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A Letter from the Editors

When the World Health Organization declared the COVID-19 pandemic
over in May this year, the scientific community had an opportunity to

reflect on the events since the first reported outbreaks in December 2019.
Within weeks, the genetic information of the new pathogen was sequenced,
internationally shared, and work on novel prototype mRNA-based vaccines
began at research institutes and international pharmaceutical corporations.
In under a year, the developed vaccines were tested, approved, and became
available: An unprecedented success in international, scientific cooperation
saving millions of lives.
On the downside, the relative political stability of the last decades is dissolving:
Inhumanly cruel terror, wars of aggression, radicalisation, and climate-change-
triggered mass migration stand against the merely economic problems of
the rich countries. Nationalism, populism, and authoritarianism are rising
in various regions and countries. Many international as well as domestic
mechanisms and institutions are malfunctioning, leading to severe conflicts
and deep divisions—unfortunately resulting in ample research opportunities
and obligations for our community.
In the coming year, the Conference on Mechanism and Institution Design 2024
will take place July 8–12 at the Corvinus University of Budapest, Hungary. We
are grateful to Péter Biró for organizing the event. At the conference, we will
celebrate Vincent Crawford’s 75th birthday and his fundamental contributions
to economic theory, game theory, and our society. The confirmed keynote
speakers include Paul Milgrom (Stanford University), Roger Myerson (Uni-
versity of Chicago), Al Roth (Stanford University), and Eva Tardos (Cornell
University). We are looking forward to the conference and celebrations!
As with each new issue, we wish to thank all associate editors, referees, and
supporters for their contributions to the Journal. Everyone involved in the
scientific selection and technical production of the Journal is volunteering
their capabilities, time, and effort. As a result, our Journal of Mechanism
and Institution Design can publish high-quality research free of charge to both
authors and readers, allowing for free and open access to the public. We hope
the community sharing this vision will grow and become stronger and more
successful in tackling the most pressing design issues of our time.

Paul Schweinzer & Zaifu Yang, Klagenfurt & York, December 20th, 2023.
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ABSTRACT
Affordable housing lotteries often enforce a rule preventing duplicate lottery
entries that makes the model in Hylland & Zeckhauser (1979) (HZ) inapplicable.
We revisit HZ and propose a new individually stable (IS) allocation that can be
achieved by a Tickets algorithm and accommodate the rule. A strictly envy-free
(SEF) allocation is shown to be the unique IS and Pareto-optimal allocation,
the outcome of the unique strong Nash equilibrium of a congestion game, and
the unique Pseudo market equilibrium allocation in HZ. The algorithm always
obtains the unique SEF allocation (if any) and fixes a designed flaw of existing
lotteries.

Keywords: Affordable housing, lottery allocations, Tickets algorithm

JEL Classification Numbers: H42, C78, C72, D63

1. INTRODUCTION

Affordable housing is a major source of housing for low income families,
the elderly, and disabled households–not only in the United States (U.S.)

All authors declare there are no conflicts of interest. Any errors are our own.
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2 Stable and Envy-free Lottery Allocations for Affordable Housing

but also in countries like China and India. It may even be the only source of
housing for these households in major cities like Hong Kong, Manhattan, and
Boston. As such, it is both legally1 and ethically necessary that the allocation
of these units be both fair and equitable.

Lotteries are often, but not always, used as the method of allocation. In a
typical lottery for affordable housing, a developer (e.g. New York City (NYC))
advertises to the public the units for rent or sale and the eligibility requirements
in income and family sizes. Eligible applicants file their applications before a
deadline. Applicants are then pooled and randomly selected by a lottery. In
such a practice, the Housing Authority or developer often prohibits duplicate
lottery entries in order to give each eligible applicant an equal access and an
equal opportunity to access affordable housing. This rule has been widely used
in practice. An example attached in the supplemental materials is Sachem’s
Path at Cape Cod in 2015, which used a lottery to sell 36 newly built single
affordable houses with three different sizes of 1 BR, 2 BR and 3 BR. An
applicant may qualify for different sizes but he can choose one and only one
size in his application, i.e., an applicant holds one and only one lottery ticket in
one pool. This restriction provides a constraint on feasible lottery allocations.

A lottery is an allocation mechanism that assigns each profile of preferences
an ex ante allocation of lottery tickets. Whether a lottery is fair or not depends
on the ex ante allocation it produces for each given profile. An agent is said
to envy the other if he prefers that agent’s lottery tickets to his own. An ex
ante allocation is thus envy-free (EF) if no agent envies any others. A stronger
version of this is that an ex ante allocation is strictly EF (SEF) if every agent
strictly prefers his own ticket to any different ticket held by the other. The EF
notion has been extensively studied in the economic literature for economies
with divisible goods (Foley, 1967; Pazner & Schmeidler, 1974; Varian, 1974;
Crawford, 1977), however the closely related SEF notion plays a new and
important role for the economy in this paper.

Affordable housing in the U.S.2 has deeply discounted fixed rents or selling
prices.3 There are often far more applicants than there are units available. The

1 As stated in the Fair Housing Act of 1968 and the Affirmatively Furthering Fair Housing
Rule of 2015, see http://portal.hud.gov/hudportal/HUD?src=/program
offices/fair housing equal opp/progdesc/title8.

2 Affordable housing in the U.S. includes Section 8 Housing, Income Based Housing, Low
Income Rentals, Public Housing, Subsidized Housing, Low Income Apartments and so forth.
More than 1.2 million households in the U.S. are living in affordable housing.

3 A number of papers have studied economies where rents or selling prices are flexible. Yet they

Journal of Mechanism and Institution Design 8(1), 2023
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question now raised is whether or not these lotteries indeed produce an optimal
and fair allocation among all the households that participate. The following
summarizes our common understanding of an affordable housing lottery:

Affordable housing lotteries exist to ensure fair and equitable
distribution of housing to eligible applicants. [...]. The workings
of a lottery are very simple. All qualified applicants are pooled
and chosen randomly.4

We find, on the contrary, that the above noted restriction used in common
practice causes serious issues with fairness not noted before in both theory
and practice. For example, the affordable housing lotteries in NYC and the
City of Chongqing in China may generate allocations that are not EF and
Pareto optimal (PO), even if such an allocation exists. The same design flaw
exists for the school choice lotteries that assign students of all grades to the
KIPP Houston Public Charter Schools in the State of Texas. Thus, the flaw is
not limited to one specific lottery. See Section II for detail. In fact, it is not
that hard to understand why a rule imposed on a mechanism may affect its
outcome (Crawford, 1979, 1980)

This motivates our study in this paper about how to design an ex ante fair
and efficient lottery for affordable housing that can accommodate this rule and
resolve the design flaw in existing lotteries. To achieve that goal, we revisit the
seminal model in Hylland & Zeckhauser (1979) (HZ) by adding a restriction
such that each agent only holds one lottery ticket in one lottery pool in an ex
ante lottery allocation. Because an EF allocation may not exist due to the rule,
we define a weaker notion of envy-freeness called individual stability.

