
Lik, i ∈ N, (14)

z+P⊤
1−P1≥ 0. (15)
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Proof. We show first that any (P,E,q,r)∈RN×N
+ ×RN

+×{0,1}N×N×{0,1}N×N

satisfying the constraints in (4.8) is such that

Pi j = max{0,min{Ei − ∑
k∈N|π(k)<π( j)

Lik,Li j}}, i, j ∈ N.

We show next that for any (P,E) ∈ RN×N
+ ×RN

+ satisfying the constraints in
(7) there is (q,r) ∈ {0,1}N×N ×{0,1}N×N such that (P,E,q,r) satisfies the
constraints in (4.8).

Let (P,E,q,r) ∈ RN×N
+ ×RN

+ × {0,1}N×N × {0,1}N×N satisfy the con-
straints in (8). Let us fix some (i, j) ∈ N ×N. We distinguish three cases.

Case 1. Pi j = 0.
If Li j = 0, then it clearly holds that
Pi j = max{0,min{Ei −∑k∈N|π(k)<π( j) Lik,Li j}}. Assume Li j > 0. It fol-

lows from (13) that ri j = 1. From (12) we obtain that Pi j ≥Ei−∑k∈N|π(k)<π( j) Lik,
so Pi j = max{0,min{Ei −∑k∈N|π(k)<π( j) Lik,Li j}} as desired.

Case 2. 0 < Pi j < Li j.

It follows from (11) that qi j = 1 and from (13) that ri j = 1. We use (10)
and (12) to conclude that Pi j = Ei−∑k∈N|π(k)<π( j)Lik. We conclude that Pi j =
max{0,min{Ei −∑k∈N|π(k)<π( j) Lik,Li j}}.

Case 3. 0 < Pi j = Li j.

It follows from (11) that qi j = 1, so from (10) that Pi j ≤Ei−∑k∈N|π(k)<π( j) Lik,
and we conclude that Pi j = max{0,min{Ei −∑k∈N|π(k)<π( j)Lik,Li j}}.

Let (P,E) ∈ RN×N
+ ×RN

+ satisfy the constraints in (7). For every i, j ∈ N,
we define qi j ∈ {0,1} and ri j ∈ {0,1} as follows. If Pi j = Li j = 0, then define
qi j = ri j = 0. If Pi j = 0 < Li j, then define qi j = 0 and ri j = 1. If 0 < Pi j < Li j,
then define qi j = ri j = 1. Finally, if 0 < Pi j = Li j, then define qi j = 1 and
ri j = 0. We verify next that the inequalities in (9)–(13) are satisfied. To do so,
we fix (i, j) ∈ N ×N and distinguish four cases.

Case 1. Pi j = Li j = 0.
The inequalities in (9)–(13) reduce to

0 ≤ 0,
0 ≤ Ei +∑k∈N|π(k)≥π( j)Lik,
0 ≤ 0,
0 ≥ Ei −∑k∈N|π(k)<π( j)Lik −∑k∈N Lik,
0 ≥ 0.
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These equalities are clearly satisfied, where the fourth inequality uses the fact
that Ei ≤ ∑k∈N Lik.

Case 2. Pi j = 0 < Li j.
The inequalities in (9)–(13) reduce to

0 ≤ Li j,
0 ≤ Ei +∑k∈N|π(k)≥π( j) Lik,
0 ≤ 0,
0 ≥ Ei −∑k∈N|π(k)<π( j) Lik,

0 ≥ Li j −Li.

Since 0 = Pi j = max{0,min{Ei −∑k∈N|π(k)<π( j)Lik,Li j}} and Li j > 0, it fol-
lows that Ei−∑k∈N|π(k)<π( j)Lik ≤ 0, so the fourth inequality above holds. The
other inequalities hold trivially.

Case 3. 0 < Pi j < Li j.
The inequalities in (9)–(13) reduce to

Pi j ≤ Li j,
Pi j ≤ Ei −∑k∈N|π(k)<π( j) Lik,

Pi j ≤ Li,
Pi j ≥ Ei −∑k∈N|π(k)<π( j) Lik,

Pi j ≥ Li j −Li.

Since Pi j = max{0,min{Ei−∑k∈N|π(k)<π( j)Lik,Li j}} and 0 < Pi j < Li j, it fol-
lows that Pi j = Ei−∑k∈N|π(k)<π( j) Lik. It is now easily verified that all inequal-
ities above hold.

Case 4. 0 < Pi j = Li j.
The inequalities in (9)–(13) reduce to

Li j ≤ Li j,
Li j ≤ Ei −∑k∈N|π(k)<π( j)Lik,

Li j ≤ Li,
Li j ≥ Ei −∑k∈N|π(k)<π( j)Lik −∑k∈N Lik,

Li j ≥ Li j.

From 0 < Li j = Pi j =max{0,min{Ei−∑k∈N|π(k)<π( j) Lik,Li j}} it follows that
Ei − ∑k∈N|π(k)<π( j) Lik ≥ Li j. We have shown the second inequality above.
The fourth inequality above follows from Ei ≤ ∑k∈N Lik. The other inequal-
ities are trivially true.
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We assumed in Theorems 4.3–4.8 that all agents use the same division
rule. A closer inspection of the proofs reveals that this feature is not used.
We can therefore obtain similar results if agents use heterogeneous division
rules within the classes of proportional, constrained equal awards, constrained
equal losses, and priority division rules.

5. CONCLUSION

We consider financial networks with perfectly liquid non-negative endow-
ments, liabilities, and agent-specific bankruptcy rules. The set of clearing
payment matrices is a complete lattice, so has a least and a greatest elements.
We illustrate by means of examples that there can be an infinite number of
clearing payment matrices and that the multiplicity of clearing payment ma-
trices depends on the division rules that are in place. Previous research has
shown that decentralized clearing leads to the selection of the least clearing
payment matrix. We show how a centralized approach can be used to select
the greatest clearing payment matrix. We present a programming approach
to calculate the greatest clearing payment matrix. We also show that for pro-
portional division rules, this programming problem can be written as a linear
programming problem. For common division rules like constrained equal
awards, constrained equal losses, and priority division rules, we show how
the programming problem can be written as an integer linear programming
problem.

There are many possibilities for further research. The Eisenberg & Noe
(2001) model has been extended in various ways. For setups with default
costs, see Rogers & Veraart (2013), Roukny et al. (2018), and Jackson &
Pernoud (2020). Schuldenzucker et al. (2020) introduce credit default swaps
and show how these can lead to multiplicity of clearing payment matrices. Ci-
fuentes et al. (2005) analyze a related direct externality in financial networks,
when agents’ endowments also contain one illiquid asset. Defaulting agents
sell the illiquid asset in a firesale, which reduces the other agents’ value of
endowments as well. In this setting, Amini et al. (2016) give conditions for
uniqueness of the clearing payment matrix and the corresponding asset prices.
Feinstein (2017) generalizes those conditions for multiple illiquid assets. If
these conditions are not satisfied, there is again scope for multiplicity of clear-
ing payment matrices. An examination of the trade-off between decentralized
and centralized clearing is therefore highly relevant for the various extensions
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of the baseline model.
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1. INTRODUCTION

I N the international refugee regime, it has posed a real challenge to find-
ing a solution to the European refugee crisis. European countries have

been reluctant to participate in the responsibility-sharing of resettling refugee
families. Given this context, this study investigates the problem of resource
allocation. Furthermore, this study draws inspiration from Abdulkadiroğlu
& Sönmez (2003), in which they formulate the school choice problem as a
mechanism design problem. They propose two competing mechanisms—the
student optimal stable mechanism (Gale & Shapley, 1962) and the top trading
cycles mechanism—each providing a solution to the school choice problem;
see Shapley & Scarf (1974), Pápai (2000), and Abdulkadiroğlu & Sönmez
(2003) on the top trading cycle mechanism. In this study, we reformulate
the refugee reallocation problem as a mechanism design problem to address
to the critical international refugee management issues. I define a two-sided
matching problem with refugee and country preferences as a country accep-
tance problem. The one-sided version of this matching problem would be with
refugees’ preferences and countries’ predetermined priority rankings. Conse-
quently, based on the mechanism design literature, these problems are similar
to college admissions and school choice problems, respectively.

Here two questions arise naturally. First, how can we model the inter-
play between forced priority classes and country preferences, that is, how can
we capture the conflict between a one-sided and a two-sided model in the
refugee reallocation context? Although the preferences of countries seem to
be frowned upon in political debates, the global reality indicates that for a
stable responsibility-sharing, preferences of countries tend to be crucial and
influential. Second, what type of stability measures could be outlined for
such a problem? I address the country acceptance problem by designing two
matching algorithms based on forced hierarchical priority classes. These al-
gorithms could be implemented as centralized refugee matching systems that
match refugee families to countries. In this study, the term “refugee” is used
in reference to a refugee family. In designing a centralized matching system
that ensures the inseparability of refugee families that do not wish to be sep-
arated, this study assumes the implementation of a clearinghouse to accept
preference submissions from households, namely, refugee families. All par-
ticipating countries in the clearinghouse treat refugee households as a single
refugee family unit.
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Moreover, I conduct an axiomatic allocation analysis by focusing on the
stability and fairness properties of the matching mechanisms. I explicitly
model and analyze two profiles—countries’ preferences, and the prioritization
of refugee families imposed on host countries. Having two kinds of ranking
profiles for countries, a forced priority profile and a preference profile, allows
us to capture the difference between the two profiles. This, thereby, creates
blocking pairs of countries and refugees owing to the forced hierarchical pri-
ority classes. The forced priority profile is a joint master list that is designed
according to the United Nations High Commissioner for Refugees’ (UNHCR)
principles. It is applied to all countries, which may conflict with some coun-
tries’ preferences. Similar models have been used in the resident allocation
problem with distributional constraints in the computer science and artificial
intelligence literature; see e.g., Goto et al. (2016).

In this context, I recognize the importance of investigating the weakening
of the stability and fairness axioms. A stable mechanism may no longer satisfy
the standard stability of the literature concerning country preferences, leading
to potential blocking pairs. Therefore, I contribute to the literature by studying
weaker stability and fairness axioms in order to determine the type of stabil-
ity and fairness properties that hold in this setting. The motivation behind
this is twofold. First, I account for the fact that countries have their prefer-
ences. Second, the UNHCR has strict humanitarian guidelines and principles
for refugee settlement, which are a pivotal consideration when designing a
centralized refugee matching mechanism (Assembly et al., 1951; Szobolits &
Sunjic, 2007). Based on these guidelines, I impose priority classes on par-
ticipating countries that force countries to change their preference rankings.
This, however, leads to a deviation from the goal of a fair refugee allocation.
Owing to these forced priorities for the countries giving certain refugees a
priority in each country, I recognize the need for and the importance of con-
sidering refugee preferences. Since priority classes are forced in all countries,
every refugee in the first priority class (PC) is always prioritized over others.
Thus, in my proposed system, a refugee in a lower category remains in that
category. Please note that the abbreviation “PC” is used for “priority class”
throughout this study.

Considering the refugees who linger in the lower forced priority classes,
I focus on two different forms of priority profiles to give these refugees an
additional chance to improve their ranking. In my first form, namely the top
prioritization mechanism, I provide these refugees with a higher probability
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to be matched with their top-ranked country. In my second form, I present
them with a better chance of being paired with their Deferred-Acceptance-
matched country. It must be noted that, throughout this study, I refer to Gale &
Shapley (1962)’s refugee-proposing Deferred-Acceptance mechanism as “the
DA,” which is applied to the refugee and country preferences. The second
form is defined as the DA-match prioritization mechanism. Moreover, unlike
the first form, I find that the DA-match is the best matching that the refugees
in lower priority classes can acquire in a stable matching scenario. This shows
the importance of prioritizing these refugees in their DA-matched countries.

For countries, the prioritization of these refugees in their DA-matched
countries is more compelling, given that each country’s priorities undergo
fewer quota-based modifications than those in the first form of a priority pro-
file based on refugees’ top-ranked countries. Under the first form of a priority
profile, it may not be necessary for some countries to modify the priority or-
ders, despite it being mandatory for others to do so, and to do so to a greater
extent. Let us consider Germany—the desired country for refugee settlement.
When Germany becomes the top choice for a large number of refugee fami-
lies, the country will move several refugees to its top priority class, ranking
them according to its own point system. This system represents Germany’s
preferences. Consequently, a favored country such as Germany can make sev-
eral changes to its priority ordering. This will cause the country to deviate
significantly from the forced priority compared with a less popular country
among refugees.

This study’s contribution lies at the intersection of the matching theory
and refugee studies through multiple channels. First, although countries may
have clear preferences for refugees, they are not required to be familiar with
all the predispositions over the entire set of refugees to run the mechanisms
designed in this study. Since these mechanisms would require the countries
to submit preferences over refugees in the same priority class, it would en-
able the countries to implement the mechanisms more efficiently. Second,
challenges may arise from the imposition of type-specific (e.g., PC-specific),
set-aside reserve quotas on countries in a refugee allocation setting. Hence
it may not be well-accepted by the countries. However, a hierarchical pri-
ority class-based approach without category-specific set-aside reserve quotas
may be more acceptable and induce more countries to willingly solve the
refugee reallocation problem. This approach would persuade more countries
to participate in a centralized refugee matching mechanism. This study’s find-
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ings have other important, decisive policy implications. For example, they
can be applied to centralized college admissions, the design of public-school
choice systems, and an immigration process characterized by a more effective
priority-based than a category-specific reserve quota system.

Literature Review

Top prioritization mechanism may seem part of the first choice maximizing
(FCM) mechanisms of Dur et al. (2018). The motivation of their study of
FCM mechanisms is the common focus on first choices in school choice mar-
kets and the popularity of variants of the Boston mechanism (BM) in practice.
BM is popular and it has an intuitive way of attempting to maximize first
choices. However, BM was not part of the motivation of this study. The top
prioritization mechanism was motivated by the need to identify the means of
helping refugees who face the risk of being stuck in a low priority class in
all countries. When searching for a way to help move these refugees up to
a higher priority class, a natural starting point was to look at these refugees’
most-preferred countries. BM can be understood as DA with a modified pri-
ority profile, where one first sorts agents according to their rank of the object
(agents who rank the object first are in the top PC, agents who rank the object
second are in the second PC, etc.) and, within each PC, the agents are ordered
according to the original priorities of the object.

In contrast, the top prioritization mechanism is simply the DA applied to
a newly adjusted forced priority profile in which refugees are moved up to
top PC of their most-preferred countries. Moreover, when these refugees are
promoted to top PC, they are still ranked according to country preferences
within the top PC. Meanwhile, the first choices first (FCF)-algorithm of Dur
et al. (2018) is a procedure in which at step one each student applies to her
respective first choice school; and each school accepts applicants into open
seats according to priorities until there are no more applicants or all seats are
filled. In step two, rejected students are matched to open seats by an arbitrary
procedure but without changing the matchings that were made in step one.
Furthermore, the top stability axiom of this study, which is a weakened stabil-
ity axiom that allows for blocking pairs of refugees and countries that are not
their top choice, is Dur et al. (2018)’s first choice-stability. A matching is first
choice-stable if no student forms a blocking pair with her first choice.

Credible stability is one of the other weak stability axioms examined in
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this study. It allows for salient blocking pairs that are not matched under the
DA in the refugee allocation setting. It is an interesting concept as it can
potentially improve upon the DA refugee-optimal solution, although without
being strategyproof. This axiom may remind the reader of the Optimal Prior-
ity DA proposed in Biró & Gudmundsson (2021). In their study, they examine
the complexity of finding Pareto-efficient allocations of highest welfare in a
school choice context. The Optimal Priority DA is a DA executed on the in-
stance with priorities adjusted to the welfare-maximizing allocation based on
minimized distance. The idea of the Optimal Priority DA is that the authors
take an optimal matching (e.g. one that minimises the total travel distance for
the students) and they provide top priority to all students at the schools where
they are assigned in this socially optimal solution. Then they apply a standard
DA taking into account the students’ preferences and the further priorities
at the schools. While Optimal Priority DA starts by computing the welfare-
maximizing allocation, the DA-match prioritization mechanism depends on
the initial DA allocations based on country and refugee preferences. More-
over, since the DA-match prioritization mechanism weakly improves on the
DA and is manipulable, domains studied in Kesten & Kurino (2019) are of in-
terest to the readers. They identify maximal domains on which strategy-proof
mechanisms dominating DA exist. The motivation of their paper is different
than this study, as their main goal is the improvement of the DA and examin-
ing the level of strategy-proofness loss as a result. Meanwhile, in this study,
the DA-match prioritization mechanism is designed as an alternative channel
to give refugees, who face the risk of being stuck in a lower PC, an improved
rank by moving them up to a higher PC. The Pareto-improvement result that
came with the DA-match prioritization mechanism’s design was a pleasant
surprise.

Since the two mechanisms of top and DA-match prioritization in this study
are manipulable, they are of interest with respect to the mechanisms studied
in Pathak & Sönmez (2013). Their approach to studying a mechanism’s vul-
nerability to manipulation is to characterize domains under which the mech-
anism is not manipulable. They develop a rigorous methodology to compare
mechanisms based on their vulnerability to manipulation. Moreover, the weak
stability of Pathak & Sönmez (2013) seems similar to the top stability of this
study. Their weak stability is a relaxation of stability; for example, students
are allowed to block matchings only with their top choice schools. Meanwhile,
under the top stability of this study, which is also a relaxation of stability, such
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blocking pairs are the ones that are not allowed.
The remainder of this paper proceeds as follows. Section 2 provides a

background on the refugee reallocation crisis, elaborates on this study’s moti-
vation, and outlines the centralized system proposed along with the UNHCR-
mandated priority classes. Section 3 presents the model. Section 4 investi-
gates how we can weaken stability in the context of hierarchical UNHCR-
mandated priority classes. This section also provides the basic definitions of
the axioms and related theorems. Sections 5 and 6 present the two weak sta-
bility axioms that consider the top-ranked and DA-matched countries when
modifying priorities that improve the chance of refugees in the lower priority
classes. Section 7 concludes this study.

2. BACKGROUND AND MOTIVATION

The number of global refugees is currently at its highest level since the Second
World War, and Europe has attracted the predominant mass of refugees (Al-
fred, 2015). This scenario shows the European Union’s (EU’s) inconsistency
and poorly coordinated response to refugees fleeing the collapse of Syria. This
issue has attracted several studies seeking solutions to the refugee allocation
problems at the international and local levels. Considering the local refugee
match within a country, studies have presented several obstacles to success-
ful refugee integration. Andersson & Ehlers (2020) focus on the problem of
finding housing for refugees after their resettlement to an EU country. They
propose an easily implementable algorithm for Sweden that finds a stable max-
imum matching. Further, Bansak et al. (2018) and Delacrétaz et al. (2019)
focus on different aspects of the refugee allocation problem: the former on
the optimization of refugee preferences and the latter on family size.

In the context of the international refugee allocation problem, there have
been several calls for revising or replacing the Dublin Regulation, particu-
larly its requirement that the first EU country that gives asylum undertake the
responsibility of processing the asylum seekers’ claims (Giuffre & Costello,
2015; Koser, 2011). The current decentralized system, which assigns this
responsibility to the first-arrival country, has been unfair to border countries
such as Greece, Italy, or Hungary. Subsequently, this system has also been re-
sponsible for creating chaos and tragedy. One article criticizes the European
states for playing “pass-the-parcel with human lives (Jones & Teytelboym,
2017).” I agree with Jones & Teytelboym (2017) that “it has never been clearer
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that a new deal on responsibility-sharing within Europe is needed to replace
the Dublin Regulation.”

It is crucial to implement a centralized matching system alongside or, ide-
ally, instead of the current system of the Dublin Regulation. A new central-
ized system would allow a refugee family to apply for protection in more than
just one country, thus not binding them to a single application to a particu-
lar country. Under the current system, refugees take the gamble of deciding
where to apply, and countries cannot evaluate and choose from a large pool of
applicants.

A centralized mechanism would allow all refugees to apply to a single
system from any embassy, and this could benefit both refugees and countries
(Jones & Teytelboym, 2017, 2016). Just as a centralized mechanism could
help refugees be better off by helping them avoid dangerous cross-border
journeys, a centralized mechanism could also enable countries to gain more
control than they currently possess in deciding who settles within their bor-
ders. This can be ensured by allowing countries to assign their preference
ranking on which refugees they wish to accept, similar to refugees citing their
preferences for countries (Jones & Teytelboym, 2017, 2016).

Furthermore, a centralized matching system would allow refugees to apply
for protection in several countries while allowing the countries to compete for
refugees. This system would require the refugees to make only a single claim
for asylum to a single centralized body while simultaneously specifying their
country preference. When the countries approach the clearing house with a
quota and ranking of refugees, they are willing to accept that the system can
be implemented to match the refugees to the countries. After this matching
process, it would be crucial to implement this match, that is, refugees are
granted refugee status and permitted to settle in the country to which they have
been matched. A centralized system would allow refugees to apply for asylum
with every participating country, and they can, in principle, submit it remotely.
This submission would include the regional processing centers in the Middle
East and North Africa (Jones & Teytelboym, 2017, 2016). The core advantage
of the system is that it provides refugee families with confidence that a fair
and effective system will grant them protection, and they will be less likely to
take the risk of a dangerous crossing.

Moreover, the UNHCR’s Convention and protocol relating to the status of
refugees (Assembly et al., 1951) is both a status- and rights-based instrument.
It is underpinned by several fundamental principles, such as safety and protec-
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tion, non-discrimination, non-penalization, and non-refoulement. Convention
provisions, for example, are to be applied without discrimination as to race,
religion, or country of origin. Developments in international human rights law
also reinforce the principle that the Convention be applied without discrimi-
nation based on sex, age, disability, sexuality, or other prohibited grounds of
discrimination (Assembly et al., 1951).

The UNHCR document states the following:1

“The conference, considering that the unity of the family—the natural and
fundamental group unit of society—is an essential right of the refugee, and
that such unity is constantly threatened, and noting with satisfaction that, ac-
cording to the official commentary of the ad hoc committee on ‘Statelessness
and Related Problems,’ the rights granted to a refugee are extended to mem-
bers of his family, recommends governments to take the necessary measures
for the security and protection of the refugee’s family, especially with a view
to:

1. Ensuring that the unity of the refugee’s family is maintained particu-
larly, in cases where the head of the family that has been waiting for
admission has fulfilled the necessary conditions for admission to a par-
ticular country,

2. The protection of refugees who are minors, in particular unaccompa-
nied children and girls, with special reference to guardianship and adop-
tion (Assembly et al., 1951).”

The Forced Priority Class Hierarchy: A Proposal

A centralized system aims to allocate refugees within that system to a country
where they are most likely to flourish during their time of residency, without
causing further immigration spillover to other countries (Jones & Teytelboym,
2017, 2016). It is essential to ensure that such a system excludes discrimina-
tory categories and focuses on the categories of vulnerability, the suitability
for integration, and the presence of family. Hence, I propose forced hierar-
chical priority classes of refugees for countries based on the UNHCR’s 1951

1 For the full texts of the UNHCR 1951 documents, please see the Convention and Protocol
relating to the status of refugees from the UN General Assembly in Geneva (Assembly et al.,
1951).
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convention and protocol for refugees (Assembly et al., 1951). Throughout
this study, I refer to this UNHCR-mandated PC hierarchy of refugees as the
forced priority classes. A forced PC of refugees is a subset of the entire set
of refugees a country must consider as part of the PC hierarchy, which is
the same for all participating countries. The forced PC hierarchy is imposed
exogenously as part of the centralized system. The proposed forced priority
profile for countries is then as follows:

• Priority Class I: Refugee families in war zones and with the longest
waiting period

• Priority Class II: Refugee families in war zones

• Priority Class III: Refugee families with the longest waiting period

• Priority Class IV: Other refugee families

Given the initial theoretical approaches to complicated real-life problems,
such as the refugee crisis, it is a requisite to start the analysis with a static
model. Therefore, for its theoretical tractability, this study chose to take a
static approach. The key motivations for this study are the Syrian refugee
crisis and the reallocation problems resulting from the Syrian war. The Syr-
ian crisis has led to an influx of refugees into other countries, which creates
a refugee pool. Thus, we can conduct this exercise repeatedly. However, in
the school choice, there are natural time periods. For example, the imple-
mentation of school choice would require considering each academic year.
However, it is unclear whether the same process can be applied to refugee
settlement with a sudden influx of refugees. Nonetheless, since this exercise
can be implemented, for instance, every three months when there is a crisis,
we can consider a dynamic approach. By heeding this approach, a static ap-
proach would also be crucial to address a refugee crisis that creates a sudden
large pool of refugee families requiring immediate allocation.

Usually, dynamic models can better capture the essence of the problem
under study than static models do. In dynamic models, agents nn arrive at
different time periods and, sometimes, continuously; matching takes place
at different time periods, and the matched agents leave the market, and new
agents arrive. When this is the case, we lose some desirable properties in a
static matching. Thus, we can turn the matching environment of refugee allo-
cation into a static environment and retain desirable properties of stability and
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efficiency. When possible, it would be ideal to array agents from both sides
to conduct repeated static matchings. This would be an optimal approach in
an environment with a crisis and is better than the dynamic approach of per-
forming repeated matchings in each time period as refugees enter and leave
the market. Hence, in the case of a sudden influx of refugee families, the
static approach can be adapted to facilitate matching these participants, who
are fixed at the moment of the crisis when the matching takes place.

This study contributes to the literature as the model explicitly allows for
the potential real-world “discrepancy” between what countries actually want
to do (i.e., country preferences) and what countries are forced to do by law
(i.e., countries’ forced priorities). By working with two profiles for countries,
I capture the “compromise” between countries’ actual preferential ranking of
refugees in a world with no special considerations and their forced priority
hierarchy based on the UNHCR’s humanitarian laws and principles. Forced
priorities are used for school choice by forcing the local authorities to use the
main priority categories, such as living in the catchment area and/or having
a sibling in the school. This study introduces the perspective of compromise
between desired and forced preferences to the refugee reallocation problem
by making it the central topic of the policy-making discussion. Moreover,
this study explicitly lays out this compromise and its potential implications
for fairness. In the refugee reallocation context, country preferences are neg-
atively reviewed due to discrimination issues. Therefore, the hierarchical
classes would aid in cutting down significantly on this kind of discrimina-
tion in the refugee setting by imposing the UNHCR-based priority classes,
which makes country preferences much less important for the matching out-
come. However, on the other hand, refugees face the risk of being stuck in
lower priority classes in all countries. This study contributes by attempting
to find a middle ground between these two forces by designing mechanisms
that help those refugees who might face the risk of remaining in lower priority
classes.

3. THE MODEL

Definition (Country Acceptance Problem). A problem consists of the follow-
ing:

1. A finite set of refugees R = {r1,r2, ...,r|R|}.
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2. A finite set of countries C = {c1,c2, ...,c|C |}.

3. A quota vector q = (qc1, ...,qc|C |), where qc is the capacity (the number
of residency permits) of c ∈ C .

4. Preference profile of refugees P = (Pr1,Pr2, ...,Pr|R|) = (Pr)r∈R , where
Pr is the strict preference of refugee r ∈ R over C .

5. Preference profile of countries≻=(≻c1 ,≻c2 , ...,≻c|C |)= (≻c)c∈C , where
≻c is the strict preference of country c∈C over R, based on its country-
specific point system.2

A finite set of refugees R is with a fixed partition, such that R = R1 ∪R2 ∪
...∪RT and Rt ∩Rt ′ = /0, for any t, t ′ ∈ {1, ...,T}). The T number of forced
hierarchical priority classes of the partition are class R1, class R2, and so on
until class RT . These are the forced priority classes introduced and discussed
in the previous section.
As a primitive version of the model, I also define the following:

Definition (Forced Priorities). Countries’ enforcing priority profile πE =
(πE

c )c∈C is based on the fixed partition R1, ...,RT of the refugees into the
forced priority classes.

Let t, t ′ ∈ {1, ...,T} such that t ≤ t ′ and let ri ∈ Rt , r j ∈ Rt ′ . Then, for all
c ∈ C ,

a. If t = t ′, then ri πE
c r j if and only if ri ≻c r j.

b. If t < t ′, then ri πE
c r j.

For item (a) above, observe that each country’s rankings within each PC are
country-specific preferences. For any c ∈ C with ri ≻c r j, if ri and r j are
prioritized within the same class, then within that PC, country c’s ranking will
also be ri πE

c r j, following country c’s preference ranking. For item (b) above,
observe that if one refugee is in a higher PC than another refugee, then this
implies that, according to πE , the refugee in the higher priority class will be

2 Unacceptable countries are not allowed in the model, in which case each refugee family
r ∈ R has strict preferences over C , where a country c is never ranked below r. Similarly,
unacceptable refugees are not considered in the model. Hence, each country c ∈ C has strict
preferences over R, where a refugee r is never ranked below c.
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strictly prioritized over the refugee who is in a lower PC.

Remark. In partitioned forced priorities, each member of the partition corre-
sponds to an exogenously imposed PC. The priority classes are forced across
all participating countries; each forced PC consists of the same set of refugees
for all participating countries.

In summary, a many-to-one country acceptance problem, where each refugee
family can be matched to a maximum of one host country and each country
can admit a maximum of qc refugee families, is defined as the tuple

〈R =
T⋃

t=1
Rt ,C ,(qc)c∈C ,P,≻〉.

When all other parameters, except that of the refugees’ preference profile P,
are fixed, I refer to P as a country acceptance problem. Let P denote the set
of country acceptance problems.

To simplify the exposition, I assume that for all c ∈ C , |R| > qc. This
assumption is easily satisfied in any application and allows the rejection of
the case where there are few refugees. I also perform the following notation:
Let Wr denote the weak preferences of refugee r ∈ R associated with Pr.3

Since preferences are strict, c Wr c′ means that either c Pr c′ or c = c′. The
preferences of a coalition L ⊆ R in P are denoted by PL. Finally, I denote the
preference profile of all the refugees, except for r by P−r, and the preference
profile of all refugees, except the ones in coalition L by P−L.

For simplicity, I assume that countries have responsive preferences over refugee
families. This means that relatively speaking, refugee families are not com-
plements in the countries’ preferences. Thus, preferences over sets of refugee
families can be interpreted as a natural extension of preferences over individ-
ual refugees.
Definition (Responsive Preferences). For any set of refugee families, Z ⊂R
with |Z | ≤ qc and any refugee family r and r′ in R \Z ,

• Z ∪{r} ≻c Z ∪{r′} if and only if r ≻c r′.

3 Please note that symbol W is used to denote weak preference relation for refugees. This is
done to avoid confusion between the common notation that is used for weak preference (R)
associated with P and set of refugees R.
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It must be noted that the notation has been slightly abused in the above
definition. To indicate preferences over sets, ≻c is used; it is normally used
for showing preferences over singletons in R. Responsive preferences are
a natural extension of preferences over individuals to preferences over sets.
This property does not give a complete ordering of all the sets of size qc for a
country, as it does not determine all the preference rankings over sets. How-
ever, this does not affect this study’s analysis. It is not necessary to determine
the missing preference orderings over sets, and they can be in any order.

Definition (Matching). A solution to a many-to-one refugee matching prob-
lem is µ: R

⋃
C → R

⋃
C , a correspondence from R

⋃
C to R

⋃
C such

that, for every refugee family r ∈ R and participating country c ∈ C :

• µ(r) ∈ C

• µ(c) ⊆ R and |µ(c)|6 qc

• µ(r) = c ⇔ r ∈ µ(c)

Let µ and ν be two matchings. A matching µ Pareto dominates matching
ν at preference profile P ∈ P if for all refugees r ∈ R, µrWrνr, and there
exists a refugee r such that µrPrνr. A matching µ weakly Pareto dominates a
matching ν at P if either µ Pareto dominates ν or µ is the same as ν .
The set of problems is denoted with P , which is

〈R =
T⋃

t=1
Rt ,C ,(qc)c∈C ,P,≻〉.

Let M be the set of matchings. Since everything else, except P is fixed, I
define a mechanism as follows.

Definition (Mechanism). A mechanism is a mapping that assigns a matching
to each country acceptance problem P ∈ P . Formally, a mechanism is a
mapping f : P → M .

Let f and g be two mechanisms. A mechanism f Pareto dominates mecha-
nism g for R ′ ⊆ R if for all profiles P ∈ P , fR ′(P) weakly Pareto dominates
gR ′(P), and there exists a P̄ ∈ P such that fR ′(P̄) 6= gR ′(P̄). If mechanism
f weakly Pareto dominates mechanism g, then, at every P, mechanism f pro-
duces a matching that weakly Pareto dominates the matching produced by
g.
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Since this study focuses on the refugee-proposing DA and its modifica-
tions, the matching results differ with respect to the type of country profile
used. A refugee assignment mechanism requires refugees to submit prefer-
ences for countries and selects a matching based on these preferences and
refugee priorities. Note that the notation µDA is used for matching results ob-
tained from the refugee-proposing DA applied to P and ≻.

Definition (Blocking Pairs). A matching µ is blocked by a refugee–country
pair (r,c) ∈ R×C if they prefer each other, relative to µ:

1. the refugee family r prefers c to the country to which it is matched µ
(i.e., c Pr µ(r)), and

2. given r 6∈ µ(c),

a. either the country prefers r to some refugee r′ that the country is
matched to in µ (i.e., r ≻c r′ where r′ ∈ µ(c))

b. or refugee r is acceptable to country c and the country has fewer
refugee families assigned to it than its quota (i.e., r ≻c c and
|µ(c)|< qc).

Regarding the definitions, recall that this study uses the term “refugee” when
referring to a “refugee family.” We now formally define stability using the no-
tion of blocking pairs, which will be important for the axioms studied through-
out this study.

Definition (Stability). A matching is stable if it is not blocked by a refugee–
country pair. A mechanism is stable if it assigns a stable matching to each
country acceptance problem P.

We now adapt the well-known algorithm of Gale & Shapley (1962) to our
current model and call it the Refugee-Proposing Deferred Acceptance (DA)
Mechanism.

Step 1: Each refugee proposes their first choice country. Each country
tentatively assigns its refugee residency permits to its proposers based on its
quota, following its preference order. Subsequently, any remaining proposers
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are rejected.

In general, at

Step k: Each rejected refugee, in the previous step, proposes the suc-
ceeding country of choice. Each country considers the refugees it has been
holding along with its new proposers and tentatively assigns its refugee res-
idency permits up to its quota, following its preference order. Subsequently,
any remaining proposers are rejected.

The mechanism terminates when no refugee proposal is rejected, and each
refugee is assigned the final tentative assignment. We refer to this mechanism
as the Gale-Shapley refugee-optimal stable mechanism.

Gale & Shapley (1962) call this stable mechanism optimal if every refugee is
at least as well off under it as under any other stable matching. Furthermore,
the DA procedure yields not only a stable matching but also an optimal one
(Gale & Shapley, 1962). Every refugee is at least as well off under the match-
ing assigned by the DA mechanism as they would be under any other stable
matching. This holds for both sides—refugees and countries. For every coun-
try acceptance problem, there exists a refugee-optimal stable matching, which
is at least as agreeable to each refugee as any other stable matching. There
also exists a country-optimal stable matching, which is at least as agreeable to
each country as any other stable matching. The refugee-proposing DA mech-
anism leads to the refugee-optimal stable mechanism. Throughout this study,
DA’s matching result is denoted by µDA.

4. WEAK STABILITY

When applying a mechanism using the forced priority class profile πE there
may exist blocking pairs due to how refugees are ranked according to country
preferences ≻. The discrepancy between refugees’ ranks in πE and ≻ may
result in a stable mechanism with respect to πE being no longer stable with
respect to ≻. Therefore, when a refugee family forms a blocking pair with a
country, this blocking will always be with respect to another refugee family
in a higher forced PC rather than the refugee family forming a blocking pair.
The basis for blocking is the priority reversal resulting from the forced priority
classes. This observation inspires the following axioms, the first of which is
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my definition of the first weak fairness axiom of this study.