A lottery allocation is individually stable (IS) if no agent has any incentive
to give up his existing lottery ticket in exchange for a better lottery ticket while
all other agents still keep theirs. The IS notion is quite natural, slightly different
from the EF notion in the sense that an agent will act to change her lot if she does
envy another agent and such an action will make her better off. This IS notion
makes sense because fairness of a lottery is based on an ex ante allocation, in

are still controlled, falling into an upper and a lower bound. How to determine these controlled
rents or prices and ex post allocations are the major issues addressed therein, see, e.g., Talman
& Yang (2008); Zhu & Zhang (2011); Andersson & Svensson (2014); Andersson et al. (2015,
2016).

4 Housing Assistance Corporation at Cape Cod in MA. See http://www.haconcapecod
.org/programs-and-services/homeownership-lottery

Journal of Mechanism and Institution Design 8(1), 2023
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4 Stable and Envy-free Lottery Allocations for Affordable Housing

which eligible agents voluntarily file or withdraw their applications before a
deadline. In fact, the stability thus defined follows that of a stable matching
in Gale & Shapley (1962), where their noted deferred acceptance algorithm is
a procedure to achieve a stable matching. Their algorithm has an optimization
process that allows those who receive proposals to improving their positions,
which are only finalized at the moment when there are no more new proposals
to improve their positions. We use this idea in the design of our “Tickets”
algorithm with a rejection-acceptance optimization process.

Our algorithm works as follows. A builder provides a finite number of
pools of lotteries in a room with a single door for entrance. Each application
is seen as a lottery ticket from one pool. Self-interested applicants form a
queue to enter the room one at a time to pick up the best lottery ticket from one
pool–the best for him at the moment he enters the market. The first agent in
the queue enters the room and picks up the lottery he likes the most. Clearly,
the market reaches a stability for a single agent economy. The stability in the
market may be broken after a new entry enters the room to pick up the best
ticket she likes. If that is the case, the Tickets algorithm lets an applicant, who
has been made worse off due to the new entry, return his existing ticket, go
back to the door and then reenter the market as if he is a new entry; He reenters
to pick up the ticket he like the best–a ticket he likes better than his returned
ticket. This chain-reaction process can continue until the stability in the room
is restored. After that, the next new applicant in the queue enters the room and
the process continues until there is no new agent in the queue. We show that
this process will end within finite steps and the finalized lottery is stable.

The proposed Tickets algorithm is similar to a dynamic rematching process
that has been used by Roth & Vate (1990) and Ma (1994) to reach a stable
matching for the two-sided marriage market. The rematching process there
goes from one stability to the next with one agent entering the market to make
a proposal to his or her best mate of the opposite sex. Such an algorithm is
called procedurally fair in Klaus & Klijn (2006). In this paper, the IS notion is
justified by the Nash equilibrium (NE) of a lottery congestion game along the
line of Milchtaich (1996).

A lottery allocation is (ex ante) PO if there is no other allocation that makes
at least one applicant better off and no applicant worse off. A lottery allocation
is (ex ante) weakly PO if there is no other allocation that makes all applicants
better off. We find that an EF lottery allocation may not be PO, as in Pazner
& Schmeidler (1974); Varian (1974); Crawford (1977) for divisible goods.

Journal of Mechanism and Institution Design 8(1), 2023
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However, there always exists an IS allocation that is weakly PO in our economy.
Moreover, an SEF allocation is the unique one that is both IS and PO.

The uniqueness of the SEF allocation is somewhat a surprise. An even
more interesting result is that this SEF allocation is also the unique Pseudo
market equilibrium in HZ, with the equilibrium price of a house being equal
to the reciprocal of the lottery drawing probability of that house under the
SEF allocation. Moreover, the unique SEF allocation is also the unique
strong NE (Aumann, 1959) outcome of the lottery congestion game. The
existence of an SNE is a complicated matter. Even a potential game (e.g., a
Prisoner’s dilemma game) may not have an SNE. The existence of an SNE for
an unweighted congestion game in Milchtaich (1996) is shown by Konishi et
al. (1997), who provided a different framework than that in Milchtaich. It is
known, however, from Voorneveld et al. (1999) that the two classes of games
in Milchtaich (1996); Konishi et al. (1997) are equivalent. Milchtaich (1996)
showed that his game may not have the finite improvement property (Monderer
& Shapley, 1996) and even a best-reply improvement path or dynamics may also
last infinitely; He showed the existence theorem by establishing the existence
of a finite best-reply improvement path that ends up with a pure NE. Konishi et
al. (1997) used a different strategy by showing that any NE that is not SNE is
Pareto-dominated by another NE. Our paper provides a condition under which
there is an unique SNE for their games in Milchtaich and Konishi et al. Our
Tickets-TTC algorithm incorporates Gale’s Top Trading Cycles (TTC) (Shapley
& Scarf, 1974) in order to reach a stable allocation that is immune to coalitional
deviations. The Tickets-TTC algorithm always ends with an SNE outcome.

Given so many appealing properties associated with the unique SEF
allocation, one may wonder whether the NYC affordable housing lottery
achieves it or not. We find out that even if an economy has the SEF allocation,
the NYC lottery, like many others, fails to achieve it. This causes a major
concern because it implies that the NYC lottery is neither EF nor PO and thus
suffers from a design flaw.

2. RELATED LITERATURE

To the best of our knowledge, there is no paper in the literature that has
addressed the question of whether an affordable housing lottery is fair or
not from a theoretical aspect. There is a growing interest in theory about
random allocations for the housing allocation model in Hylland & Zeckhauser

Journal of Mechanism and Institution Design 8(1), 2023
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6 Stable and Envy-free Lottery Allocations for Affordable Housing

(1979). They studied a housing allocation economy with a finite number
of indivisible houses and unit demand and showed that there always exists
an ex ante EF and Pareto-optimal (PO) random allocation when agents have
the von Neumann-Morgenstern (vNM) utility over houses. By means of a
pseudo market where each agent is artificially assigned an equal budget, they
showed that their EF and PO random allocation can be achieved by a market
mechanism at a competitive equilibrium. The equilibrium allocation is a doubly
stochastic matrix so that a centralized lottery can be found to implement it with a
collection of deterministic allocations via the celebrated Birkhoff-von Neumann
decomposition theorem. Bogomolnaia & Moulin (2001) (BM) studied a similar
economy but with ordinal preferences and provided an existence theorem of
EF and ordinal PO random allocations by designing a novel probabilistic serial
mechanism using an “eating” algorithm, in which all agents start to eat houses
at the same time at an equal rate in the order of their first, their second, etc.,
ranked house (of unit supply) until an agent’s total eating shares sum up to at
most 1. Katta & Sethuraman (2006) extended EF and ordinal PO results in BM
to the case with weak preferences and found a conflict between EF and ordinal
PO properties and (weak) strategy-proofness. Budish et al. (2013) (BCKM)
offered several extensions of those results in HZ and BM to economies that
allow multiple unit demands and two-sided matching. In particular, BCKM
provided an extension of the Birkhoff-von Neumann theorem and found an
important necessary and sufficient condition for the existence of a centralized
lottery to implement a random allocation with a collection of deterministic
ones. A salient feature of these random allocations in the literature is the fact
that they all require multiple lottery entries and a broad domain of feasible
deterministic allocations for their implementation. Thus, the results in HZ,
BM and BCKM that apply to a broader domain are not applicable to affordable
housing lotteries studied in this paper because an identified equilibrium in
these papers may use allocations that are not feasible.

The Tickets algorithm is related to the serial dictatorship in Svensson (1994)
and the random serial dictatorship (RSD) in Abdulkadiroǧlu & Sönmez (1998).
A main difference is the dynamic optimization process in the Tickets algorithm
that RSD does not have. The main issue with RSD for affordable housing is
that it is not ex ante efficient and does not produce an ex ante stable allocation,
known from Zhou’s impossibility theorem Zhou (1990). RSD is also different
from the NYC lottery and the Tickets algorithm by the fact that a random
allocation under RSD is due to a random drawing of orders of applicants, not a

Journal of Mechanism and Institution Design 8(1), 2023
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lottery drawing as in the NYC lottery or the Tickets algorithm.
There is a surging interest in the study of ex post efficient allocations for

affordable housing. For example, Talman & Yang (2008) investigated a housing
market with rents that are either fixed or limited to an interval. They proposed a
dynamic auction that finds an allocation of houses and its supporting rents such
that the allocation is ex post PO and lies in the core Andersson et al. (2015).
Andersson & Svensson (2014, 2016) investigated a more general but closely
related market and demonstrated the existence of an ex post efficient allocation
achieved by a strategy-proof mechanism. For an additional study on an ex post
allocation mechanism for the housing market, see Andersson et al. (2016). In
our lottery model, rents or selling prices are fixed by the housing authority or
the developer in the advertisement and are not subject to any change. Our aim
and approach in this paper are totally different from theirs in that we focus on
the ex ante allocations and investigate the issue whether an affordable housing
lottery is ex ante fair and PO.

The rest of the paper is organized as follows. Section II discusses the NYC
lottery in detail and its design flaw. We also include a brief introduction to
some other lotteries. Section III presents the model and definitions. Section
IV presents the main results. Section V discusses the Pseudo market and
the random assignments in HZ. Section VI presents a strategic form lottery
congestion game and makes a connection of an IS (SEF) allocation to a pure
(strong) Nash equilibrium. Section VII concludes.

3. LOTTERIES IN PRACTICE

3.1. The NYC Lottery and Its Design Flaw

We use NYC as example to show how a lottery for affordable housing has been
used to create a waitlist. Our focus is on the design of a lottery as a mechanism,
not on a particular waitlist generated. Once there is a development available
in NYC, the developer/market agent starts to advertise the availability of the
development and the eligibility requirements of household income and family
sizes. Rents for these apartments are fixed and heavily discounted. Discounted
rents create excess demand. In NYC, there are about 1,000 applicants for every
1 available affordable rental apartment. A developer or market agent runs the
lottery for that development, independently of the other, and the developer
manages the waitlist after the lottery. After a waitlist is finalized, the developer

Journal of Mechanism and Institution Design 8(1), 2023
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8 Stable and Envy-free Lottery Allocations for Affordable Housing

allocates the apartments according to the list, a list of log numbers ranked from
the low to the high. Because many applications that are opened in a lottery
do not qualify and the developer has no obligation to fill all positions in the
list ex post, the applications that are open in a lottery are at least 20 times the
total number of available units. Such a long waitlist is helpful in protecting the
developer’s interest in an ex post allocation of the units and for the future to fill
vacancies. This practice is not without a cost. Applicants who get a very high
log number may easily get depressed. A high log number gives an applicant a
hope but it may remain a hope indefinite time. See the following blog posted
by q41apartments on 5:

I was recently awarded a middle income lottery and i wanted to
share my entire experience form A to Z with everyone. I constantly
see someone asking the same question everyday on this forum and
i hope my post helps. This is to give anyone applying an insight to
the process and what to expect. Now, I am going to be up front
and let everyone know that it was a very hard and painful process.
I cried many nights.

To model an ex ante lottery for a development in theory, we need to assume
that all applications in the lottery are eligible for the units to which they have
been assigned6 and each application in the same pool has an equal right to be
drawn.

A development in NYC may offer different unit sizes, called “communities”
in this paper. Each size has a quota, the maximum number of available units of
the same size. For example, a development may offer 50 1-bed and 30 2-bed
apartments. Thus, we say that this developer offers two types of communities
with 50 of the first size and 30 of the second size. Some applicant may qualify
for both sizes but applies to one single desired size for which she is qualified.

5 http://www.city-data.com/forum/new-york-city/2241280-how
-housing-lottery-process-works-z.html

6 In NYC, it is the officer who makes a single choice of the size of a single rental unit on behalf
of an applicant by the end of each application form. Here we have to assume that the choice
made by the officer is indeed in the best interest of the applicant. In particular, the officer
knows the number of applications or applicants that have been filed for a unit. Application
forms, online or by mail, are the same across all developments. For the sake of the reader, one
application form is attached in our supplemental materials. Because no duplicate applications
are allowed by the developer and the officer makes a single choice about the size of a rental
unit, duplicate lottery entries are prohibited in the NYC lottery.

Journal of Mechanism and Institution Design 8(1), 2023
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Some applicant may be just qualified for one size only. Under such a case, we
assign zero utility to an applicant for those apartments for which she does not
qualify.