Definition (PC Fairness Axiom). A matching µ satisfies PC fairness at a
particular profile P if, for every refugee–country pair (r,c) such that r prefers
c to own assignment at µ and is preferred by c to a refugee r̂ assigned to c at
µ , r̂ is in a higher PC than r. A mechanism f satisfies PC fairness if, for every
profile P, it assigns a matching µ that is PC fair.

According to PC fairness, if a refugee–country blocking pair (r,c) is such
that r is preferred by c to a refugee r̂ assigned to c, then it must be the case that
r̂ is in a higher PC than r. In order to discuss the intuition behind the axiom,
we can say that the PC fairness axiom tracks the discrepancy between forced
priorities and country preferences, and it allows for certain salient blocking
pairs accordingly. Since we are weakening stability to respect the urgency
of placing refugees who are prioritized in higher classes, stability implies PC
fairness. PC fairness is an axiom that requires stability within each PC of a
given hierarchical structure, based on country preferences that are preserved
within each PC.

Definition (PC No-Envy Axiom). A matching µ satisfies PC no-envy at a
particular profile P if r̂ is in a higher forced priority class than r and r ∈ µ(c),
then µ(r̂) Wr̂ c. A mechanism f satisfies PC no-envy if, for every profile P, it
assigns a matching µ that satisfies PC no-envy.

A case in point: For each preference profile P, given the matching µ assigned
to P where r is among the refugees matched to c, if another refugee r̂ is in a
higher forced priority class than r, then r̂ does not have envy for r.

To demonstrate the independence of the PC no-envy and PC fairness ax-
ioms, observe that, given a fixed profile P, the matching result of the DA,
specifically µDA, is fair and thus satisfies PC fairness. However, µDA does
not satisfy PC no-envy, as it is not stable with respect to the forced priority
classes of πE at each profile P. Hence, PC fairness does not imply PC no-envy.
Consider the following example to intuitively visualize this case:

Example 1. Let us consider the problem P with refugees R = {1,2,3,4},
countries C = {a,b,c,d}, country quotas qc = 1 for all c ∈ C , and forced
priority classes R1 = {1,2} and R2 = {3,4}. Allocations of the matching
result µDA at the given preference profile, in this example, are in bold.
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P1 P2 P3 P4
c b c b
b c b c
d d a a
a a d d

Refugee Preferences P

≻a ≻b ≻c ≻d
1 1 4 4
4 3 2 3
2 2 1 1
3 4 3 2

Country Preferences ≻

πE
a πE

b πE
c πE

d
1 1 2 1
2 2 1 2
4 3 4 4
3 4 3 3

Forced Profile πE

Applying the refugee-proposing DA algorithm to ≻ and P gives us the
following:

µDA =

(
1 2 3 4
b d a c

)

The matching µDA satisfies PC fairness because it satisfies fairness. How-
ever, matching µDA does not satisfy PC no-envy. This is because (1,c) and
(2,c) are blocking pairs for µDA with respect to πE . Refugees 1 and 2 are en-
vious of refugee 4, who is in a lower PC than both the refugees and matched
to c in µDA.

Furthermore, PC no-envy does not imply PC fairness. Let µDA
E be the

matching result of the DA when applied to forced hierarchical priority classes.
µDA

E is stable with respect to the forced hierarchical priority classes of πE at
each profile P and hence satisfies PC no-envy. Notably, observe that PC no-
envy is satisfied whenever a serial dictatorship procedure is used with the
permutation of agents based on the forced hierarchical priority classes. For
the purpose of this exercise, suppose an arbitrary common priority ordering of
agents π and let f denote a serial dictatorship procedure. Recall that, given an
ordering π of agents with any permutation of the entire set of agents, a serial
dictatorship f (π) (Satterthwaite & Sonnenschein, 1981) assigns the objects to
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agents as follows: The first agent is assigned their first choice among all the
objects. The second agent is assigned their first choice among all the objects,
excluding the choice of the first agent, and so on. Now, consider an ordering
π of refugees following the fixed hierarchy of priority classes; any ordering is
possible within the priority classes as long as it is the same for each country.
Then, the PC no-envy property is satisfied whenever f (π) is used since f (π)
assigns the permits to refugees following the given common order. Consider
the example below to examine this visually.

Example 2. Consider the problem P below, where refugees R = {1,2,3,4},
countries C = {a,b,c,d}, and country quotas qc = 1 for all c ∈ C , and forced
priority classes R1 = {1,2} and R2 = {3,4}. Let π be the permutation. Al-
locations of the result of the serial dictatorship f using the given common
priority order π are in bold.

P1 P2 P3 P4
a a c b
b c b c
c d a a
d b d d

Refugee Preferences P

πa πb πc πd
2 2 2 2
1 1 1 1
3 3 3 3
4 4 4 4

Common Priority Order π

πE
a πE

b πE
c πE

d
1 2 2 1
2 1 1 2
4 4 3 4
3 3 4 3

Forced Profile πE

The result of the serial dictatorship f (π) is as follows:

f (π) =
(

1 2 3 4
b a c d

)

Observe that f (π) satisfies PC no-envy as no refugee in a higher forced
priority class envies a refugee in a lower priority class. However, it does not
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satisfy PC fairness because (1,a) is a blocking pair for f (π) with respect to
πE . Refugee 1 is envious of 2, who is preferred by a over 2, according to
country a’s preferences within the top PC of a. Hence, country preferences
are violated by f (π) within the PC. Therefore, whenever f (π) is applied, PC
no-envy is satisfied since it is impossible to be envious of a refugee in a lower
priority class. However, the result f (π) fails PC fairness, as any ordering of
refugees is possible within a priority class.

Next, let’s formally define the DA that runs taking into account the hierar-
chical priority classes.

Definition (The DA with Hierarchical Priority Classes). The DA with hier-
archical priority classes is the refugee-proposing DA applied to the forced
priority profile of countries πE and refugee preference profile P.

The matching result of the DA with hierarchical priority classes is denoted by
µDA

E .

Proposition 1. Stability with respect to hierarchical priority classes is equiv-
alent to PC no-envy and PC fairness.

Proof. “If” Part. We show that stability with respect to hierarchical priority
classes implies PC no-envy and PC fairness. Let µDA

E be the matching result
of the DA with hierarchical priority classes for a given problem P. Given that
the DA with hierarchical priority classes is the DA applied to forced priorities
πE , then µDA

E will be stable with respect to πE for any given preference profile.
Then, there will be no refugee–country pair (r,c) blocking µDA

E for any given
preference profile. This implies two cases.

Case 1. Suppose PC fairness is not satisfied. Then there is a refugee–
country pair (r,c) such that r prefers c and is preferred by c for a refugee r̂
assigned to c, where r and r̂ are in the same forced PC. Hence, there is a rank-
ing violation within a priority class. However, this is a direct contradiction to
the stability of the DA procedure with hierarchical priority classes, which is
applied with respect to forced priorities πE .

Case 2. Suppose PC no-envy is not satisfied. Then there is a refugee–
country pair (r,c) such that r prefers c and is ranked highly by c, according to
c’s priority ranking in πE to a refugee r̂ assigned to c, where r and r̂ are not in
the same forced PC. Then, there is a ranking violation across priority classes.
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Specifically, then there is r who is in a higher PC than r̂ and has envy for r̂.
However, this is a direct contradiction to the stability of the DA procedure
that is applied using the forced hierarchical priority classes of πE .

Therefore, the stability of DA with the forced hierarchical priority classes
of πE implies PC no-envy and PC fairness.

“Only If” Part. We show that satisfying PC fairness and PC no-envy im-
plies satisfying stability with respect to hierarchical priority classes.

Case 1. Suppose PC fairness is satisfied. Then, if a refugee–country pair
(r,c) is such that r prefers c and is preferred by c for a refugee r̂ assigned to c,
then r̂ must be in a higher PC than r. This implies r̂ and r are not in the same
PC. Hence, in the same PC, there is no refugee–country pair (r,c) such that
r prefers c and is preferred by c for a refugee r̂ assigned to c. This satisfies
stability within each forced PC.

Case 2. Suppose PC no-envy is satisfied. For each preference profile P,
if r is in a higher forced PC than r̂, then r does not envy r̂. Hence, for any
given preference profile P, if r̂ ∈ µDA

E (c), then µDA
E (r) Wr c. Therefore, there

is no refugee–country pair (r,c) such that r prefers c and is ranked above by
c according to c’s priority ranking in πE to a refugee r̂ assigned to c. This
satisfies stability across forced hierarchical priority classes.

Therefore, PC fairness and PC no-envy imply stability with respect to πE .
In conclusion, satisfying the two axioms of PC fairness and PC no-envy is
equivalent to satisfying stability with respect to the forced hierarchical priority
classes.

A matching is called optimal with respect to a stability axiom if every
agent receives at least as good an assignment in this matching as in any other
matching satisfying the stability axiom. Specifically, a matching µ is optimal
with respect to PC fairness and PC no-envy at profile P if, for each refugee
r ∈ R, µ(r) = c is the most preferred country among all the countries that
refugee r could be matched to at any matching satisfying PC fairness and PC
no-envy at P, when there is any such country. Given P ∈ P , a matching
mechanism is optimal with respect to PC fairness and PC no-envy if, for each
preference profile P ∈ P , it assigns a matching to profile P that is optimal
with respect to PC fairness and PC no-envy.

Moreover, the DA with hierarchical priority classes is the DA where coun-
tries’ preferences are obtained from the ordered priority classes. Correspond-
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ingly, within each class, each country c break ties according to ≻c. Hence, the
DA with hierarchical priority classes is a unique mechanism that is optimal
with respect to PC fairness and PC no-envy.

Theorem 1. A mechanism satisfies PC fairness, PC no-envy, and is optimal
with respect to PC fairness and PC no-envy if, and only if, it is the DA with
hierarchical priority classes.

Proof. “If” Part. The DA with hierarchical priority classes satisfies PC fair-
ness and PC no-envy. Therefore, this part follows directly from the equiv-
alence between stability with respect to hierarchical priority classes and the
combination of PC no-envy and PC fairness.

“Only If” Part. We show that if a mechanism is PC-fair, PC no-envy, and
is optimal with respect to PC fairness and PC no-envy, then it is the DA with
hierarchical priority classes. First, we know that stability with respect to πE is
equivalent to the combination of PC fairness and PC no-envy. By this equiv-
alence result in Proposition 1, the DA with hierarchical priority classes is
optimal with respect to PC fairness and PC no-envy. Focusing on the welfare
of refugees, maximized welfare is obtained by the refugee-proposing DA sub-
ject to stability with respect to πE . Hence, this follows from the DA refugee-
optimal solution with the priorities πE . Consequently, since optimality im-
plies uniqueness, we conclude that if a mechanism is PC-fair, PC no-envy,
and is optimal with respect to PC fairness and PC no-envy, then it is the DA
with hierarchical priority classes.

It is vital to discuss this result intuitively apropos of the two key weak sta-
bility and fairness axioms examined in this study. PC no-envy of any arbitrary
matching mechanism implies that a refugee r̂ in a higher forced priority class
does not have envy of any of the allocations below r̂ at any profile P. This im-
plies that the allocation starts at the first PC and follows a serial procedure of
priority classes according to a given order of refugees having the fixed hierar-
chy of priority classes. In this case, any order can be followed within priority
classes. We allocate refugees to the top PC, followed by the second PC, and
so on, which is equivalent to the serial dictatorship procedure with the per-
mutation of agents based on the hierarchical priority classes. Succeeding the
completion of the top priority class allocation, those allocations are finalized
and removed. Subsequently, allocations are done for the second priority class
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refugees, and so on. Instead of individual agents picking their top choices, we
have priority classes of refugees who get their top choices, independent of the
preferences of refugees in other priority classes.

In addition to PC no-envy, the requirements of PC fairness and optimality
for a matching mechanism imply that, for any problem P, the match must be
fair within each PC. Thus, the DA must be applied to each PC to ensure fair
allocation within each PC. Therefore, since the DA applied to P with a given
πE is the DA with hierarchical priority classes, and πE is a partition profile,
it is equivalent to the DA applied to the top PC than the DA applied to the
second PC, and so on, following the given hierarchical priority class ordering.
Therefore, if a mechanism satisfies PC fairness, PC no-envy, and is optimal
with respect to PC fairness and PC no-envy, then it is the DA with hierarchical
priority classes.

5. TOP STABILITY

It is intuitive and vital to consider the top choice countries of refugees when
designing a refugee matching system. We recognize that the imposed prior-
ity classes force the countries to change their preference rankings, deviating
this study from the objective of a fair refugee allocation. Since the imposed
priorities give certain refugees a priority in each country, it is crucial to in-
corporate refugees’ preferences into the matching algorithms. A refugee in a
lower PC always remains in that PC. Since priority classes are forced in all
countries, every refugee in the first PC is always prioritized over every refugee
in the second PC. Considering the refugees in the lower priority classes, the
proposed model gives these refugees a better chance of matching with their
top-ranked country by lifting them up, using their preferences. For interesting
and relevant notions, which were studied independently and in different con-
texts, please refer to Morrill (2013); Pathak & Sönmez (2013); Afacan et al.
(2017); and Dur et al. (2018).

For the definitions of weak stability axioms, recall the definition of block-
ing pairs (r,c) in Section 3. In addition, please note that priority classes that
are common to all countries are used in every section. Sections differ only in
the newly introduced mechanism designs.

Definition (Top Stability Axiom). A matching is top stable if it cannot be

Journal of Mechanism and Institution Design 7(1), 2022

“jMID-vol7(1)-01” — 2022/12/6 — 6:24 — page 93 — #97



94 Refugee Matching with Hierarchical Classes

blocked with a pair (r,c), where Pr ranks country c first at a fixed preference
profile P. A mechanism is top stable if, for each preference profile P, when-
ever the matching assigned to P is blocked by (r,c), Pr does not rank c first.

Definition (Top PC Fairness Axiom). A matching µ satisfies top PC fairness
if, for every refugee–country (r,c) such that r prefers c at µ and is preferred
by c to a refugee r̂ assigned to c at µ ,

• either r̂ is in a higher forced PC than r,

• or Pr̂ ranks c first, and r is not in PC R1 of country c.

A mechanism f satisfies top PC fairness if, for every profile P, it assigns a
matching µ that is top PC-fair. Notably, whenever there is justified envy with
respect to r̂, either r̂ is in a higher forced class than r with justified envy or Pr̂
ranks c first, and r is not in the top PC of country c.

To accommodate more refugees in the lower priority classes by raising
them to the first PC at their top-ranked country, I further weaken the PC fair-
ness axiom. Therefore, the PC fairness axiom implies top PC fairness. Since
I make exceptions for these refugees regarding their preferred country and
account for their exceptions of gained rank, I declare blocking pairs involv-
ing such refugees and their top choice country to be salient and, therefore,
inadmissible. In addition, top stability and top PC fairness axioms are not
independent of each other. Connections between top stability and top PC fair-
ness axioms are demonstrated in Example 3.

Moreover, in order to obtain a combined priority ranking profile for coun-
tries that merge ≻ with πE , we would need a mechanism that outlines a
method to combine the two profiles ≻ and πE . Such a mechanism would
ideally be based on refugee preferences P when combining the two profiles ≻
and πE .

Remark. The combined priority profile of countries depends on the refugee
preference profile P. However, the forced priority profile of countries is inde-
pendent of the refugee preference profile P.

One of the two mechanisms designed in this study is the following:

Definition (The Top Prioritization Mechanism).
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1. For every refugee r, modify πE
c by lifting refugee r up to PC R1 of c,

where c is top-ranked in Pr.

2. Position r within PC R1, according to ≻c (i.e., keep all the other priority
rankings the same, except for r’s). This yields the new combined profile
πE−top.

3. Apply the DA to the πE−top. This yields the matching result f DA
E−top(P)

of the top prioritization mechanism f DA
E−top at problem P.

Similar to the other notations for the matching outcomes, I use µDA
E−top for

the matching result of the top prioritization mechanism f DA
E−top, for any given

problem P.
Furthermore, given an ordering πc, let Sπ

c (r) denote the upper contour
set at r. Then, the upper contour set of refugee r in country c’s profile is as
follows:

Sπ
c (r) = {r̂ ∈ R : r̂ πc r }.

Lemma 1. If Pr ranks country c first, then SπE−top

c (r) ⊆ S≻c (r).

Proof. Let r and c be such that Pr ranks country c first. Then, r is lifted to
R1 in πE−top

c . Fix r̂ ∈ SπE−top

c (r). Then, we have r̂ ∈ R1. Moreover, given the
construction of πE−top, this means that r̂ ≻c r. Thus, r̂ ∈ S≻c (r).

In addition, the top prioritization mechanism guarantees the top stability of
µDA

E−top at any P. Thus, we have the following result:

Theorem 2. The top prioritization mechanism is

1. top stable and

2. top PC-fair.

Proof. 1. Top stability: Fix a given preference profile P. For contradiction,
suppose the matching result µDA

E−top is not top stable at the given profile P.
Then, there is a pair (r,c) blocking µDA

E−top with respect to ≻ at P, where
refugee r ranks c first at preference profile P. Given that the DA is applied
to the combined profile πE−top, if country c rejects r in any round of the DA,
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then c is temporarily matched to at least one refugee other than r. Let this
refugee be r̂. Then, this implies r̂ πE−top

c r. Since r ranks c first at preference
profile P, r is lifted up to PC R1 by country c in πE−top

c by the top prioritiza-
tion procedure. By Lemma 1, we conclude the following. If r is in the top PC
of πE−top

c and r̂ πE−top
c r, then r and r̂ will both be in the top PC. Then, r̂ ≻c r

since country preferences are preserved within each PC. This contradicts the
assumption that (r,c) is a blocking pair of µDA

E−top with respect to ≻. Hence,
µDA

E−top is top stable.