Applicants are encouraged to register and apply for lotteries through the
NYC Housing Connect7. An advantage of such a centralized application
system is that an applicant can apply for multiple developments at the same
time but each applicant must submit one application for each lottery, because
each development must conduct its lottery independently. Once an applicant
is awarded an apartment, his applications for others must be voided. Thus,
the applications for lotteries in NYC have been centralized while each lottery
is run by a market agent or developer in a decentralized manner. There are
several important rules for the application of a lottery in NYC8:

R1. Submit only one entry per household. You will be disqualified
if more than one entry is received per lottery for your household.
If you submit an entry online, you may NOT submit an entry via
mail. If you submit an entry via mail, you may NOT submit an
entry online.
R2. Entries are selected randomly through a lottery. Depending
on the volume received, it may not be possible for all entries to be
included in the waiting list [in an ex post allocation process].
R3. The entry must be submitted no later than the deadline indi-
cated for each development.
R4. Once the application has been submitted, it cannot be with-
drawn. The process must be the same for both paper and online
applications, and people are not able to withdraw a paper applica-
tion once it has been mailed in.

The lottery is randomly drawn against the total pool of applicants for the
available units of the development. Because an applicant has been assigned
to a single unit by the officer, the probability of an applicant that has been
drawn is the same as if each unit size has a pool of lottery tickets of a color.
Assume that all drawn applicants are eligible for the units they were drawn and

7 https://a806-housingconnect.nyc.gov/nyclottery/lottery.html.
Paper applications in mail are still allowed, with one application for one lottery.

8 See the application instructions from http://www1.nyc.gov/site/hpd/renters/
housing-connect.page. We do not provide the instructions on the eligibility require-
ments, which are not relevant to our study.

Journal of Mechanism and Institution Design 8(1), 2023
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10 Stable and Envy-free Lottery Allocations for Affordable Housing

they will choose ex post those units that were ex ante assigned to them. Under
these cases, the extra number of drawn applicants beyond the quota in practice
becomes irrelavent in theory.

The reason we need to design the Tickets algorithm is that the NYC lottery
as a mechanism can generate an ex ante lottery that is not stable. Consider such
an example in which there are two communities, 1 and 2, each of which has one
single rental unit. There are six agents, 1, 2, · · · , 6. Agents 1 and 2 have the
same vNM utilities (2, 3). That is, both agents prefer an apartment in community
two to an apartment in community one under ordinal preferences. Agents 3 to
6 have the same vNM utility (0, 5). Consider the order 𝜎 = (1, 2, 3, 4, 5, 6) of
applications, where applicant 1 applies the first, applicant 2 applies the second,
etc. Under the NYC lottery, with self-interested and myopically sincere agents9,
applicant 1 enters the market and chooses community two. When applicant 2
files his application, he does not choose community two because his expected
utility by choosing two equals 1.5, smaller than 2. Note that by R4, applicants
1 and 2 will never change their choices no matter who comes later in the order.
The ex ante lottery (ticket) allocation is given under the NYC lottery by L𝜎 that
induces a random lottery allocation or probability distribution matrix 𝑃(L𝜎)
(the last column is the “null” object):

L𝜎 =

©­­­­­­­«

L𝜎
1

L𝜎
2

L𝜎
3

L𝜎
4

L𝜎
5

L𝜎
6

ª®®®®®®®¬
=

©­­­­­­­«

0 1
1 0
0 1
0 1
0 1
0 1

ª®®®®®®®¬
𝑎𝑛𝑑 𝑃(L𝜎) =

©­­­­­­­«

0 1
5

4
5

1 0 0
0 1

5
4
5

0 1
5

4
5

0 1
5

4
5

0 1
5

4
5

ª®®®®®®®¬
.

Thus, the total expected utility under L𝜎 equals 63
5 . Applicant 1 has an

incentive to withdraw his lottery in community 2 in exchange for a lottery in
community 1 under L𝜎. It does not satisfy R4 voluntarily because it gives an
agent the incentive to withdraw his lottery. In contrast, our Tickets algorithm

9 This is the same assumption used in the noted deferred acceptance algorithm in Gale & Shapley
(1962). We thank Vince Crawford for pointing out the importance of this assumption under
the NYC lottery and the Tickets algorithm.
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will provide a stable lottery allocation given by

L′ =

©­­­­­­­«

1 0
1 0
0 1
0 1
0 1
0 1

ª®®®®®®®¬
and 𝑃(L′) =

©­­­­­­­­«

1
2 0 1

2
1
2 0 1

2
0 1

4
3
4

0 1
4

3
4

0 1
4

3
4

0 1
4

3
4

ª®®®®®®®®
¬
,

which yields total expected utility of 7, 2
5 higher than the lottery L𝜎. Under

different orders 𝜎, the NYC lottery may provide different allocations. On the
other hand, our Tickets algorithm yields the same lottery L′ for any order 𝜎,
out of 720 in total, and it is not Pareto dominated by any other lottery allocation
because L′ is SEF.

The fact that the NYC lottery fails to achieve the unique SEF allocation has
a serious consequence. It means that the NYC lottery is neither EF nor PO. This
problem has been caused by the rule R4, which is designed for convenience in
the administration of the lottery with the mail-in applications. In our design
of the Tickets algorithm, we remove R4 from the NYC lottery temporarily by
adding an iterated optimization process to it so that the finalized lottery satisfies
both R1 and R4 voluntarily. The main idea is to allow an applicant to reject
herself in her existing pool and then accept herself to the other better pool
temporarily, similar to those processes in Roth & Vate (1990) and Ma (1996).

Consider the above example without agents 3 to 6. Using the noted eating
algorithm in BM and BCKM, we obtain the random assignment given by

𝑥 =

(
𝑥1
𝑥2

)
=

(
0.5 0.5
0.5 0.5

)
, under which each agent’s assignment (row vector)

involves two lottery entries. Because 𝑥 is also the random assignment in HZ
for prices (0, 2) when each agent is assigned a unit budget, a lottery outcome
identified in HZ for cardinal utilities may also need multiple lottery entries, a
clear violation of R1.

Let us go back to the above example with the six agents. Now applying the
eating algorithm to it again, assuming agents eat nothing for those houses with
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zero utility, we get the random assignment under the BM algorithm as follows:

𝑃𝐵𝑀 =

©­­­­­­­­
«

1
2

1
6

1
3

1
2

1
6

1
3

0 1
6

5
6

0 1
6

5
6

0 1
6

5
6

0 1
6

5
6

ª®®®®®®®®
¬
,

which can be implemented by a centralized lottery over six deterministic
assignments (BCKM):

𝑃𝐵𝑀 = 1
6

©­­­­­­­
«

0 1 0
1 0 0
0 0 1
0 0 1
0 0 1
0 0 1

ª®®®®®®®
¬
+ 1

6

©­­­­­­­
«

1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1

ª®®®®®®®
¬
+ 1

6

©­­­­­­­
«

1 0 0
0 0 1
0 1 0
0 0 1
0 0 1
0 0 1

ª®®®®®®®
¬
+ 1

6

©­­­­­­­
«

1 0 0
0 0 1
0 0 1
0 1 0
0 0 1
0 0 1

ª®®®®®®®
¬
+ 1

6

©­­­­­­­
«

0 0 1
1 0 0
0 0 1
0 0 1
0 1 0
0 0 1

ª®®®®®®®
¬
+ 1

6

©­­­­­­­
«

0 0 1
1 0 0
0 0 1
0 0 1
0 0 1
0 1 0

ª®®®®®®®
¬
.

Total expected utility under the random assignment 𝑃𝐵𝑀 equals 45
6 , substan-

tially less than under the random assignments L𝜎 and L′. More importantly,
any pure assignment in the above implementation that assigns an agent to
the null object will give her the incentive to unilaterally deviate from such
an assigned choice. Thus, such an assignment is not IS and cannot be at
a Nash equilibrium of our lottery game defined in Section VI. Our Tickets
algorithm successfully resolves this issue because its outcome is always at a
Nash equilibrium for any order of applicants.

3.2. The Chongqing Lottery

In the City of Chongqing in China, public rental apartments are assigned to
qualified applicants with a lottery managed by the City Public Rental Housing
Authority10. Unlike NYC, the City of Chongqing asks each applicant to choose
one and only one size of rental units in her application form. The lottery is
randomly drawn against each pool of applicants of the same size. Because
this lottery system, as in NYC, lacks the rejection-acceptance optimization
process in the Tickets algorithm, it has the same design flaw of generating an
assignment that is not EF and PO.

10 See http://www.cqgzfglj.gov.cn/flfg/201102/t20110211 164260
.html, written in Chinese.
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3.3. The KIPP Houston School Lottery

The KIPP Houston Public Schools are public charter schools that are free and
open to students of all grades in the State of Texas. Students are assigned to the
KIPP Houston Public Charter Schools by a lottery system.11 Each student fills
a single application for one and only one school. If the number of applications
for a school is less than its capacity, all applicants are admitted to that school.
If the number of applications is more than the capacity of a school, a lottery
is drawn to assign applicants to that school. Interestingly, the lottery system
leaves room for an applicant to file a duplicate application, say, by a mistake.
In such a case, the new application becomes effective and the old one will be
removed. Thus, the KIPP Houston School Lottery allows an applicant to make
a mistake by rejecting an old application and accepting a new one, a key feature
in our Tickets algorithm. The major difference is that applicants in the Kipp
Houston School Lottery do not know the number of applicants that have been
applying for a school when they file a new application by an “error”. Thus,
under the KIPP Houston School Lottery, a new application is filed based on
the schools not on the schools and the number of filed applications, as in the
Tickets algorithm. Thus, the Kipp Houston School Lottery has the same design
defect as the NYC lottery. Nonetheless, the Kipp Houston School Lottery can
be implemented similarly to our Tickets algorithm if it encourages applicants
to file new applications, one at a time, to replace their old application, and
the number of applicants for a school at any moment of time in the process is
provided to the public.

4. MODEL AND DEFINITIONS

Because each development runs a lottery independently of the others, we model
each development as an economy with indivisible objects and unit demand,
as in HZ. Let 𝐶 = {1, 2, · · · , 𝑚} denote the set of communities (i.e., objects
or sizes) and community 𝑗 ∈ 𝐶 has 𝑞 𝑗 number of idential apartments, where
𝑞 𝑗 ≥ 1 is a finite integer. Thus, community 𝑗 is indexed with the number
𝑗 = 1, 2, · · · , 𝑚. Let 𝑞 = (𝑞1, 𝑞2, · · · , 𝑞𝑚). For example, if a development
provides 3 units of 1-bedroom and 5 units of 2-bedroom rental apartments,
then 𝐶 = {1, 2} and 𝑞 = (3, 5). Let 𝐴 = {1, 2, · · · , 𝑛} denote the set of agents

11 See http://kipphouston.org/lottery-faqs for a detailed explanation of the
lottery system.
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or applicants and 𝑢𝑖 𝑗 denote the vNM utility of agent 𝑖 ∈ 𝐴 for renting an
apartment in a community 𝑗 ∈ 𝐶. Let 𝑢𝑖 = (𝑢𝑖 𝑗 ) be a given vNM utility vector
for agent 𝑖 ∈ 𝐴 such that 𝑢𝑖 𝑗 ≥ 0 for all 𝑗 ∈ 𝐶 and 𝑢𝑖 𝑗 > 0 for at least one
𝑗 ∈ 𝐶. Let 𝑢 = (𝑢1, 𝑢2, · · · , 𝑢𝑛)′ be the utility matrix. A lottery allocation
problem for affordable housing is denoted (𝐴,𝐶, 𝑞, 𝑢).

The total capacity in the economy equals
∑𝑚

𝑗=1 𝑞 𝑗 , which can vary from a
few to several hundreds in NYC. We consider an economy where 𝑛 is much
larger than the total capacity. For examples, in 2014, there were 58,832 lottery
applications for 105 affordable units in a new building in Greenpoint, Brooklyn;
98 rental apartments in the Sugar Hill development in Upper Manhattan
attracted more than 48,000 applicants.12 Note that it will not be easy to use
a Pseudo market in HZ to find an equilibrium outcome for such a large scale
economy.

A lottery assignment or allocation is an 𝑛 × 𝑚 matrix 𝑥 such that 𝑥𝑖 𝑗 = 1 if
agent 𝑖 is assigned an apartment in community 𝑗 and 𝑥𝑖 𝑗 = 0 otherwise. The
set of feasible lottery assignments is defined by 𝑋 = {𝑥 |∑ 𝑗∈𝐶 𝑥𝑖 𝑗 = 1,∀𝑖 ∈ 𝐴},
because each agent can only rent one apartment ex post and no agent can submit
duplicate lottery entries ex ante by the rule. Thus, 𝑥𝑖 is a vector with one 𝑗
such that 𝑥𝑖 𝑗 = 1 for 𝑥 ∈ 𝑋 . That is, each community has a pool of lottery
tickets and an agent holds one lottery ticket in one single pool, since each
qualified or eligible agent must have an equal access to affordable housing. By
the equal opportunity, we assume that each lottery ticket has an equal chance
to be drawn against the quota each community has. We also use 𝑥𝑖 for the
component 𝑗 such that 𝑥𝑖 𝑗 = 1 for notational convenience. This will not cause
any confusion from the context. It is this feasibility constraint on 𝑋 that makes
the Pseudo market in HZ in the general domain and the eating algorithm in
BM and BCKM inapplicable to the problem (𝐴,𝐶, 𝑞, 𝑢). Note that 𝑥 itself is
not a random allocation. There is no restriction on the number of applicants
for a community 𝑗 ∈ 𝐶, i.e., 0 ≤ ∑