2. Top PC-fairness: Fix a given preference profile P. For contradiction,
suppose µDA

E−top is not top PC-fair at the given profile P. Then, at the given P,
there exists a salient pair (r,c) that blocks µDA

E−top with respect to ≻ that is not
allowed under top PC fairness. There is r̂ ∈ R such that r̂ ∈ µDA

E−top(c). The
violation of the top PC fairness of the matching result µDA

E−top at the given P
implies four non-trivial cases. We verify the contradictions under each case.

First, observe that when refugee r̂ is not in a higher forced PC than r who
is assumed to be blocking with c at ≻, then they are in the same PC. Although
this is trivial, it is a possibility because the matching result is assumed to not
be top PC-fair at the given profile. This violates country preferences within
the same PC, which are assumed to be preserved under the top prioritization
mechanism. Hence, this is a direct contradiction.

Case 1: Suppose Pr̂ does not rank c first and r is in PC R1 of country c.
Then, either r̂ is in a lower PC than r, or r̂ is already in R1. Hence, both r
and r̂ are in R1 of country c. If r ∈ R1 of c and r̂ is in a lower PC, then this
contradicts r̂ πE−top

c r since r̂ ∈ µDA
E−top(c). If both r, r̂ ∈ R1, then it must be

that r ≻c r̂, since for contradiction we assumed the existence of a blocking
pair (r,c) with respect to ≻. Country preferences are preserved within the
same priority classes. Hence, r πE−top

c r̂. However, we also have r̂ πE−top
c r

since r̂ ∈ µDA
E−top(c). Thus, this is a contradiction.

Case 2: Suppose Pr̂ ranks c first and r is in PC R1 of country c. Then, r, r̂ ∈
R1, then r ≻c r̂, which is preserved in R1 and hence, r πE−top

c r̂. However,
this contradicts r̂ πE−top

c r given r̂ ∈ µDA
E−top(c).

Case 3: Suppose Pr̂ does not rank c first and r is not in PC R1 of country
c. If r̂ is in forced class R1, then r̂ πE−top

c r, and so there is nothing to prove
as µDA

E−top is top PC-fair. However, consider otherwise. Then, neither of the
refugee families is in R1. Since we assumed µDA

E−top is not top PC-fair, either
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r and r̂ are in the same PC or r̂ is in a lower PC than r. If they are both in
the same PC, then (r,c) blocking µDA

E−top at ≻ will imply that r ≻c r̂, which is
preserved in the same PC, then r πE−top

c r̂. This is a contradiction to r̂ πE−top
c

r, given r̂ ∈ µDA
E−top(c). If r̂ is in a lower PC than r, then r having envy for r̂ in

a lower PC will be a contradiction of the PC no-envy property of the match.
This is because if r is in a higher PC than r̂, then r cannot have envy for r̂ at
preference profile P.

Case 4: Suppose Pr̂ ranks c first and r is not in PC R1 of country c. Then,
(r,c) is a salient blocking pair that is allowed under top PC fairness. Hence,
this is a direct contradiction.

Therefore, the top prioritization mechanism is top stable and top PC-fair.

The next example demonstrates how we achieve the combination of the
forced priority classes and the preference rankings of countries, and how we
further modify the resulting country rankings by using the top prioritization
mechanism to provide higher rank for refugees with their top-ranked coun-
tries. The example also verifies that the resulting matching satisfies the weak-
ened axioms of top stability and top PC fairness.

Example 3. Consider the given refugee families R = {1,2,3,4,5,6}, coun-
tries C = {a,b,c,d}, quota vector q = (1,1,2,2), and forced priority classes
R1 = {1,2} and R2 = {3,4,5,6}. Since countries c and d have two resi-
dency quotas each, let there be two identical copies of country c, each with
preferences ≻c and capacity one. Similarly, let there be two identical copies
of d each with ≻d and capacity one. The underlined allocations are for the
matching result µDA

E−top of the top prioritization mechanism.

P1 P2 P3 P4 P5 P6
d d d d a a
a b c c d d
b c a a c c
c a b b b b

Refugee Preferences P

≻a ≻b ≻c ≻d
1 2 3 5
5 1 4 6
6 5 5 3
2 6 6 4
3 3 2 1
4 4 1 2

Country Preferences ≻
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πE
a πE

b πE
c πE

d
1 2 2 1
2 1 1 2
5 5 3 5
6 6 4 6
3 3 5 3
4 4 6 4

Forced Profile πE

πE−top
a πE−top

b πE−top
c πE−top

d
1 2 2 3
5 1 1 4
6 5 3 1
2 6 4 2
3 3 5 5
4 4 6 6

Combined Profile πE−top

Observe that P1, P2, P3, and P4 rank country d first, and P5 and P6 rank
country a first. Notably, countries b and c are not popular enough among
refugees to be top-ranked. Thus, the following countries lift to their top PC
R1 those refugees that top-ranked them: country d lifts up {1,2,3,4} and
country a lifts up 5 and 6. This gives us the combined priority profile πE−top

above.
After applying the DA to πE−top and P, we obtain the matching below:

µDA
E−top =

(
a b c d
1 2 {5,6} {3,4}

)

Observe that the blocking pair set of µDA
E−top with respect to ≻ comprises only

(5,d) and (6,d). Since d is not the top choice of either of the refugees 5 and 6,
the top stability of µDA

E−top is satisfied for the given problem P. Moreover, the
reason for refugees 5 and 6 blocking µDA

E−top with country d with respect to ≻
is the loss of country d to refugees 3 and 4. It is also attributed to the priority
reversal between {5,6} and {3,4}, which stems from P3 and P4 ranking d as
their top choice, and this leads to {3,4} getting lifted to the top priority class
of country d and gaining a rank over refugees 5 and 6. Therefore, top PC
fairness of µDA

E−top is satisfied.
In this example, we can also see how top stability can imply top PC fair-

ness. In the combined profile, πE−top refugees are already moved up to the
top PC of their top choice countries. Refugees {5,6} have justified envy of
{3,4} since {3,4} are moved up to the top PC of d. The blocking pairs (5,d)
and (6,d) are therefore allowed under top PC fairness.

A mechanism f is strategy-proof if for all r ∈ R, all P ∈ P , and all P′
r ,

fr(P) Wr fr(P′
r,P−r). A coalition L ⊆ R can manipulate matching f (P) at P
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if there exists P′
L such that for all r ∈ L, fr(P′

L,P−L) Pr fr(P).4

Remark. The top prioritization mechanism is not strategy-proof for refugee
families. Now we will prove this statement. Let P be the original refugee
preference profile and P′ be the misreported refugee preference profile. Let
P4 = aP4dP4cP4b such that the only difference between these two profiles is
that refugee 4 misreports its own top choice country as d instead of the truthful
a. For simplicity, suppose qc = 1 for each c ∈C . It must be noted that refugee
f DA
E−top(P)(4) = c, where f DA

E−top(P)(4) is the outcome assigned to refugee 4
by the top prioritization mechanism f DA

E−top at P. Regard the given priority
classes R1 = {1,2} and R2 = {3,4}.

P1 P2 P3 P′
4

d d d d
a b c a
b c a c
c a b b

Refugee Preferences P′

≻a ≻b ≻c ≻d
1 2 3 4
4 1 4 3
2 4 2 1
3 3 1 2

Country Preferences ≻

πE
a πE

b πE
c πE

d
1 2 2 1
2 1 1 2
4 4 3 4
3 3 4 3

Forced Profile πE

πE−top′
a πE−top′

b πE−top′
c πE−top′

d
1 2 2 4
2 1 1 3
4 4 3 1
3 3 4 2

Combined Priority πE−top′

After applying the DA to πE−top′ and P′, we have the matching below:

µDA′
E−top =

(
a b c d
1 2 3 4

)

Therefore, refugee 4 manipulates the top prioritization mechanism f DA
E−top

at P since there exists P′
4 such that f DA

E−top(P
′
4,P−4)(4) P4 f DA

E−top(P)(4). Hence,
refugee 4 manipulates the mechanism by getting their untruthful top choice.

4 Alternative notations to fr(P′
L,P−L) and fr(P) are f (P′

L,P−L)(r) and f (P)(r), respectively.
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6. CREDIBLE STABILITY

Turning to the refugees forced to be in the lower priority classes, I recognize
the need for and importance of exploring the means of giving these refugees
an additional chance of attaining a higher rank. As mentioned, I explored
this by considering two different forms of priority profiles. The first form
is obtained by the top prioritization mechanism, which gives these refugees
a better chance of matching with their top-ranked country. In this section, I
describe my second form, under which I provide these refugees a better op-
portunity of accessing their DA-matched country. For a relevant mechanism
studied independently and in a school choice context, please see Biró & Gud-
mundsson (2021). In their study, they investigate the complexity of finding
Pareto-efficient allocations of highest welfare by providing top priority to all
students at the schools where they are assigned in the socially optimal solu-
tion.

Unlike the top prioritization mechanism, I find that the DA matching is
the best for refugees in a stable matching, which shows the importance of
prioritizing these refugees in their DA-matched countries. This prioritization
would also be more compelling for countries because each country’s priori-
ties must undergo fewer quota-based modifications than the top prioritization
mechanism. This is because, under the top prioritization mechanism, it will
not be necessary for some countries to modify their priority orders as much
as the popular countries. For example, less-preferred countries for settlement,
such as Poland, are less likely to be top-ranked by refugees. These countries
will have fewer refugees requiring a promotion to the top PC. However, popu-
lar countries, such as Germany, may have to modify their priority rankings to
a greater extent. If all refugees rank Germany as their top country of choice,
then all refugees will be moved up to the top PC of Germany. Within a class,
Germany will rank according to its own preferences based on its points system.
If a country is popular, it will be required to make several modifications to its
priority ordering, thereby deviating more from the forced priority classes.

I start by defining a credible blocking pair to build the new weak stability
axiom. Here, I would like to remind the readers that the matching result of
the DA ran with ≻, and P is denoted by µDA.

Definition (Credible Blocking Pair). A pair blocking a matching µ is credible
if it is matched under µDA.
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A pair blocking a matching µ is non-credible if it is not matched under µDA.

Definition (Credible Stability Axiom). A matching is credibly stable if it can-
not be blocked with a credible blocking pair at a given P. A mechanism is
credibly stable if, for each preference profile P, whenever the matching as-
signed to P is blocked by (r,c), (r,c) is not a credible blocking pair at P.

Definition (Credible PC Fairness Axiom). A matching µ satisfies credible PC
fairness at a particular profile P if, for every refugee–country pair (r,c) such
that r prefers c at µ and is preferred by c to a refugee r̂ assigned to c at µ ,

• either r̂ is in a higher forced PC than r,

• or r̂ ∈ µDA(c) at P and r is not in PC R1 of country c.

A mechanism f satisfies credible PC fairness if, for every profile P, it
assigns a matching µ that is credibly PC-fair. Notably, whenever there is jus-
tified envy with respect to r̂, either r̂ is in a higher forced class than r with
justified envy or r̂ ∈ µDA(c) at P and r is not in top PC of country c. To ac-
commodate more refugees in lower priority classes by raising them to the first
priority class at their DA-matched country, I further weaken the PC fairness
axiom. Therefore, the PC fairness axiom implies credible PC fairness. Since
I make exceptions for these refugees with their DA-matched country and ac-
count for their exceptions of gained rank, I declare blocking pairs that involve
such refugees and their DA-matched country to be salient and inadmissible.
In addition, these two axioms are not independent of each other. Connections
between credible stability and credible PC fairness axioms are demonstrated
as part of Example 4.

Definition (The DA-Match Prioritization Mechanism).

1. For every refugee r, modify πE
c by lifting refugee r up to PC R1 of c,

where r ∈ µDA(c).

2. Position r within PC R1 according to ≻c (i.e., keep all the other priority
rankings the same, except for r’s). This yields the new combined profile
πE−DA.
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3. Apply the DA to πE−DA. This yields the matching result f DA
E−DA(P) of

the DA-match prioritization mechanism f DA
E−DA at problem P.

Similar to the other aforementioned notations for the matching outcomes,
I use µDA

E−DA for the matching result of the DA-match prioritization mechanism
f DA
E−DA for any given problem P.

Unlike the top prioritization mechanism, each country’s DA-matched refugees
get lifted to the PC R1. Under the top prioritization mechanism, only the top-
ranked countries lift refugees up to their PC R1. However, I now lift the
DA-matched refugees to their DA-matched country’s PC R1. The key dis-
tinction is that the DA-match is used to promote the refugees, which is an
assignment, unlike the top choices. Thus, each country gets to lift its DA-
matched refugees.

Lemma 2. If r ∈ µDA(c), then SπE−DA

c (r) ⊆ S≻c (r).

Proof. Let r and c be such that r ∈ µDA(c). Then, r is lifted to R1 in πE−DA
c .

Fix r̂ ∈ SπE−DA

c (r). Then, we have r̂ ∈ R1. Moreover, given the construction
of πE−DA, this means that r̂ ≻c r. Thus, r̂ ∈ S≻c (r).

Lemma 3. µDA is stable with respect to the priority profile πE−DA.

Proof. For contradiction, suppose there is a pair (r,c) blocking µDA with re-
spect to πE−DA. Let r be one of the |µDA(c̄)| refugees matched to c̄. In
other words, let r ∈ µDA(c̄). Then, c Pr c̄. Let r̂ be one of the |µDA(c)|
refugees matched to c. In other words, let r̂ ∈ µDA(c). Then, r πE−DA

c r̂. Thus,
r ∈ SπE−DA

c (r̂), and Lemma 2 implies that r ∈ S≻c (r̂). Then (r,c) is also block-
ing µDA with respect to ≻, which is a contradiction, since µDA is stable at
≻.

Lemma 3 can occur in two cases: µDA is stable with respect to πE−DA

either by simply being equal to µDA
E−DA or when these two matches differ.

Through the DA-match prioritization mechanism, we have µDA
E−DA = µDA im-

plying, µDA is still stable with respect to πE−DA, and even µDA
E−DA is stable

with respect to ≻. We can also have µDA
E−DA 6= µDA, where µDA is still stable

with respect to πE−DA, and µDA
E−DA Pareto dominates µDA for refugees, which

I prove in the next theorem.
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Remark. When µDA
E−DA coincides with µDA, then both µDA and µDA

E−DA are
stable with respect to both ≻ and πE−DA.

Definition (Weak Pareto Domination). A mechanism f weakly Pareto domi-
nates another mechanism g if, for every P, the matching assigned to f weakly
Pareto dominates the matching assigned to g.

Theorem 3. The DA-match prioritization mechanism weakly Pareto domi-
nates the DA for the refugees.

Whenever the matching results do not coincide at a particular profile P, then
the DA-match prioritization mechanism leads to a matching µDA

E−DA that Pareto
dominates µDA for refugees.

Proof. From Gale & Shapley (1962)’s optimality result, we know that the
refugee-proposing DA-match prioritization leads to the refugee-optimal sta-
ble matching with respect to πE−DA. Since µDA

E−DA is the refugee-optimal sta-
ble matching at πE−DA and matching µDA is also stable with respect to πE−DA

by Lemma 3, if µDA
E−DA 6= µDA, then µDA

E−DA Pareto dominates µDA with respect
to P.

Furthermore, according to Knuth (1976)’s polarity result, for every prob-
lem with strict preferences, both sides of the market have common preferences
and these common preferences are opposed to each other on the set of stable
matchings. We know that the refugees’ preferences P and the combined pro-
file for the countries πE−DA are opposed to each other on the set of stable
matchings. For example, following Knuth’s polarity, consider µ and µ ′ as
two stable matchings. Then, all the refugees like µ at least as well as µ ′ if and
only if all countries like µ ′ at least as well as µ . Intuitively, the best stable
matching for one side is the worst stable matching for the other side. Thus,
the refugee-optimal stable matching is the worst stable matching for countries
(country-pessimal), and the country-optimal stable matching is the worst sta-
ble matching for refugees (refugee-pessimal). Therefore, as per Knuth (1976)
polarity result and by Lemma 3, I observe that when µDA

E−DA differs from µDA,
we have the matching µDA

E−DA—the country-pessimal stable matching with re-
spect to πE−DA. Thus, from the viewpoint of countries, µDA, which is stable
at πE−DA, Pareto dominates µDA

E−DA at πE−DA.
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Moreover, the DA-match prioritization mechanism leads to a matching
µDA

E−DA that satisfies credible stability. Recall that a credible blocking pair is a
pair that is matched under µDA.

Theorem 4. The DA-match prioritization Mechanism is

1. credibly stable and

2. credibly PC fair.

Proof. 1. Credible stability: Fix a given preference profile P. Suppose
µDA

E−DA 6= µDA. For contradiction, suppose the matching result µDA
E−DA is not

credibly stable at the given profile P. Then, there is a pair (r,c) blocking
µDA

E−DA with respect to ≻ that is matched under µDA. Let r be one of the
|µDA

E−DA(c̄)| refugees matched to c̄ under the DA-match prioritization mecha-
nism. In other words, r ∈ µDA

E−DA(c̄). We know µDA
E−DA 6= µDA and c 6= c̄. Thus,

by Theorem 3, c̄ Pr c, this contradicts the assumption that (r,c) is a blocking
pair of the matching µDA

E−DA with respect to ≻, given the profile P.

2. Credible PC fairness: Fix a given preference profile P. For contra-
diction, suppose µDA

E−DA does not satisfy the credible PC fairness at P. Then,
at the given P, there exists a pair (r,c) blocking µDA

E−DA with respect to ≻
that is not allowed under credible PC fairness and there exists r̂ ∈ R such
that r̂ ∈ µDA

E−DA(c). The violation of the credible PC fairness of the match-
ing result µDA

E−DA at the given P implies four non-trivial cases. We verify the
contradiction in each case.

First, observe that when refugee r̂ is not in a higher forced PC than r, who
is assumed to be blocking with c at ≻, then they are in the same PC. Although
this is trivial, it is a possibility since the matching result is assumed to be not
credible PC-fair at the given profile. This violates the country preferences
within the same PC, which are assumed to be preserved under the DA-match
prioritization mechanism. Hence, this is a direct contradiction.