𝑖∈𝐴 𝑥𝑖 𝑗 ≤ 𝑛. Let

𝑛 𝑗 (𝑥) = |{𝑖 ∈ 𝐴|𝑥𝑖 𝑗 = 1}| (4.1)

denote the number of agents who have been assigned to community 𝑗 under
𝑥 ∈ 𝑋 . If we consider each community to have a lottery pool, 𝑛 𝑗 (𝑥) is the
number of lottery tickets in the pool of community 𝑗 under allocation 𝑥. The

12 Mireya Navarrojan: “Long Lines, and Odds, for New York’s Subsidized Housing Lotteries,”
New York Times, Jan. 29, 2015.
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probability that an agent 𝑖 is allocated with an apartment in community 𝑗 under
a feasible lottery assignment 𝑥 ∈ 𝑋 is given by 𝑧 𝑗 (𝑥), where

𝑧 𝑗 (𝑥) = 𝑚𝑖𝑛{1, 𝑞 𝑗

𝑛 𝑗 (𝑥) }. (4.2)

An agent 𝑖’s expected utility 𝐸𝑈𝑖 (𝑥) under 𝑥 ∈ 𝑋 depends on the apartment
in community 𝑗 assigned to 𝑖 and the total number of agents who have been
assigned to community 𝑗 , where 𝐸𝑈𝑖 (𝑥) is defined by

𝐸𝑈𝑖 (𝑥) =
∑︁
𝑗∈𝐶

𝑥𝑖 𝑗𝑢𝑖 𝑗 𝑧 𝑗 (𝑥). (4.3)

Equivalently, 𝐸𝑈𝑖 (𝑥) = 𝑢𝑖 𝑗 𝑧 𝑗 (𝑥) for 𝑗 such that 𝑥𝑖 𝑗 = 1 or 𝑥𝑖 = 𝑗 .
Remark. In HZ, the Pseudo market operates with vNM utility functions.
This assumption of vNM utility functions in this paper is for expository
convenience. Our main results still hold even if the expected utility 𝐸𝑈s are not
the vNM utility functions. For example, the utility functions may be defined
by 𝐸𝑈𝑖 (𝑥) = 𝑢𝑖 𝑗 𝑓𝑖 (𝑧 𝑗 (𝑥)) for 𝑥𝑖 𝑗 = 1 and 𝐸𝑈𝑖 (𝑥) = 0 otherwise, where 𝑓𝑖 is
monotonically nonincreasing or nondecreasing in 𝑧 𝑗 (𝑥) for 𝑗 such that 𝑥𝑖 𝑗 = 1.

Definition 1. A feasible allocation 𝑥 ∈ 𝑋 is envy-free (EF) if for any agent 𝑖,
community 𝑙 ∈ 𝐶, it holds that 𝐸𝑈𝑖 (𝑥) ≥ 𝑢𝑖𝑙𝑧𝑙 (𝑥).

A feasible allocation is EF if no agent prefers others’ to his own lottery
assignment (Foley, 1967; Pazner & Schmeidler, 1974; Varian, 1974; Crawford,
1977). Note that others’ assignments may include those apartments that are
not assigned to any agent because public rental units are initially owned by the
public, not by the agents or applicants.

Example 1. An EF allocation may not exist. Let 𝐴 = {1, 2}, 𝐶 = {1, 2},
(𝑞1, 𝑞2) = (1, 1), and 𝑢1 = 𝑢2 = (2, 3). Consider all four feasible allocations
in 𝑋:

𝑥1 =

(
1 0
1 0

)
, 𝑥2 =

(
1 0
0 1

)
, 𝑥3 =

(
0 1
1 0

)
, and 𝑥4 =

(
0 1
0 1

)
.

Under allocation 𝑥1, agents 1 and 2 each hold a ticket in community one and
no one holds a ticket in community two. Thus, allocation 𝑥1 induces a probabil-

ity matrix 𝑃(𝑥1) =
( 1

2 0 1
2

1
2 0 1

2

)
, where the last column is for the “null” object.
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Thus, the expected utility under 𝑥1 equals 𝐸𝑈 (𝑥1) = (𝐸𝑈1, 𝐸𝑈2) (𝑥1) = (1, 1).
Similarly, the expected utilities under allocations 𝑥2 and 𝑥3 are given by
𝐸𝑈 (𝑥2) = (2, 3) and 𝐸𝑈 (𝑥3) = (3, 2), respectively. The expected utility
under 𝑥4 is given by 𝐸𝑈 (𝑥4) = (1.5, 1.5). Clearly, 𝑥2 and 𝑥3 are not EF.
Under 𝑥1, agent 1 or 2 prefers the unassigned apartment in 𝐶2 to the assigned
lottery over the apartment in 𝐶1. Under 𝑥4, agent 1 or 2 prefers the unassigned
apartment in𝐶1 to the assigned lottery for the apartment in𝐶2. So, no allocation
in 𝑋 is EF.

5. MAIN RESULTS

Example 1 has shown that an EF allocation may not exist for (A,C,q,u).
Our resolution to this problem is the definition of an individually stable (IS)
allocation. We provide an algorithm whose outcome is an IS allocation.
However, an EF or IS allocation may not be PO. To find a PO allocation, we
define a strictly envy-free (SEF) allocation and discuss a number of promising
properties associated with it.

5.1. Tickets Algorithm and Stable Lottery Allocations

Let (𝑥−𝑖, 𝑘) denote a feasible allocation in 𝑋 such that only agent 𝑖’s assignment
𝑗 under 𝑥, i.e., 𝑥𝑖 𝑗 = 1, is replaced by 𝑘 ∈ 𝐶, 𝑘 ≠ 𝑗 , and everyone else’s
assignment remains the same.

Definition 2. A feasible allocation 𝑥 ∈ 𝑋 is an individually stable (IS) allocation
if 𝐸𝑈𝑖 (𝑥) ≥ 𝐸𝑈𝑖 ((𝑥−𝑖, 𝑘)) for all 𝑖 ∈ 𝐴 and 𝑘 ∈ 𝐶.

The IS notion is quite natural, slightly different from the EF notion in
the sense that an agent will act if they envy another agent, if such an action
makes them better off. Thus, a lottery allocation is IS if no agent has any such
incentive to move to another lottery lot. It is a notion that follows that of a
stable matching in Gale and Shapley. It is also related to the notion of a Nash
equilibrium, but the two are not the same because there are no strategies or
games defined with the IS notion.

Theorem 1. For any affordable housing economy (𝐴,𝐶, 𝑞, 𝑢), there always
exists an IS lottery allocation.
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The proof is in Appendix IX.B. We prove the theorem by designing an
algorithm. Now imagine that each community has a unique ticket machine
𝑗 . Each machine 𝑗 , 𝑗 = 1, 2, · · · , 𝑚, prints 𝑛 identical lottery tickets. Each
ticket gives its holder an equal right to be drawn to rent an apartment in that
community. Different machines print different tickets so that no two machines
print the same tickets, using distinctive colors or other means. We can put all
the ticket machines in a room with a single entrance. Agents or applicants form
an arbitrary random queue or order to enter the room to get tickets, one ticket
for one agent.

Tickets Algorithm. Without loss of generality, let (1, 2, · · · , 𝑛) be the
order of agents. That is, agent 1 is the first in the queue to enter the room
to get a ticket. We now specify in steps where each agent gets his ticket.
The algorithm operates similarly for other orders of agents. Note that agents
are self-interested and myopically sincere, as in the deferred acceptance al-
gorithm. The lottery allocation part of the algorithm consists of Step 1 to Step n:

Step 1. Let agent 1 enter the room first and choose a lottery ticket she likes
the most. In case there are ties, agent 1 may use any tie-breaker. Let 𝑥1 denote
the allocation by the end of this step.

Step 2. Let agent 2 enter the room to choose the lottery ticket he likes
the most. If agent 2 chooses a different lottery ticket from agent 1’s, then the
process moves to the next step. If 2’s choice is the same as agent 1’s, his choice
reduces 1’s expected utility. Thus, agent 1 may like some other lottery tickets
better than what she held in Step 1. If that is the case, let agent 1 return her
ticket and go out of the door, and then reenter, before any other agent in the
order, to re-choose a lottery ticket mostly preferred by agent 1. The process
moves to the next step. Agents 1 and 2 may use any tie-breaker in case there
are ties. Let 𝑥2 denote the allocation by the end of this step.

Step i. Let agent 𝑖 enter the room to choose the lottery ticket he likes the
most. The choice made by agent 𝑖 reduces the expected utility for those who
have been in the room and held the same lottery tickets as agent 𝑖 does. Some
of those agents may want to return their tickets in exchange for some other
tickets they like better. If there are such agents, then let one and only one agent
ℎ among them return his lottery ticket and go out of the door, and then reenter
the room, to re-choose a lottery ticket mostly preferred by agent ℎ. Repeat
this process by treating agent ℎ as agent 𝑖, until no agent in the room wants to
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return his ticket. Let 𝑥𝑖 denote the allocation by the end of this step.

Repeat Step i above until all agents in the order are exhausted.

This procedure generates a sequence of allocations 𝑥1, 𝑥2, · · · , 𝑥𝑖, · · · , 𝑥𝑛,
each of which is IS with respect to the agents in the room. Note this sequence
of allocations is order-dependent because different orders may have different
sequences.

NYC Lottery. In the NYC lottery, each applicant enters the room to
pick up a lottery ticket that she likes the most and holds her lottery ticket to
the close. That is, the NYC lottery is equivalent to the serial dictatorship
for lottery tickets, not for the actual apartments. Then these lottery tickets
are drawn to generate a waitlist in an ex post allocation. Because different
drawings create different waitlists, the NYC lottery is not quite the same as RSD.

The Tickets algorithm incorporates a rejection-acceptance optimization
process into the NYC lottery. A main change comes from those steps after Step
1. We have to make the change because the NYC lottery is not stable so that
R4 cannot hold voluntarily, as shown in Section II.A.

A key observation in our algorithm is that any agent in the room who rejects
and accepts herself due to the new entry only does that once in order to restore
the stability in the market. Thus, the process of the adjustment must be finite. It
is critical to let just one agent from the order enter the market each time. If one
lets two or more agents enter the market at the same time, there is no guarantee
the process will converge. In fact, if two agents are allowed to exchange their
lots at the same time, it is easy to construct an example where the two agents
can form a cycle by moving back and forth between two communities, no
convergence to stability.

Next we use an example to illustrate how the Tickets algorithm reaches
a stable lottery allocation for every order of applicants and point out some
general properties that will be studied in the next sections.

Example 2. Let 𝐴 = (1, 2, 3, 4), 𝐶 = (1, 2, 3) and 𝑞 = (𝑞1, 𝑞2, 𝑞3) = (1, 1, 1).
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Table 1: Tickets Algorithm for Example 2

Step
Order (1,2,3,4) (1,2,4,3) (1,3,2,4)

1 (𝐶2, , , ) (𝐶2, , , ) (𝐶2, , , )
2 (𝐶2 , 𝐶2, , ) (𝐶2, 𝐶2, , ) (𝐶2, , 𝐶2, )

Agent 1 re-assigned (𝐶3, 𝐶2, , ) (𝐶3, 𝐶2, , ) (𝐶3, , 𝐶2, )
3 (𝐶3, 𝐶2, 𝐶2, ) (𝐶3, 𝐶2, , 𝐶1) (𝐶3, 𝐶2, 𝐶2, )
4 (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1)

The utility matrix is given by

©­­­«

𝑢1
𝑢2
𝑢3
𝑢4

ª®®®¬
=
©­­­«

2 4 3
0 1 0
0 1 0
3 0 2

ª®®®¬
.

There are 24 orders in total under the Tickets algorithm. We apply the
Tickets algorithm to three orders to illustrate the algorithm here. We use 𝐶 𝑗

for community 𝑗 , to avoid confusion.
Consider three orders (1, 2, 3, 4), (1, 2, 4, 3) and (1, 3, 2, 4), where agent 1

enters the room first (see Table 1) and chooses 𝐶2 because 𝐶2 is agent 1’s best
choice in Step 1. The allocation is simply 𝑥1 = (𝐶2, , , ), where an empty
component indicates an agent is assigned with no apartment.

Step 2. Now 𝐶2 is the community that agents 2 and 3 prefer the most.
Therefore, they choose 𝐶2 after they enter. After agents 2 and 3 enter, their
choices reduce the expected utility for agent 1, who can find a better lottery
by returning the existing one. Therefore, agent 1 returns her ticket and goes
out of the door and reenters to choose 𝐶3.13 𝑥2 = (𝐶3, 𝐶2, , ) is the allocation
in Table 2 with the order (1, 2, 3, 4) because no agent in {1, 2} would like to
return her ticket. Similarly, we get 𝑥2 for the other two orders.