Case 1: Suppose r̂ 6∈ µDA(c) at given P, and r is in top PC R1 of country
c. Then, either r̂ is in a lower PC than r or r̂ is already in top PC R1, and
hence they are both in R1 of country c. If r ∈ R1 of c and r̂ is in a lower PC,
then this will contradict r̂ πE−DA

c r since r̂ ∈ µDA
E−DA(c). If both r, r̂ ∈R1, then

r ≻c r̂, and thus it should be preserved in R1. Then, r πE−DA
c r̂. However, this

contradicts r̂ πE−DA
c r, given r̂ ∈ µDA

E−DA(c).
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Case 2: Suppose r̂ ∈ µDA(c) at P, and r is in PC R1 of country c. Then,
r, r̂ ∈R1 and by our assumption we have r ≻c r̂, which is preserved in R1 and
so r πE−DA

c r̂. However, given r̂ ∈ µDA
E−DA(c) we also have r̂ πE−DA

c r, which
gives us a contradiction.

Case 3: Suppose r̂ 6∈ µDA(c) at P, and r is not in PC R1 of country c. If r̂ is
already in forced class R1, then r̂ πE−DA

c r, and thus there is nothing to prove
as µDA

E−DA is credibly PC-fair. However, considering otherwise, neither of the
refugee families is in R1. Hence, since we assumed µDA

E−DA is not credible
PC-fair, either r and r̂ are in the same priority class, or r̂ is in a lower PC than
r. If they are both in the same PC, then (r,c) blocking µDA

E−DA at ≻ implies
that r ≻c r̂, which is preserved in the same PC. Hence, r πE−DA

c r̂. This is a
contradiction to r̂ πE−DA

c r, given r̂ ∈ µDA
E−DA(c). If r̂ is in a lower PC than r,

then r having envy for r̂ who is in a lower PC, is a contradiction to the PC
no-envy property of the match. This is because if r is in a higher PC than r̂,
then r does not have envy for r̂ at P.

Case 4: r̂ ∈ µDA(c) at P and r is not in PC R1 of country c. Then, (r,c)
is a salient blocking pair allowed under credible PC fairness. Hence, this is a
direct contradiction.

Therefore, the DA-match prioritization mechanism satisfies credible sta-
bility and credible PC fairness.

The next example demonstrates the DA-match prioritization mechanism.
It shows how we make exceptions for refugees by moving them up to the
top priority class of their DA-matched countries. We also observe how the
DA-match prioritization mechanism differs from the top prioritization mech-
anism. In contrast to the top prioritization mechanism, as seen in Example
3, we first need to obtain the DA matching result using refugee and country
preferences before adjusting the country rankings accordingly. The example
also shows how to verify that the weakened axioms of credible stability and
credible PC fairness hold for the matching obtained using the DA-match prior-
itization mechanism. Finally, it demonstrates how the result of the DA-match
prioritization mechanism can Pareto dominate the DA outcome for refugees.

Example 4. Consider the given refugees R = {1,2,3,4,5,6,7,8}, coun-
tries C = {a,b,c,d}, and forced priority classes R1 = {1,2,5,6} and R2 =
{3,4,7,8}. This example demonstrates the case where the DA-match prioriti-
zation mechanism leads to a matching µDA

E−DA that does not coincide with µDA.
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Suppose q = (2,2,2,2). The double-underlined allocations are for µDA
E−DA,

which is obtained from applying the DA to the P and πE−DA. The underlined
allocations are for µDA. Allocations that are marked in bold show the instance
when µDA

E−DA coincides with µDA.

P1 P2 P3 P4 P5 P6 P7 P8
d d d a d d d a
a b c d a b c d
b c a c b c a c
c a b b c a b b

Refugee Preferences P

≻a ≻b ≻c ≻d
1 2 3 4
5 6 7 8
4 1 2 3
8 5 6 7
2 3 1 1
6 7 5 2
3 4 4 5
7 8 8 6

Country Preferences ≻

πE
a πE

b πE
c πE

d
1 2 2 1
5 6 6 2
2 1 1 5
6 5 5 6
4 3 3 4
8 7 7 8
3 4 4 3
7 8 8 7

Forced Profile πE

πE−DA
a πE−DA

b πE−DA
c πE−DA

d
1 2 3 4
5 6 7 8
2 1 2 1
6 5 6 2
4 3 1 5
8 7 5 6
3 4 4 3
7 8 8 7

Combined Profile πE−DA

After applying the DA to πE−DA and P, we get:

µDA
E−DA =

(
a b c d

{4,5} {2,6} {3,7} {1,8}

)

µDA =

(
a b c d

{1,5} {2,6} {3,7} {4,8}

)
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Applying the DA to P and πE−DA gives the refugee-optimal stable match-
ing µDA

E−DA at πE−DA. The two matching results above are different from each
other. Looking at P, observe that µDA

E−DA Pareto dominates µDA for refugees.
At P, refugees 1 and 4 are better off under the matching µDA

E−DA. It must be
noted that (3,d) and (7,d) are the only pairs blocking µDA

E−DA with respect
to ≻. Since (3,d) and (7,d) are not matched in µDA, they are not credible.
Therefore, these blocking pairs are allowed to exist under the weak stability
of credible stability. Thus, the matching µDA

E−DA is credibly stable. In addition,
the reason for refugees 3 and 7 blocking µDA

E−DA with respect to ≻ is the loss
of country d to refugee 1 owing to the PC reversals between 1 and 3 and be-
tween 1 and 7. These priority reversals stem from the discrepancy between
πE and ≻. In other words, 1 is in a higher forced PC than 3 and 7 in πE . This
leads to the following reversal: 3 ≻d 1 versus 1 πE

d 3 and 7 ≻d 1 versus 1 πE
d

7. Therefore, µDA
E−DA is credibly PC-fair because it is PC-fair.

This example also shows how credible stability can imply credible PC fair-
ness. Notably, none of the blocking pairs (3,d) and (7,d) are matched under
the DA. In the combined profile πE−DA, refugees are already lifted to the top
priority class of their DA-matched countries. Therefore, the priority reversal
between refugees {3,7} and 1 is attributed to the forced priority classes—the
difference between the forced profile of countries πE and country preferences
≻. Refugees 3 and 7 have justified envy for 1 because 1 is forced above these
other two refugees in πE . Subsequently, these blocking pairs are allowed un-
der PC fairness, and PC fairness implies credible PC fairness.

Remark. The DA-match prioritization mechanism is not strategy-proof for
refugee families.

Proof. The matching assigned by the DA-match prioritization mechanism
Pareto dominates the matching made by the DA at each preference profile.
Thus, whether by Kesten (2006) and Ergin (2002), or Kesten & Kurino (2019),
the DA-match prioritization mechanism cannot be strategy-proof.5

5 Kesten (2006) or Kesten & Kurino (2019) are more relevant here, given that there are no out-
side options for refugees in the present setting. Also note that this holds per Abdulkadiroğlu
et al. (2009) too, as well as by Alva & Manjunath (2019), which require refugees to have an
outside option.
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7. CONCLUSION

To coordinate the stream of refugees effectively, it would be ideal to have as
many European countries as possible participating in a centralized matching
mechanism. Persuading all the European countries to participate in a central-
ized computerized matching mechanism has its challenges. This study hopes
to contribute to the efforts to overcome the political impasse that tends to pre-
vent European countries from participating in accountability-sharing in the in-
ternational refugee crisis. By defining and investigating a country acceptance
problem, this study proposes two matching mechanisms. These mechanisms
are based on the proposed priority class hierarchy using the UNHCR human-
itarian principles and guidelines. They contribute to the literature by offering
methodologies that reconcile country preferences and the UNHCR-mandated
hierarchical priority classes while maintaining the laudable stability and fair-
ness properties.

Having two kinds of ranking profiles for countries, the UNHCR-mandated
priority profile and the preference profile, allows for an examination of the
real-world predicaments associated with the refugee reallocation problem. I
capture how the difference between the two ranking profiles creates block-
ing pairs of countries and refugees owing to the forced hierarchical priority
classes. I weaken the stability axiom since a mechanism that is stable with
respect to a forced profile may no longer be stable with respect to countries’
preferences. This may lead the country and refugee pairs to block a matching
result. With regard to the top prioritization mechanism, I provide an addi-
tional chance to refugees forced in lower priority classes and who therefore
face the risk of remaining in the lower priority classes. To this end, I priori-
tize these refugees in their top choice countries. The DA-match prioritization
mechanism allows lifting refugees forced in lower priority classes to the first
PC of their DA-matched country. I find that, for refugees, the DA-match pri-
oritization mechanism weakly Pareto dominates the DA mechanism. Further-
more, I recognize the importance of persuading countries to participate in a
centralized refugee matching mechanism. I believe that a priority class-based
approach with no imposed category-specific set-aside reserve quotas may be
more attractive in terms of increasing countries’ willingness and incentive to
participate in solving the refugee matching problem. Beyond the refugee re-
allocation context, this study’s results have other policy applications, such as
centralized college admissions, the design of public-school choice systems,
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and forced migration or displacement.

This study’s results may also apply in a school choice or college admission
context, more so than in the context of refugee settlement. This criticism may
arise because refugee allocation has some features that do not necessarily fit
into the model presented. Four such factors are as follows: (i) the preferences
of the refugees may not be considered or even if considered, the optimization
may be focused on other factors; (ii) the size of the families can matter, as
the quotas are typically for a specific number of people admitted, and further
constraints may also be implied for other characteristics of the families; (iii)
refugee allocation has a dynamic nature; and (iv) the usage of stability for
refugee allocation in Europe may cause skepticism for political reasons, as it
could cause unbalanced solutions, with the most attractive countries receiving
the “best” (highly qualified, easy to settle) refugees.

With my study, I endeavour to contribute to the literature at the intersec-
tion of matching theory and refugee studies, which are less extensive than
the school choice literature. This study does not seek to address all aspects
of refugee matching. Addressing factors such as family size, the dynamic
aspect, and finding a more balanced (fair) solution all at once can be signifi-
cantly challenging. Instead, this study aims to introduce a new aspect to the
choice literature, that is, hierarchical classes, which is at the proposed model’s
core. By emphasizing the PC hierarchy, this study highlights different theo-
retical aspects. Moreover, country preferences are frowned upon in refugee
settlement due to discrimination issues. Therefore, hierarchical classes are
more critical in the refugee settlement context as they significantly curb po-
tential discrimination by imposing the UNHCR-based priority classes. This,
therefore, makes country preferences much less important for the matching
outcome.

Further, as the Syrian war prompted me to conduct this study, I focus
on the static matching problem and earmark dynamic management for future
work, in which I will extend my model with hierarchical classes to a dynamic
setting. I will also consider investigating the incorporation of hierarchical
classes in dynamic capacity management. In addition, future work should
consider improving refugee allocation and integration through data-driven al-
gorithmic assignments with hierarchical classes.
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1. INTRODUCTION

WE are concerned here with a characterization result of a specific class of
incentive compatible direct selling mechanisms. For the sake of this

article such a mechanism consists of an allocation rule that assigns some good
or goods to the participants, called agents, and a payment rule that determines
how much each agent needs to pay. Assuming that each agent has a private
valuation of the good or goods, these decisions are taken in response to a
vector of bids made by the agents. These bids may differ from agents’ true
valuations. Recall that a mechanism is (dominant strategy) incentive compati-
ble (alternatively called truthful), if no agent is better off when providing false
information regardless of reports of the other agents or, more precisely, when
submitting a bid different from his/her valuation regardless of reports of the
other agents.

Given a class of mechanisms one of the main problems is to characterize
their incentive compatibility in terms of an appropriate payment rule. Sev-
eral such results were established in the literature, starting with the one in
Green & Laffont (1977) concerning Groves mechanisms, originally proposed
in Groves (1973). One of the earliest characterization results was given in My-
erson (1981), who considered single object auctions in an imperfect informa-
tion setting. In Milgrom (2004) such characterizations are called ‘Myerson’s
Lemma’. This terminology was adopted in Roughgarden (2016), Chapter 3
of which, titled ‘Myerson’s Lemma’, is concerned with a characterization of
incentive compatible single-parameter mechanisms, which were studied in
Archer & Tardos (2001).

As we explain below, both in this article and in Roughgarden’s book such
a characterization result is actually not proved. Most (but not all) of the claims
are rigorously established in Nisan (2007) in the context of randomized single-
parameter mechanisms.

Given that this purported characterization of incentive compatible single-
parameter mechanisms is frequently referred to in the literature (see e.g. Hart-
line & Karlin (2007) and Babaioff (2016)), we find it justified to review these
claims. We will provide an elementary proof of the characterization result
for two classes of allocation functions considered in Roughgarden (2016) and
subsequently provide a proof of the original claim of Archer & Tardos (2001)
by appealing to more advanced results from the theory of real functions. We
conclude by comparing our proof to the one given in Krishna (2002) and
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Börgers (2015).

2. PRELIMINARIES

We follow here the terminology of Roughgarden (2016) that is slightly dif-
ferent than the one originally used in Archer & Tardos (2001). In particular
Roughgarden (2016) refers to a single-parameter mechanism and an alloca-
tion rule, while Archer & Tardos (2001) refer to a one-parameter mechanism
and load.

Each single-parameter mechanism concerns sale of some ‘stuff’ to bid-
ders and assumes

• a set of agents {1, . . .,n},

• for every agent i, a value vi ≥ 0 which specifies i’s private valuation
“per unit of stuff” that he or she acquires.

In the auction the agents simultaneously submit their bids, which are their
reported valuations “per unit of stuff”. The auctioneer receives the bids and
determines how much ‘stuff’ each agent receives and against which price.
So in contrast to the single-item auctions each agent i receives a possibly
fractional amount ai ≥ 0 of an object (here ‘a stuff’) he or she is interested in.

An allocation is a vector a = (a1, . . . ,an), where each ai ≥ 0 specifies the
amount allocated to agent i. A payment is a vector p = (p1, . . ., pn), where
each pi ≥ 0 specifies the amount agent i has to pay.

Each single parameter mechanism consists of an allocation rule

a : Rn
≥0 → Rn

≥0

and a payment rule
p : Rn

≥0 → Rn
≥0.

Given a vector of bids b= (b1, . . . ,bn) such a mechanism selects an allocation
a(b)= (a1(b), . . . ,an(b)) and a vector of payments p(b) = (p1(b), . . . , pn(b)).

We assume that the utility of agent i is defined by

ui(b) = viai(b)− pi(b).

We then say that a single-parameter mechanism is incentive compatible
if for each agent i truthful bidding, i.e., bidding vi, yields the best outcome
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regardless of bids of the other agents. More formally, it means that for all
agents i

ui(vi,b−i)≥ ui(bi,b−i),

for all bids bi of agent i and all vectors of bids b−i of other agents, or equivalently—
ignoring the parameters b−i—that for all y ≥ 0

viai(vi)− pi(vi)≥ viai(y)− pi(y).

3. A CHARACTERIZATION RESULT

We say that a function f : R≥0 → R≥0 is monotonically non-decreasing, in
short monotone, if

0 ≤ x ≤ y → f (x)≤ f (y).

We say that an allocation rule a is monotone if for every agent i and every
vector of bids b−i of other agents the function ai(·,b−i) is monotone.

The following result is stated in Archer & Tardos (2001), Nisan (2007),
and Roughgarden (2016). In Nisan (2007) it is formulated as a result about
randomized single-parameter mechanisms but the proofs are the same for the
deterministic mechanisms considered here.

Theorem 1.

(i) If a mechanism (a,p) is incentive compatible then the allocation rule a
is monotone.

(ii) If the allocation rule a is monotone then for some payment rule p the
mechanism (a,p) is incentive compatible.

(iii) If the allocation rule a is monotone, then all payment rules p for which
the mechanism (a,p) is incentive compatible differ by a constant.

There are some technically irrelevant differences between these three ref-
erences. In Archer & Tardos (2001), instead of allocations, loads are consid-
ered, with the consequence that the loads are monotonically non-increasing,
though the authors also state that the results equally apply to the set up that
uses allocations. Following Nisan (2007) and Roughgarden (2016), we will
use allocations. It leads to an analysis of monotonically non-decreasing func-
tions. Further, in the last two references it is assumed that the payment rule
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yields 0 payment when bids are equal to 0, which makes it possible to drop in
(iii) the qualification ‘up to a constant’. To make the discussion applicable to
arbitrary payment rules we do not adopt this assumption.

Item (i) is established in Archer & Tardos (2001) by appealing to the first
derivative, so under some assumptions about the load function. However, a
short argument given in Nisan (2007) and reproduced in Roughgarden (2016)
shows that no assumptions are needed.

In turn, item (ii) is proved in Archer & Tardos (2001) ‘by picture’. A
rigorous proof is given in Nisan (2007), while in Roughgarden (2016) only
a ‘proof by picture’ is provided for piecewise constant allocation rule and it
is mentioned that “the same argument works more generally for monotone
allocation rules that are not piecewise constant”.

Finally, in Archer & Tardos (2001) item (iii) is claimed for arbitrary mono-
tone loads and allocation rules. But in the paper only a short proof sketch is
given that ends with a claim that “To prove that all truthful payment schemes
take form (2), even when ωi [the load rule] is not smooth, we follow essen-
tially the same reasoning as in the [earlier given] calculus derivation.” How-
ever, this derivation refers to load rules that are assumed to be smooth (ac-
tually only twice differentiable, so that integration by parts can be applied),
while the characterization result is claimed for all monotone allocation func-
tions.

In Nisan (2007) item (iii) is established by reducing in the last step the
expression

∫ x
0 z f ′(z)dz to x f (x)− ∫ x

0 f (z)dz. We quote (adjusting the nota-
tion): “[. . . ] we have that p(x) =

∫ x
0 z f ′(z)dz, and integrating by parts com-

pletes the proof. (This seems to require the differentiability of f , but as f
is monotone this holds almost everywhere, which suffices since we immedi-
ately integrate.)” (Recall that a property holds almost everywhere if it holds
everywhere except at a set of measure 0, i.e., a set that can be covered by a
countable union of intervals the total length of which is arbitrarily small.) A
minor point is that the initial part of the proof is incomplete as it only deals
with the right-hand derivative instead of the derivative.

Finally, in Roughgarden (2016) about item (iii) it is only stated without
proof “We reiterate that these payments formulas [for the above two classes
of allocation functions] give the only possible payment rule that has a chance
of extending the given allocation rule x into a DSIC [i.e., incentive compat-
ible] mechanism.” Also here the formula (in the adjusted notation) p(x) =∫ x

0 z f ′(z)dz is derived by discussing only the right-hand derivative.
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In our view these arguments are incomplete as they do not take into ac-
count some restrictions that need to be imposed on the use of integrals and
application of integration by parts. Note that, except in the final discussion,
Riemann integration is assumed throughout.

Remark 2. To start with, integration by parts can fail for simple monotone
functions, for example those considered in Roughgarden (2016). Indeed, let
for q > 0

Hq(x) :=

{
0 if 0 ≤ x ≤ q
1 if x > q

be an elementary step function with a single step at x = q.
Take now f = Hq with q = 1/2. Then f ′ = 0 for x 6= 1/2 and f ′ is unde-

fined for x = 1/2. Consequently (defining f ′(1/2) arbitrarily)
∫ 1

0
z f ′(z)dz = 0 6= 1/2 = x f (x)

∣∣1
0 −

∫ 1

0
f (z)dz. (1)

Further, integration by parts can fail even if we insist on continuity. Indeed,
take for f the Cantor function, see, e.g., (Tao, 2011, pages 170-171). It is
monotone, continuous and almost everywhere differentiable on [0,1], with
f (0) = 0, f (1) = 1 and f ′ equal to 0 whenever defined. Additionally, (1)
holds for f , as well.

Finally, there exists a monotone and everywhere differentiable function f
for which the above integral

∫ 1
0 z f ′(z)dz does not exist. Indeed, as observed

in Goffman (1977), there exists a monotone and everywhere differentiable
function f : [0,1]→ R≥0 such that the integral

∫ 1
0 f ′(z)dz does not exist. By

a result of Lebesgue (see, e.g., Bressoud (2008)) a bounded function defined
on a bounded and closed interval is Riemann integrable iff it is continuous
almost everywhere. But f ′ is continuous almost everywhere on [0,1] iff the
function g(x) := x f ′(x) is, so the claim follows. ✷

These points of concern motivate our subsequent considerations. To keep
the paper self-contained we reprove items (i) and (ii), given that the proofs
are very short.

4. AN ANALYSIS

Our analysis can be carried out without any reference to mechanisms by rea-
soning about functions on reals. We first rewrite the incentive compatibility
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condition as
pi(y)− pi(vi)≥ vi(ai(y)−ai(vi)),

which from now on we analyze as the following condition on two functions
f : R≥0 → R≥0 and g : R≥0 →R≥0:

∀x,y : g(y)−g(x)≥ x( f (y)− f (x)). (2)

We are interested in solutions in g given f . We begin with the following
obvious observation.

Note 3. The inequality (2) is equivalent to

∀x,y : y( f (y)− f (x))≥ g(y)−g(x)≥ x( f (y)− f (x)). (3)

Proof. By interchanging in (2) x and y we get the additional inequality
y( f (y)− f (x))≥ g(y)−g(x).

Corollary 4 (Nisan (2007); Roughgarden (2016)). Suppose (2) holds. Then
the function f is monotone.

Proof. Assume 0 ≤ x < y. By Note 3 (3) holds. The inequalities in (3) imply
(y− x)( f (y)− f (x))≥ 0, so f (x)≤ f (y).

This establishes item (i) of Theorem 1. To investigate items (ii) and (iii)
we study existence and uniqueness of solutions of (2) in g. The following
result establishes item (ii). The proof is from Nisan (2007).

Lemma 5. Suppose f is monotone. Then (2) holds for

g(x) =C+ x f (x)−
∫ x

0
f (z)dz, (4)

where C is some constant.

Because f is monotone g is well defined (see, e.g., Rudin (1976)).

Proof. By plugging the definition of g in (2) we get after some simplifications
∫ x

0
f (z)dz−

∫ y

0
f (z)dz ≥ (x− y) f (y), (5)

which needs to be proved. Two cases arise.
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Case 1. x ≥ y.
Then

∫ x

0
f (z)dz−

∫ y

0
f (z)dz =

∫ x

y
f (z)dz ≥ (x− y) f (y),

where the last step follows by bounding the integral from below, since by the
monotonicity of f , we have f (y)≤ f (z) for z ∈ [y,x].

Case 2. y > x.
Then

∫ x

0
f (z)dz−

∫ y

0
f (z)dz =−

∫ y

x
f (z)dz ≥ (x− y) f (y),

where the last step follows by bounding the integral from above, since by the
monotonicity of f , we have f (z)≤ f (y) for z ∈ [x,y].

So (5) holds, which concludes the proof.

To deal with uniqueness let us first consider the case for which the argu-
ment given in Nisan (2007) can be justified.

Lemma 6. Suppose f is everywhere differentiable. Then any two solutions g
of (2) differ by a constant.

Proof. Suppose that (2) holds. By Note 3 (3) holds. Given an arbitrary x ≥ 0
we first use it with y = x+h, where h > 0. Dividing by h we then obtain

(x+h)( f (x+h)− f (x))
h

≥ g(x+h)−g(x)
h

≥ x( f (x+h)− f (x))
h

.

By the assumption about f

lim
h→0+

(x+h)( f (x+h)− f (x))
h

= lim
h→0+

x( f (x+h)− f (x))
h

= x f ′(x),

so

lim
h→0+

g(x+h)−g(x)
h

= x f ′(x). (6)

Next, we use (3) with x = y + h, where h < 0. Dividing by h we then
obtain

y( f (y)− f (y+h))
h

≤ g(y)−g(y+h)
h

≤ (y+h)( f (y)− f (y+h))
h

,
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so replacing y by x and multiplying by −1 we get

x( f (x+h)− f (x))
h

≥ g(x+h)−g(x)
h

≥ (x+h)( f (x+h)− f (x))
h

.

By the assumption about f and x

lim
h→0−

(x+h)( f (x+h)− f (x))
h

= lim
h→0−

x( f (x+h)− f (x))
h

= x f ′(x),

so

lim
h→0−

g(x+h)−g(x)
h

= x f ′(x). (7)

We conclude from (6) and (7) that g′(x) exists and

g′(x) = x f ′(x). (8)

Hence all solutions g to (2) have the same derivative and consequently differ
by a constant.

Remark 7. The above proof coincides with the one given in Nisan (2007),
except on two points. First, only (6) is established there. This allows one
only to conclude that the right derivative of g in x exists; to establish that g′(x)
exists also (7) is needed. More importantly, Nisan argued that all solutions
g to (2) are of the form (4) given in Lemma 5. Under the assumption that f
is everywhere differentiable this additional claim is a direct consequence of
Lemmas 5 and 6.

Nisan’s argument for this point involved integration and integration by
parts. To justify it we need to assume that f ′ is continuous. Then by (8)
also g′ is continuous, which allows us to use the Fundamental Theorem of
Calculus. It yields that for some constant C

g(x) =C+

∫ x

0
g′(z)dz.

Further, integration by parts of
∫ x

0 z f ′(z)dz is then also justified since f is
everywhere differentiable and f ′ is integrable (see, e.g., Rudin (1976)). Then∫ x

0 z f ′(z)dz exists and by integration by parts
∫ x

0
z f ′(z)dz = x f (x)−

∫ x

0
f (z)dz,

so (8) and the last two equalities imply that g is indeed of the form (4) given
in Lemma 5. ✷
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In the remainder of this section we do not use integration or the existence
of solutions in the form (4), but proceed directly from (2). This allows us
to sidestep the associated complications and show that the requirement of f
being everywhere differentiable of Lemma 6 can be substantially weakened
and, appealing to strong results from the theory of real functions, can even be
removed altogether.

For x = 0 continuity (differentiability) means right continuity (differentia-
bility), which we will not mention or treat separately.

We first need an auxiliary result.

Lemma 8. Let g1 and g2 be two solutions of (2) and let G = g1 −g2.

(i) G is continuous.

(ii) If f is continuous at x, then G is differentiable at x and G′(x) = 0.

Proof. (i) By Note 3 (3) holds for g1 and g2. By using it with y = x+h for g1
and for g2 we obtain

0 ≤ |G(x+h)−G(x)| ≤ h( f (x+h)− f (x)). (9)

We have h( f (x+h)− f (x))≤ h f (x+h) for h> 0 and ≤−h f (x) for h < 0.
But by Corollary 4 f is monotone, hence limh→0 |G(x+h)−G(x)|= 0, which
establishes the claim.

(ii) Take some x ≥ 0. By (9) for h 6= 0

0 ≤
∣∣∣G(x+h)−G(x)

h

∣∣∣≤ | f (x+h)− f (x)|,

which implies the claim.

Note that the continuity of G holds for any f .
The following result with an elementary proof covers in a unified way

item (iii) of Theorem 1 for two classes of allocation functions considered in
Roughgarden (2016), piecewise constant and differentiable ones.

A function f : R≥0 →R≥0 is called piecewise continuous if it has at most
a finite number of discontinuities in every bounded interval. Thus discontinu-
ities can occur only at isolated points separated by open intervals of continuity.
Piecewise constant and step functions are special cases. This definition is a
straightforward generalization to R≥0 of the usual one for functions with a
bounded domain.
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Theorem 9. Suppose f is piecewise continuous. Then any two solutions g of
(2) differ by a constant.

Proof. Let g1 and g2 be two solutions of (2) and let G = g1 −g2.
Let f be piecewise continuous with discontinuities q1 < q2 < .. . and con-

sider the intervals I0 = [0,q1) ( /0 if q1 = 0), Ii = (qi,qi+1) (i ≥ 1), with IN =
(qN,∞) if f has a finite number N > 0 of discontinuities and I0 = [0,∞) =R≥0
if N = 0.

If f has an infinite number of discontinuities, limi→∞ qi = ∞ since there
can be only finitely many of them in any bounded interval. Hence, the Ii and
qi together cover the whole of R≥0.

f is continuous on each Ii, so by Lemma 8(ii) G is constant on Ii, say
G=Ci on Ii. Since G is continuous everywhere by Lemma 8(i), C0 =G(q1) =
C1 = G(q2) = . . ., so for some constant C, G = g1 −g2 =C.

Theorem 9 can be generalized to a wider class of functions whose disconti-
nuity sets may have limit points (accumulation points), at least to some degree.
We give a simple example of a monotone function f , for which Theorem 9
does not apply but the stronger result presented below does.

Let

f (x) =
∞

∑
n=1

2−nH1−2−n(x),

where Hq is defined in Remark 2. It is not piecewise continuous, but has
an infinite set of discontinuities {1/2,3/4, . . .} with a single limit point 1.
Note that f happens to be continuous at x = 1, but this might also have been
otherwise.

Functions like f and more complicated ones having discontinuity sets with
limit points of limit points, etc. can, to some extent, be dealt with by adapting
the proof of Theorem 9 and appealing to the well-known Bolzano-Weierstrass
theorem (BW for short, see, e.g., Bressoud (2008)).

Given a set S ⊆ R≥0, we denote by S(1) the set of its limit points (which
need not be in S) and define S(n+1) = (S(n))(1) for n ≥ 1. A set S is called
first species of type n−1 if S(n) = /0 and S(m) 6= /0 for m < n (Bressoud, 2008).
Such a set has limit points, limit points of limit points, etc., up to level n−1.
A first species set of type 0 has no limit points.

Theorem 10. Suppose the discontinuity set of f is first species of type n ≥ 0.
Then any two solutions g of (2) differ by a constant.
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Proof. Let g1 and g2 be two solutions of (2) and let G = g1 − g2. Let the
discontinuity set of f be S and use induction with respect to the type of S.

If n = 0, S(1) = /0, so f can have only finitely many discontinuities in every
bounded interval. Otherwise, there would be a limit point in some bounded
and closed interval by BW. Hence, f is piecewise continuous and the case
n = 0 corresponds to Theorem 9.

Assume the theorem holds for all n ≤ k for some k > 0 and consider S of
type k+1. The elements of S(k+1) are the limit points of level k+1. Recall
that these need not be elements of S. Since S(k+2) = /0, S(k+1) does not have
limit points, so there can be only finitely many elements of S(k+1) in every
bounded interval by BW as before.

Now let the elements of S(k+1) be q1 < q2 < .. . and consider the intervals
Ii (i ≥ 0) as in the proof of Theorem 9. Together with the qi, they cover the
whole of R≥0 as in the previous proof.

However, the S∩ Ii may still have qi and/or qi+1 as limit points, which
means the S ∩ Ii need not be of type ≤ k but can still be of type k + 1, so
the induction hypothesis cannot be applied to the Ii. Therefore, for fixed i and
sufficiently small δ > 0 consider a non-empty bounded and closed subinterval
Ji = Ji(δ ) = [qi +δ ,qi+1 −δ ] of Ii (or, if the number of limit points is a finite
number N, JN = JN(δ ) = [qN +δ ,∞)).

Now S∩ Ji can no longer have qi and/or qi+1 as limit points. Hence, it
is of type ≤ k and the induction hypothesis applies to Ji, so G is constant on
Ji, say G = Ci on Ji. Since G is continuous everywhere by Lemma 8(i) and
limδ→0 Ji = [qi,qi+1] (or, if the number of limits points is N, limδ→0 JN =
[qN,∞)), we get G(qi) =Ci = G(qi+1). The final step of the proof is the same
as in the proof of Theorem 9.

Unfortunately, the above result does not cover all monotone functions f :
R≥0 → R≥0. Indeed, a monotone function may be discontinuous on the set
Q≥0 of non-negative rational numbers, see, e.g., Rudin (1976), and Q≥0 is
not first species, since Q(1)

≥0 = R≥0 and R(1)
≥0 = R≥0.

This limitation can be circumvented by appealing to a strong result of
Goldowski and Tonelli. Recall first that a function f : R≥0 →R≥0 is differen-
tiable nearly everywhere if it is differentiable except at a countable number of
points. Note that nearly everywhere implies almost everywhere. We need

Theorem 11 (Goldowski (1928); Tonelli (1930-31); Saks (1937)). Let G :
R≥0 → R≥0 be a function such that
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• G is continuous,

• G is differentiable nearly everywhere,

• G′ ≥ 0 almost everywhere.

Then G is monotone.

This leads directly from Lemma 8 to the desired conclusion.

Theorem 12. Any two solutions g of (2) differ by a constant.

Proof. Let g1 and g2 be two solutions of (2) and let G = g1 −g2. By Lemma
8(i) G is continuous.

A monotone function is continuous nearly everywhere (see, e.g., Rudin
(1976)). So by Lemma 8(ii) G is differentiable nearly everywhere and G′ = 0
nearly everywhere. Hence by Theorem 11 both G and −G are monotone, i.e.,
G is constant.

The above theorem justifies item (iii) of Theorem 1. The following result
summarizes the results of this section.

Theorem 13. Inequality (2) holds iff f is monotone and for some constant C

g(x) =C+ x f (x)−
∫ x

0
f (z)dz.

Proof. By Corollary 4, Lemma 5, and Theorem 12.

5. DISCUSSION

Results closely corresponding to our uniqueness result (Theorem 12) were
also presented in Krishna (2002) (and its second edition Krishna (2009)) and
Börgers (2015). The customary name of these results is Revenue Equivalence.
Krishna considers in Chapter 5 a setup with a seller that has one indivisible
object to sell and n potential buyers, while Börgers considers in Chapter 2 a
setup in which there is just one potential buyer. In Krishna (2009) the equiva-
lent of our function f is defined as an integral representing the probability that
a buyer gets the object, while in Börgers (2015) f corresponds to the proba-
bility of selling the object to the buyer. However, a close inspection of the
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proofs of these Revenue Equivalence results reveals that they do not depend
on the actual form of f .

Further, ignoring the differences in the setup, the corresponding proofs in
both books are from the mathematical point of view essentially the same. As
the arguments in the latter one are more detailed, we discuss them here, but
using our notation.

The proof of the corresponding result (Proposition 2.2) in Börgers (2015)
is not based on the equivalent of our function f but instead deals, in Lemma
2.2, with the function u (representing utility) defined by

u(x) := x f (x)−g(x),

and states that for all x for which u is differentiable,

u′(x) = f (x).

Lemma 2.2 also establishes that the function u is monotone and convex.
Then in Lemma 2.3 it is shown that

u(x) = u(0)+
∫ x

0
f (z)dz,

which is equivalent to (4) by taking C = u(0), so the uniqueness result (Lemma
2.4 (Revenue Equivalence)) corresponding to our Theorem 12, follows.

Lemma 2.3 is a direct consequence of two results from Royden & Fitz-
patrick (2010), namely, that convexity implies absolute continuity (a notion
we leave undefined here) and that every absolutely continuous function is
equal to the integral of its derivative.

Note, however, that the latter result (Theorem 10 of Royden & Fitzpatrick
(2010)) is the Fundamental Theorem of Calculus (FTC) for the Lebesgue inte-
gral, a fact not mentioned in Krishna (2002) and in Börgers (2015) deducible
only indirectly from footnote 2 in Chapter 2. So the proofs of the uniqueness
result (the Revenue Equivalence) presented in Krishna (2002) and Börgers
(2015) crucially rely on the Lebesgue theory of integration. In contrast, our
proof is much more elementary: it does not rely on any form of integration and
appeals only to the notion of derivative. Only the existence result (Lemma 5)
relies on the Riemann integral. Having said this, apart from its complications,
use of the Lebesgue integral yields a very efficient proof.

Both Krishna and Börgers establish appropriate Revenue Equivalence re-
sults for other mechanisms. In particular, Börgers considers in Chapters 3 and
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4 of Börgers (2015) Bayesian mechanisms and dominant mechanisms, each
time for n buyers. In both cases he establishes the corresponding Revenue
Equivalence result (Lemma 3.4 and Proposition 4.2) by explaining that the
reasoning provi/ded in Chapter 2 can be repeated.

Given that in both setups the crucial inequalities are the counterparts of (2)
(considered separately for each buyer), it follows that both results can be alter-
natively proved using our Theorem 12. We conclude that our more elementary
approach can be applied to other mechanisms than the single-parameter mech-
anism considered in Section 2.

Finally, we show that a generalization of Theorem 13 allows one to pro-
vide alternative, more elementary proofs of Revenue Equivalence for two
other types of auctions, considered in Krishna (2009) in Chapters 14 and 16.
These auctions are concerned with multiple objects, leading to functions f
and g having to deal with vectors.

We use the following notation. For functions f : Rn
≥0 → Rn

≥0 and g :
Rn
≥0 → R≥0 and x ∈ Rn

≥0 we introduce the functions fx : R≥0 → R≥0 and
gx : R≥0 → R≥0 defined by

fx(t) = f (tx) ·x,

where · is the inner product (dot product), and

gx(t) = g(tx).

We then say that f : Rn
≥0 → Rn

≥0 is monotone if for each x ∈ Rn
≥0 the

function fx is monotone.
We now establish the following result which generalizes Theorem 13 to

dimension n > 1. (Note that using the substitution u(z) = zx we have∫ x
0 f (u)du =

∫ 1
0 f (zx)x dz.)

Theorem 14. For two functions f : Rn
≥0 → Rn

≥0 and g : Rn
≥0 → R≥0 the in-

equality
∀x,y : g(y)−g(x)≥ ( f (y)− f (x)) ·x (10)

holds iff f is monotone and for some constant C

g(x) =C+ f (x) ·x−
∫ 1

0
f (zx) ·x dz. (11)
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Proof. First note that (10) holds iff

∀x,x,y : gx(y)−gx(x)≥ x( fx(y)− fx(x)), (12)

since for each x ∈ Rn
≥0

∀x,y : gx(y)−gx(x) = g(yx)−g(xx)

and by linearity of the inner product

∀x,y : x( fx(y)− fx(x)) = ( f (yx)− f (xx)) · xx.

By Theorem 9 (12) holds iff for all x the function fx is monotone and for
some constant Cx

gx(x) =Cx + x fx(x)−
∫ x

0
fx(z)dz. (13)

But Cx = gx(0) = g(0), so the constant Cx does not depend on x. Fur-
ther, g(x) = gx(1), and 1 fx(1) = f (x) ·x, so by putting x = 1 we see that(13)
implies (11).

But also (11) implies (13), which can be seen by using (11) with xx instead
of x.

Let us return now to Krishna (2009). In Chapter 14 he studies multiu-
nit auctions in which multiple identical objects are available. The relevant
inequality (14.1) on page 204, capturing the expected payment in an equilib-
rium for a player, corresponds to (10). Theorem 14 then provides an alterna-
tive proof of his Proposition 14.1 stating that

“The equilibrium payoff (and payment) functions of any bidder
in any two multiunit auctions that have the same allocation rule
differ at most by an additive constant.”

Krishna’s proof relies (implicitly) on the Lebesgue integral. We adopted
from his proof the idea of reasoning about the functions fx and gx. In Chapter
16 of his book he studies auctions in which one can bid for a set of noniden-
tical objects. They are called in the computer science literature combinatorial
auctions. Krishna explains that “The proof is identical to that of Proposition
14.1.” (italic used by the author). Consequently, our approach also yields an
alternative proof of Revenue Equivalence for combinatorial auctions.
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ABSTRACT
This study examines a simple banking system in a game-theoretic framework
wherein banks act as self-interested agents to maximize leverage at the ex-
pense of overall financial stability. The resultant strategic inefficiency raises
concerns about how banks manage the “financial stability” good, which is
appropriated into a “tragedy of the commons.” We conceptualize the ineffi-
ciency using the price of anarchy introduced by Koutsoupias & Papadimitriou
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of anarchy or the degree of financial fragility.
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1. INTRODUCTION

S INCE the early 2000s, banks and financial institutions have constructed or
employed new instruments to increase leverage without violating regula-

tory rules. These instruments might not be readily evident on balance sheets

This work has been partly supported by the University of Piraeus Research Center. I am
grateful to the editor and two anonymous referees for their helpful comments and constructive
suggestions.

Copyright © Dimitris Voliotis / 7(1), 2022, 131–150.
Licensed under the Creative Commons Attribution-NonCommercial License 3.0, http://creativecommons.org.

“jMID-vol7(1)-01” — 2022/12/6 — 6:24 — page 131 — #135



132 A Regulatory Arbitrage Game

yet still expose financial institutions to credit risk. Typically, they include let-
ters of credit, guarantees, operating leases, CDO’s, swaps, and OTC deriva-
tives. These off-balance sheet instruments are considered when assessing
banks’ exposure to credit risk but are subject to different treatment because of
their special character.

Such off-balance-sheet leverage could allow banks to transfer credit risk
to investors and clear room for new investment opportunities. However, fi-
nancial institutions, especially banks, employ them not for better risk-sharing
but to avoid costly capital buffers and circumvent regulatory requirements.
Financial institutions mask credit risk from regulators and increase their risk
exposures by undertaking off-balance sheet and other securitizations. This
“regulatory arbitrage” compounded the 2008 global financial crisis and its af-
termath (Acharya & Richardson, 2009).

The literature on “regulatory arbitrage” is far from new. Pavel & Phillis
(1987), and Baer & Pavel (1988) find that lower capital ratios or more demand-
ing regulatory capital are associated with higher levels of off-balance-sheet
activities. Jones (2000) discusses the techniques used to undertake regulatory
arbitrage and the difficulties faced by regulatory authorities. Breuer (2002)
addresses the problem of measurement of off-balance-sheet leverage. It dis-
cusses the interaction between risk and off-balance-sheet leverage and calcu-
lates a modified capital ratio that incorporates the enhanced leverage implicit
in off-balance-sheet securities.

Regulators undertake to assure that financial institutions remain sound,
especially banks as the backbone of the financial system. However, their pri-
mary tools for ensuring financial stability -cash reserve ratios and capital ade-
quacy ratios- are macro-prudential. That is, they are suited to tackle systemic
financial risks.

Systemic financial risk is the risk that an event will trigger a loss of eco-
nomic value or confidence in a substantial portion of financial system (GTen,
2001). In fact, for a financial system of high concentration, the collapse of a
single financial institution suffices to trigger a systemic event. Hence, finan-
cial regulatory authorities should be able to assess and manage financial risks
to maintain the effectiveness of the financial mechanisms. Moreover, finan-
cial risks inhibit banks from diverting high-powered money to higher-return
investments, and the latter make banks more resilient to economic downturns
at the sacrifice of leverage. Those suggest that institution-level issues warrant
attention as well.
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We introduce a simple banking system in a game-theoretic framework
wherein banks act as self-interested agents, maximizing profits at the expense
of overall financial stability. As a result, a “tragedy of the commons” emerges
in which banks’ strategic behavior produces inefficient outcomes. To mea-
sure inefficiency, we use the concept of “price of anarchy” introduced by
Koutsoupias & Papadimitriou (2009) and employed by Moulin (2007) and
Juarez (2006). In a broader sense, the game we study is a congestion game, a
class of games that admit an ordinal potential function (Monderer & Shapley,
1996) that assures an equilibrium outcome. We aim to measure the maximum
inefficiency occurring at equilibrium and use that information to measure fi-
nancial fragility. We elaborate on the bounds of strategic inefficiency, viz.
Vetta (2002), and Roughgarden (2006, 2012). Calculating the upper bound of
strategic inefficiency reveals how detrimental banks’ opportunistic behavior
can be.

A further extension of the model incorporates bankers who intend to shake
up the financial system to pursue speculative profit. Such behavior is often
overlooked in theoretical models; nevertheless, it is customary for speculators
to increase market liquidity and short the market on the downside. The Byzan-
tine Generals Problem is an appropriate framework for introducing such desta-
bilizing behavior in the financial system, which originally appeared in dis-
tributed systems literature (Lamport et al., 2019). The story behind Byzantine
generals is a metaphor for a connected network of agents that must reliably
communicate a common plan of action. However, among the loyal agents,
some traitors undermine the agreement. The question that emerges is how
tolerant the network (i.e., the financial system) is of the perverse incentives of
“traitors” (i.e., speculators).

The rest of the paper proceeds as follows. Section 2 presents our model
and its measure of strategic inefficiency. In addition, it associates the bounded-
ness properties of inefficiency with the literature on generic cost-minimization
games. Section 3 extends the model to bankers that benefit by destabilizing
the financial system. Section 4 concludes.

2. MODEL

Suppose a one-shot game involving I = {1, . . . ,n,n+ 1} players. The first
n ≥ 2 players are banks and the n+ 1 is a pseudo-player that stands for the
financial regulatory authority (FRA). Each bank has a simple balance sheet
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on which liabilities are deposits (D) and bank’s capital. The deposit rate is
zero (rD = 0) for convenience. Assets are cash balances and a single asset
(A) that generates a positive return (rm > 0). Regard rm as return on assets,
which without loss of generality, we assume is identical across banks. The
FRA has a decisive role in the game. As a tool of regulatory policy, it adopts
a capital adequacy ratio ψ (a percentage of assets to be held in cash) and
a reserve requirement ratio θ (a percentage of deposits to be held in cash).
Banks eventually incur a “regulatory tax” amounting to the opportunity cost
of holding reserves and capital that could be invested for a positive return in
asset A. Foregone profits for bank i ∈ I \{n+1} attributable to regulatory tax
are estimated as

RTi = ψ ·Ai · rm +θ ·Di · rm = rm(ψ ·Ai +θ ·Di).

Absent regulation, the bank could invest both reserved deposits (θ ·Di) and
reserved capital (ψ ·Ai) in asset A and enjoy with certainty a positive return
rm.

Cost function

We assume that incidents of financial distress occur horizontally during which
all banks suffer a haircut of ω percent. Hence, the objective of bank i is to
minimize total cost that includes the regulatory tax and ω . We assume two
specifications of total cost. First, for bank i and a proper subset of banks
S ⊆ I \{n+1} the cost function is given by

Ci = αi[rm(ψ ·Ai +θ ·Di)]+(1−αi)
∑#S

j=1(1−α j)

n
ω ·Ai,

which for αi ∈ (0,1) and substituting RTi becomes

Ci = αiRTi +(1−αi)
2 ωAi

n
+(1−αi)

∑#S\{i}
j=1 (1−α j)

n
ω ·Ai. (1)

Bank i decides to circumvent part (1−αi) of the regulatory tax by commit-
ting off-balance-sheet activities and to remit the remainder αi. Hence, αi is
the strategic variable of bank i and determines how much regulatory tax it
circumvents. The first term on the right in Eq.(1) is the cost of regulatory tax.
The second and third terms denote the expected loss from financial distress.
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If S = { j ∈ I \ {n+ 1}|s.t. α j < 1} is the subset of banks that circumvent
some or all of their regulatory tax, the probability of financial distress will be
∑#S

j=1(1−α j)

n and the haircut for individual bank i will be ωAi. As the number of
evading banks (i.e. #S → n) and the regulatory tax evasion (αi → 0) increase
the probability of financial distress tends toward 1.

A drawback of this specification is that the bank becomes immune to sys-
temic risk when fully complying with regulation (α = 1). We can relax this
strong assumption by assuming that all banks bear the cost in case of financial
distress. A different specification to accommodate these conditions is

Ci = αi[rm(ψ ·Ai +θ ·Di)]+
∑#S

j=1(1−α j)

n
ω ·Ai

= αi[rm(ψ ·Ai +θ ·Di)]+
(1−αi)

n
ω ·Ai +

∑ j 6=i(1−α j)

n
ω ·Ai. (2)

Banks reduce the probability of financial distress if they fully comply with
financial regulation, but they can be contaminated by a financial crunch and
suffer its consequences. We call this cost function the cost with contagion
effect.

Price of Financial Anarchy

From the FRA’s perspective the social optimum cost is that all banks opt for
αi = 1. Doing so makes the overall cost equal to C̄ = ∑iCi((ψ,θ ,α = 1).
Social optimum cost is the overall regulatory tax,

SOC = C̄ = ∑
i

RTi = RT.

At Nash equilibrium overall (social) cost is denoted C∗ = ∑iCi((ψ,θ),α∗).
Departures from social optimum can be computed using a coordination ratio,
known in game-theoretic literature as the price of anarchy (Koutsoupias &
Papadimitriou, 2009). For our model, we call it the price of financial anarchy
(PFA). The ratio of the cost at Nash equilibrium over the social optimum cost
(C∗/C̄) can be a metric of banking system disobedience to FRA policies.

Definition 1. PFA is defined as the maximum deviation from social optimum
cost for the worst-case equilibrium in the set of equilibria. It is the ratio

PFA = max
α∗∈NE

C∗

C̄
. (3)
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We anticipate the PFA metric to take values above 1. The following lemma
proves the result.

Lemma 1. PFA > 1, when for all banks i

ωAi

RTi
≥ n

∑∀ j(1−α j)
.

Proof. Appendix A.
Similar to PFA is the price of financial stability, which measures the devi-

ation from the best-case equilibrium. The two measures coincide in the case
of a unique equilibrium.

The Regulatory Arbitrage Game

To exert its stabilizing role in the financial system, the FRA aims to minimize
the objective Cn+1 = |PFA− 1| by choosing appropriate policy parameters
(ψ,θ). The game’s strategy profile of banks is α ∈ [0,1]n given the policy
mix of the FRA .

Definition 2. The regulatory arbitrage game is defined by the tuple

Γ = {I,{[0,1]}i∈I,{Ci}i∈I,(ψ,θ)}.

Nash equilibrium

Nash equilibrium emerges when all banks simultaneously minimize their total
costs.

Definition 3. Given policy parameters (ψ,θ), a Nash equilibrium is a strat-
egy profile α∗ such that for all banks i

Ci((ψ,θ),α∗))≤Ci((ψ,θ),(αi,α∗
−i)) for all αi.

Remark. Nash equilibrium always exists. Both strategy sets and cost func-
tions are convex, so a minimum always exists.

The regulatory arbitrage game admits a best-response potential. Best-
response potential games guarantee Nash equilibrium when each player’s cost
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function is non-linear. The game Γ = {I, [0,1]n,{Ci}i∈I,(ψ,θ)} admits best-
response potential P : [0,1]n 7→ R such that

argmin
αi

Ci(α) = argmin
αi

P(α)

Next, we provide the best response potential for our game.

Lemma 2. The best-response potential function of the regulatory arbitrage
game is

P(α) = ∑
i
(1−ai)

2 ωAi

n
.

Proof. Appendix B.
Now we provide the existence of equilibrium.

Proposition 1. The Nash equilibrium of the regulatory arbitrage game always
exists.

Proof. By Lemma 2 and Proposition 2.2 in Voorneveld (2000) the game
has a Nash equilibrium. �

Bounds to inefficiency

The finiteness and the noncooperative character of the game make the equilib-
rium outcome Pareto inefficient. It is true that for a noncooperative game with
a finite and self-interested set of players, there is always a non-equilibrium out-
come that is superior in a Pareto sense (Dubey, 1986). Exemplified games are
the prisoner’s dilemma and the standard Cournot duopoly; nevertheless, the
degree of inefficiency remains to be found. For this task, we provide further
definitions. We denote α−i ≥ α ′

−i whenever component-wise α j ≥ α ′
j for all

j 6= i . With slight abuse of notation, also let α−i = α j.

Definition 4. We say that the cost function exhibits decreasing differences if
for ai ≥ a′i and a j ≥ a′j it is

Ci(αi,α j)−Ci(αi,α ′
j)≤Ci(α ′

i ,α j)−Ci(α ′
i ,α

′
j), ∀i ∈ I \{n+1}. (4)

A game with cost functions that exhibit decreasing differences is submod-
ular. Next, we show that bankers’ cost functions exhibit decreasing differ-
ences.
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138 A Regulatory Arbitrage Game

Lemma 3. The cost function of banks in the regulatory arbitrage game ex-
hibits decreasing differences i.e., for αi ≥ α ′

i and α j ≥ α ′
j it is

Ci(αi,α j)−Ci(αi,α ′
j)≤Ci(α ′

i ,α j)−Ci(α ′
i ,α

′
j), ∀ ∈ I \{n+1}.

Proof. Appendix C.
Lemma 3 assures that banks always have escalating incentives to circum-

vent regulatory tax, for the greater the circumvention, the greater is the cost-
saving. Next, we prove that the decreasing differences are linear for the sec-
ond specification of the cost function. Finally, the next lemma says that sub-
modularity is maintained, albeit linearly, under contagion effects.

Lemma 4. The cost function with contagion effect exhibits linear decreasing
differences. That is,

Ci(αi,α j)−Ci(αi,α ′
j) =Ci(α ′

i ,α j)−Ci(α ′
i ,α

′
j), ∀i.

Proof. Appendix D.
Also, important in this analysis is individual bank’s ability to affect social

cost. Suppose the extreme wherein all banks except bank i comply fully with
regulatory policy. That is (ψ,θ), ie Ci((ψ,θ),αi < 1,α j = 1). Such behavior
saves costs for bank i with respect to regulatory tax. We define the cost of
bank i at unilateral deviation as the positive pivotal cost of bank i, denoted
PC+

i . We define negative pivotal cost as PC−
i ((ψ,θ),αi = 1,α j < 1), i.e.,

when bank i unilaterally complies fully with regulatory policy (ψ,θ). In the
latter case, bank i bears the full regulatory tax and cost of systemic risk for
the case of a cost function with contagion effects. It is straightforward, then,
to ascertain that

PC+
i ≤Ci((ψ ,θ),α = 1)≤ PC−

i . (5)

The following is a permissive assumption.

Assumption 1. PC−
i −Ci((ψ,θ),α = 1)≥Ci((ψ,θ),α = 1)−PC+

i .
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The latter suggests that the additional cost of conforming to regulation
when all others act strategically exceeds the cost saved by unilaterally circum-
venting it when all others conform. The assumption is satisfied for both cost
function specifications in the model.

The average pivotal effect of bank i can be attributed by the average piv-
otal cost APCi = (PC+

i +PC−
i )/2 and gives information about the net effect of

bankers’ unilateral deviations. In the case of cost function with immunization
(Eq. (1)) we anticipate that Ci((ψ,θ),α = 1) = PC−

i , because the bank be-
comes fully immune to systemic risk and bears only the regulatory tax. Hence,
it is APCi ≤Ci((ψ,θ),α = 1).

Accordingly, we define total average pivotal cost as TAPC = ∑i APCi.
Per Topkis (1998) (lemma 2.6.1. p49), we know that the sum of submodular
functions is submodular and all properties of the (average) cost function are
inherited by total (average) cost.

Proposition 2. The PFA is bounded from above by maxα∗
{2TAPC−SOC

SOC

}
.

Proof. Appendix E.

Corollary 1. Under Assumption 2, the PFA is bounded away from 1 and Nash
equilibrium is always inefficient.

Proof. Appendix F.
Proposition 2 indicates that all Nash equilibria are inefficient and that the

upper bound indicates how detrimental it can be for banks to undertake off-
balance-sheet activities. The higher the upper bound of PFA, the more suscep-
tible the system is to banks’ opportunism; nevertheless, we cannot make sure
that the upper bound is actually attained. Under Eq. (2), this upper bound
has important effects on the negative pivotal cost of banks (PC−

i ). The latter
stands for the bank’s cost to conform with regulatory policy when all competi-
tors act strategically. The higher the differential in the equation of Assump-
tion 2, the more costly conformance becomes. If we claim strict inequality in
Assumption 2, the upper bound is always distant from 1.

Section 3 extends the model to include banks that willfully seek to desta-
bilize the banking system.

3. THE GAME WITH “BYZANTINE” BANKERS

Economies can include willfully destabilizing agents - e.g., short-sellers who
manipulate a collapse in stock prices or bond traders who pressure an issue
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to trigger credit default swaps that they hold. Such trades are not always
traceable. Dark pools that allow institutional investors to mask their activity
from other market participants account for 14% of US stock trading volume
(Buti et al., 2017). Dark pool trading platforms bypass and fragment open
markets and disrupt market information.

Once trade masking appears, some bankers may seek to destabilize the
financial system. We call these malicious Byzantine bankers after the Byzan-
tine generals’ problem in the computer network literature. We divide the game
with Byzantine Bankers into two classes: a proper subset of profit maximiz-
ing bankers I p, and malicious bankers Im, with I = I p ∪ Im. We assume that
each banker in Im aims to destabilize the system, seeking to maximize the
difference |PFA−1|. We anticipate that no Byzantine banker eventually opts
for a positive αi, whatever the cost to their balance sheets, as they profit with
off-balance-sheet activities.

Definition 5. The Byzantine regulatory arbitrage game is defined by the cost
minimization game

Γ = {I,{[0,1]}i∈I,{Ci}i∈Ip,{Ci}i∈Im,(ψ,θ)}}.

In this specification, overall social cost includes only costs incurred by
profit maximizing bankers, i ∈ I p. It is legitimate to exclude malicious Byzan-
tine bankers from social cost because we assume they undermine social wel-
fare. Malicious players have a destabilizing role in the economy; they favor an
increasing social cost and operate as adversaries to profit-maximizing bankers.
Therefore, excluding them from the overall social cost from a regulator’s view-
point is correct. Thus, C̄ = ∑i∈Ip Ci((ψ,θ ,α = 1|Im). Accordingly, we define
equilibrium in the game with Byzantine players, α∗, which we call Byzan-
tine Nash equilibrium, and the overall cost to profit-maximizing bankers at
equilibrium, C∗ = ∑i∈Ip Ci((ψ,θ),α∗|Im).

We keep the information conditions of the game as abstract as possible.
In the Byzantine agreement framework, it is customary to assume that we
only know the presence of malicious players. Nevertheless, all the relevant
information is available to define the price of financial anarchy in this context.
Therefore, we modify the PFA to accommodate their presence. In this sce-
nario, the worst-case equilibrium is given by a ratio that is far distant from 1.
The following lemma provides a necessary condition for the latter.
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Lemma 5. The (profit maximizing) bank’s cost at equilibrium will exceed the
social optimum cost whenever

ωAi

RTi
≥ n

m+∑ j∈Ip(1−α j)
.

Proof. Appendix G.
By lemma 1, the haircut (ωAi) exceeds the regulatory tax (RTi).That con-

dition is likely satisfied when the number of banks (n) is relatively small, as-
suming so throughout the proof.

Definition 6 (Price of Byzantine Financial Anarchy). The Price of Byzantine
financial anarchy (PBFA) is defined as the deviation from social optimum cost
for worst- case equilibrium (in the equilibrium set). The ratio is

PBFA(I p; Im) = max
α∗

C∗(I p; Im)

C̄(I p)
. (6)

The PBFA captures the suboptimality of the worst-case Nash equilibrium
in the extended version of the game with Byzantine bankers, and it is not
much different from the PFA in practice. As claimed, we do not calculate the
cost of Byzantine bankers in overall social cost. However, we consider their
strategic influence on the cost of the remaining (profit-maximizing) bankers.
Following Moscibroda et al. (2006) we define the price of malice (PoM) that
conceptualizes the relative inefficiency for the original game.

Definition 7. The Price of Malice (PoM) measures inefficiency in the system
caused by Byzantine bankers and is given by the ratio

PoM(Im) =
PBFA(I p; Im)

PFA(I p)
. (7)

The PoM describes the degree of suboptimality resulting from Byzantine
bankers. The lower the PoM is, the more tolerant the system is to the presence
of malicious participants. Put differently, it measures how much damage is
caused by the presence of Byzantine bankers.

Let us now see how detrimental the activity of Byzantine bankers can be
to the financial system.
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Proposition 3. PBFA is bounded from above by the ratio

max
α∗

{
2TAPC−SOC

SOC
+mΓ

}
,

with Γ = ∑Ip(1−α j) · ωAi
n > 0.

Proof. Appendix H.
Interestingly, PBFA can be expressed as the decomposition of the original

PFA attributed to the strategic inefficiency of profit-maximizing bankers and
the component of financial risks originating with Byzantine bankers. This de-
composition might help to assess differing regulatory constructs. For example,
we can calculate how discouraging each proposed policy could be for profit-
maximizing bankers and how immune the financial system becomes from the
actions of Byzantine bankers. When policies primarily target the destabiliz-
ing role of Byzantine bankers, it might be more appropriate to use PoM as the
indicator.

Corollary 2. PoM in the Byzantine regulatory arbitrage game is

PoM(Im) =
mΓ ·SOC

2TAPC−SOC
.

Proof. The corollary follows directly from the definition.
The PoM increases when the number of malicious bankers increases or

the overall cost of fully complying with financial regulation rises.

4. DISCUSSION

This study addresses the problem caused by profit-maximizing bankers when
they try to circumvent regulations and seek extra profit at the peril of system
stability. The regulatory arbitrage game is an abstract but powerful framework
for addressing banks’ strategic considerations. Banks have the opportunity to
increase their leverage and amplify profits. So long as these practices im-
pose no cost on bankers and many financial instruments remain unregulated,
malevolent motives remain. Drawing upon the “price of anarchy,” we intro-
duce the necessary theoretical underpinnings to capture social inefficiency
caused by profit-maximizing bankers. To our knowledge, there is no other
study that makes use of congestion games to contemplate the incentives of a
bank’s management in a regulated environment.
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The price of financial anarchy is novel and can be used in three respects.
First, to assess whether market regulations correct a vulnerability in financial
systems; second, to calculate the critical PFA values that make the financial
system fragile; third, to pursue a regulation that suppresses it below these
thresholds. In a broad sense, financial fragility conceptualizes triggering a
financial crisis by an exogenous (small) financial or economic shock. We
emphasize that the more unregulated the financial system, the higher is the
risk of triggering a crisis. Put differently, Byzantine bankers always seek to
circumvent regulations to profit from financial turmoil, and that opportunity
emerges in upturns and downturns.

Appendices

A. PROOF OF LEMMA 1

For the arbitrary strategy profile of banks α the cost function takes the form,

Ci = αiRTi +(1−αi)
2 ωAi

n
+(1−αi)

∑ j 6=i(1−α j)

n
ω ·Ai

We require for all i ∈ I \{n+1} to be Ci > C̄i = RTi.

αiRTi +(1−αi)
2 ωAi

n
+(1−αi)

∑ j 6=i(1−α j)

n
ω ·Ai > RTi

(1−αi)
ωAi

n
[(1−αi)+∑

j 6=i
(1−α j)]> (1−αi)RTi

ωAi

n ∑
∀ j
(1−α j)> RTi

ωAi

RTi
>

n
∑∀ j∈I\{n+1}(1−α j)

> 1.
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B. PROOF OF LEMMA 2

For an arbitrary i ’s cost function in Eq. 1, the first derivative gives

∂Ci

∂αi
= RTi −2(1−αi)

ωAi

n
−

#S\{i}
∑
j=1

(1−α j)
ω ·Ai

n
.

Now define the function Ĉi = (1−αi)
2 ωAi

n for which the first derivative is
∂Ci
∂αi

=−2(1−αi)
ωAi

n .

Since the domain of αi is a convex subset of reals and both Ci,Ĉi are
quadratic, first-order conditions are sufficient for a minimum. Hence both
achieve a minimum for some αi. It is easily seen that both functions achieve
minima for the same αi. That is,

argmin
αi

Ci(αi;α−i) = argmin
αi

Ĉi(αi;α−i).

Now we define the function,

P(α) =
I\n+1

∑
i

Ĉi =
I\n+1

∑
i

(1−ai)
2 ω ·Ai

n
.

The function P is twice differentiable with respect to αi and strictly convex.
Differentiating,

∂P
∂αi

=−2(1−αi)
ωAi

n
=

∂Ci

∂αi
. (8)

it follows that

argmin
αi

Ci(αi;α−i) = argmin
αi

Ĉi(αi;α−i) = argmin
αi

P(αi;α−i),

which makes function P(α) an admissible best-response potential, i.e.,

argmin
αi

Ci(α) = argmin
αi

P(α).
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C. PROOF OF LEMMA 3

By substituting (1) into the definition of decreasing differences (4), we have
for the left side

Ci(αi,α j)−Ci(αi,α ′
j) =

(1−αi)ωAi

n

(
∑

j∈S\{i}
(1−α j)− ∑

j∈S\{i}
(1−α ′

j)

)
.

Similarly, for the right side we have

Ci(α ′
i ,α j)−Ci(α ′

i ,α
′
j) =

(1−α ′
i)ωAi

n

(
∑

j∈S\{i}
(1−α j)− ∑

j∈S\{i}
(1−α ′

j)

)
.

For αi ≥ α ′
i it is always

(1−αi)ωAi

n
≤ (1−α ′

i)ωAi

n
.

Hence Ci(αi,α j)−Ci(αi,α ′
j)≤Ci(α ′

i ,α j)−Ci(α ′
i ,α ′

j).

D. PROOF OF LEMMA 4

We prove the lemma mutatis mutandis following the proof of Lemma 3.
For the left side,

Ci(αi,α j)−Ci(αi,α ′
j) = αiRTi +

(1−αi)

n
ω ·Ai +

∑ j 6=i(1−α j)

n
ω ·Ai

−αiRTi −
(1−αi)

n
ω ·Ai −

∑ j 6=i(1−α ′
j)

n
ω ·Ai

=
ωAi

n

(
∑

j∈S\{i}
(1−α j)− ∑

j∈S\{i}
(1−α ′

j)

)
.

Similarly, for the right side we have

Ci(α ′
i ,α j)−Ci(α ′

i ,α ′
j) = α ′

i RTi +
(1−α ′

i )

n
ω ·Ai +

∑ j 6=i(1−α j)

n
ω ·Ai

−α ′
i RTi −

(1−α ′
i)

n
ω ·Ai −

∑ j 6=i(1−α ′
j)

n
ω ·Ai

=
ωAi

n

(
∑

j∈S\{i}
(1−α j)− ∑

j∈S\{i}
(1−α ′

j)

)
.

Journal of Mechanism and Institution Design 7(1), 2022

“jMID-vol7(1)-01” — 2022/12/6 — 6:24 — page 145 — #149



146 A Regulatory Arbitrage Game

Evidently, Ci(αi,α j)−Ci(αi,α ′
j) =Ci(α ′

i ,α j)−Ci(α ′
i ,α ′

j).

E. PROOF OF PROPOSITION 2

Per Topkis (1998)(Lemma 2.6.1, p. 49), we know a sum of submodular func-
tions is submodular. Therefore, collective cost function C = ∑iCi is submod-
ular. Consider the following profiles: ᾱ = (1,1) and α∗ = (α∗

i ,α∗
j ) with ᾱ

being the profile of all bankers complying fully with regulation and corre-
sponding to the optimal solution with regard to FRA, and α∗ a Nash equilib-
rium.

By the property of decreasing differences,

Ci(ᾱi, ᾱ j)−Ci(ᾱi,α∗
j )≤Ci(α∗

i , ᾱ j)−Ci(α∗
i ,α

∗
j )

Ci(ᾱi, ᾱ j)+Ci(α∗
i ,α

∗
j )≤Ci(α∗

i , ᾱ j)+Ci(ᾱi,α∗
j )

Ci(ᾱi, ᾱ j)+Ci(α∗
i ,α

∗
j )≤ PC+

i +PC−
i = 2APCi

1+
Ci(α∗

i ,α∗
j )

Ci(ᾱi, ᾱ j)
≤ 2APCi

Ci(ᾱi, ᾱ j)

Ci(α∗
i ,α∗

j )

Ci(ᾱi, ᾱ j)
≤ 2APCi −Ci(ᾱi, ᾱ j)

Ci(ᾱi, ᾱ j)
.

Applying summation by parts for all banks,

maxα∗
C(α∗

i ,α∗
j )

C(ᾱi, ᾱ j)
≤ maxα∗

∑n 2APCi −SOC
SOC

PFA ≤ max
α∗

{
2TAPC−SOC

SOC

}
.

F. PROOF OF COROLLARY 1

Viz. the proof of Proposition 2 we ask

2APCi −Ci(ᾱi, ᾱ j)

Ci(ᾱi, ᾱ j)
≥ 1,
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or

2APCi −Ci(ᾱi, ᾱ j)≥Ci(ᾱi, ᾱ j)

PC+
i +PC−

i −Ci(ᾱi, ᾱ j)≥Ci(ᾱi, ᾱ j)

PC−
i −Ci(ᾱi, ᾱ j)≥Ci(ᾱi, ᾱ j)−PC+

i .

Under Assumption 2, Corollary 1 is always true.

G. PROOF OF LEMMA 5

Denote the cost function of bank i in the game with Byzantine bankers by
CB

i (αi,α j;αm = 0), where vector αm denotes the strategy of malicious bankers.
The cost function takes the form

CB
i = αiRTi +(1−αi)

2 ωAi

n
+(1−αi)

∑ j∈Ip\{i}(1−α j)

n
ω ·Ai

+(1−αi) ·m · ω ·Ai

n
.

The last term captures the cost effect of malicious bankers. Then it must be

CB
i (αi,α j;αm = 0)>CB

i (ᾱi, ᾱ j;αm = 0)

αiRTi +(1−αi)
2 ωAi

n
+(1−αi)

∑ j∈Ip\{i}(1−α j)

n
ω ·Ai

+(1−αi) ·m · ω ·Ai

n
> RTi

(1−αi)
ω ·Ai

n
[m+(1−αi)+ ∑

j∈Ip\{i}
(1−α j)]> (1−αi)RTi

ω ·Ai

RTi
>

n
m+(1−αi)+∑ j∈Ip\{i}(1−α j)

ω ·Ai

RTi
>

n
m+∑ j∈Ip(1−α j)

.
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H. PROOF OF PROPOSITION 3

We prove this viz. Proposition 2. We begin by estimating cost functions
CB

i (ᾱi,α∗
j ;αm = 0) and CB

i (α∗
i , ᾱ j;αm = 0). It is easily verified that

CB
i (ᾱi,α∗

j ;αm = 0) =Ci(ᾱi,α∗
j ) = PC−

i .

The bank becomes immune to systemic risk by fully complying with regula-
tory policy. In the same manner,

CB
i (α

∗
i , ᾱ j;αm = 0) = αiRTi +(1−αi)

2 ωAi

n
+(1−αi) ·m · ω ·Ai

n

=Ci(α∗
i , ᾱ j)+(1−αi) ·m · ω ·Ai

n

= PC+
i +(1−αi) ·m · ω ·Ai

n
.

Following the rationale of Proposition 2, we have

CB
i (ᾱi, ᾱ j;αm = 0)+CB

i (α
∗
i ,α

∗
j ;αm = 0)≤CB

i (α
∗
i , ᾱ j;αm = 0)

+CB
i (ᾱi,α∗

j ;αm = 0)

CB
i (ᾱi, ᾱ j;αm = 0)+CB

i (α
∗
i ,α

∗
j ;αm = 0)≤ PC+

i +(1−αi) ·m · ω ·Ai

n
+PC−

i

≤ 2APCi +(1−αi) ·m · ω ·Ai

n

1+
CB

i (α∗
i ,α∗

j ;αm = 0)
CB

i (ᾱi, ᾱ j;αm = 0)
≤ 2APCi +(1−αi) ·m · ω·Ai

n

CB
i (ᾱi, ᾱ j;αm = 0)

CB
i (α∗

i ,α∗
j ;αm = 0)

CB
i (ᾱi, ᾱ j;αm = 0)

≤ 2APCi −CB
i (ᾱi, ᾱ j;αm = 0)

CB
i (ᾱi, ᾱ j;αm = 0)

+
(1−αi) ·m · ω·Ai

n

CB
i (ᾱi, ᾱ j;αm = 0)

.

Applying summation by parts for all banks,

maxα∗
CB(α∗

i ,α∗
j ;αm = 0)

CB(ᾱi, ᾱ j;αm = 0)
≤ maxα∗

∑n 2APCi −SOC
SOC

PBFA ≤ max
α∗

{
2TAPC−SOC

SOC
+

∑Ip(1−α j) · ωAi
n

SOC

}
.
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