Step 3. Now a new agent from the order enters the room. With the order
(1, 2, 3, 4), agent 3 enters the room and chooses 𝐶2. Because no agent in
{1, 2, 3} would like to return her ticket after agent 3 took a ticket from 𝐶2, the
algorithm at Step 3 ends with 𝑥3 = (𝐶3, 𝐶2, 𝐶2, ). Similarly, we get 𝑥3 for the
other two orders.

13 This is the key difference between the Tickets algorithm and the serial dictatorship or the NYC
lottery.
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Step 4. When agent 4 enters the room under the order (1, 2, 3, 4), she
chooses 𝐶1. Because no agent in the room would like to return her ticket
after agent 4 took a ticket from 𝐶1, the algorithm at Step 4 ends with 𝑥4 =
(𝐶3, 𝐶2, 𝐶2, 𝐶1). Because there are no more agents in the order, this ends the
algorithm with 𝑥4.

There are several interesting properties that should be noted in this example.
It has two IS allocations:

𝑥 =
©­­­«

𝑥1
𝑥2
𝑥3
𝑥4

ª®®®¬
=
©­­­«

1 0 0
0 1 0
0 1 0
0 0 1

ª®®®¬
𝑎𝑛𝑑 𝑥∗ =

©­­­«

𝑥∗1
𝑥∗2
𝑥∗3
𝑥∗4

ª®®®¬
=
©­­­«

0 0 1
0 1 0
0 1 0
1 0 0

ª®®®¬
.

The expected utilities are given by 𝐸𝑈 (𝑥) = (2, 1, 1, 2) and 𝐸𝑈 (𝑥∗) =
(3, 1, 1, 3). Thus, 𝑥∗ Pareto dominates 𝑥. Under all three orders, the final
allocation achieved by the Tickets algorithm is the allocation 𝑥∗, not the less
efficient 𝑥. We show in Theorem 6 that this is a general result. The Tickets
algorithm will always reach this more efficient allocation 𝑥∗, if any, over all
other less efficient IS allocations. Moreover, this conclusion does not depend
on the orders (see Appendix IX.F for the rest orders).

Under the NYC lottery with the application order (1, 2, 3, 4), applicants 1,
2 and 3 get their tickets in 𝐶2 and applicant 4 gets his from 𝐶1. Clearly, such
an allocation leaves 𝐶3 unfilled and is not stable.

5.2. IS and Weakly PO Allocations

We start with the definition of coalitionally stable lottery allocation.

Definition 3. An allocation 𝑥 ∈ 𝑋 is coalitionally stable (CS) if there is no
other allocation 𝑥′ ∈ 𝑋 that satisfies for any agent 𝑖 ∈ 𝐴′ = {𝑎 |𝑥𝑎 ≠ 𝑥′𝑎},
inequality 𝐸𝑈𝑖 (𝑥′) > 𝐸𝑈𝑖 (𝑥) holds.

An allocation that is CS must be IS but the converse is not right. If an
allocation is not coalitionally stable, then a coalition of agents may jointly
withdraw their lottery tickets in exchange for other different lottery tickets so
that everyone in the coalition prefers their new lottery to the existing one under
the allocation.
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Definition 4. A feasible allocation 𝑥 ∈ 𝑋 is weakly Pareto optimal if there is
no other feasible allocation 𝑦 ∈ 𝑋 such that 𝐸𝑈𝑖 (𝑦) > 𝐸𝑈𝑖 (𝑥) for all agents
𝑖 ∈ 𝐴.

A feasible allocation is weakly PO if there is no other feasible allocation
that gives each agent a higher expected utility. Note that an IS allocation 𝑥 may
not be weakly PO but every CS allocation is weakly PO.

Thus, an interesting question is whether there always exists an IS and weakly
PO allocation in the economy (𝐴,𝐶, 𝑞, 𝑢). The answer is not obvious. We need
to construct a lottery housing market to trade lottery “houses”. For example, it
is possible to use TTC to achieve 𝑥∗ from 𝑥 in Example 2 (see Theorem 5 for a
general result associated with SEF). Starting with the IS allocation 𝑥, we can
construct a lottery housing market in which a top trading cycle between agents
1 and 4 is formed to obtain the unique SEF 𝑥∗. What happens if an economy
does not have an SEF allocation? The next result answers this question.

Since 𝑢𝑖 𝑗 > 0 for at least one 𝑗 , this implies that each agent must have a
lottery ticket 𝑗 ∈ 𝐶 under an IS allocation 𝑥. Given an IS allocation 𝑥, we now
construct a housing market to find the strict core allocation as follows. Each
lottery ticket is seen as a “house”. Let the lottery allocation 𝑥 be the initial
endowment in the lottery housing market. Because there are 𝑚 communities,
there are just 𝑚 different houses. Some ties may exist.14 An agent ranks 𝑛
lottery houses according to his expected utilities 𝑢𝑖 𝑗 𝑧 𝑗 (𝑥) of those lottery tickets
of 𝑗 type, 𝑗 = 1, 2, · · · , 𝑚. In case there is a tie between his initial endowed
lottery house and any other lottery houses of the same kind, he always prefers
his own lottery house to others’ lottery houses and uses an arbitrary tie-breaker
to break other ties, if any. In case there is a tie between his initial endowed
lottery house and any other lottery houses that are not the same type, he prefers
others’ lottery houses to his initial endowed lottery house and uses an arbitrary
tie-breaker to break other ties, if any. This completes our construction of a
lottery housing market. Then we can apply TTC to this lottery housing market
to get the final lottery allocation, denoted 𝑥∗. We can use the TTC algorithm to
find the allocation that is IS and in the strict core for the lottery housing market
with the initial endowment 𝑥. The algorithm that uses the Tickets algorithm
first and then the TTC algorithm is called the Tickets-TTC algorithm.

Theorem 2. For any lottery allocation problem (A,C,q,u), the allocation 𝑥∗

14 How to break ties in a housing market turns out to be critical for TTC, see, e.g., Saban &
Sethuraman (2013) and references therein.
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that is obtained from the Tickets-TTC algorithm is CS, i.e., an IS and weakly
PO allocation always exists.

Proof. Assume, on the contrary, that 𝑥∗ is not coalitionally stable. That
is, there is an allocation, denoted 𝑥′, such that there is a subset of agents
𝐴′ = {𝑎 |𝑥𝑎 ≠ 𝑥′𝑎}, which is clearly nonempty, such that 𝑥𝑖 ≠ 𝑥′𝑖 and the
inequality 𝐸𝑈𝑖 (𝑥′) > 𝐸𝑈𝑖 (𝑥∗) holds for all 𝑖 ∈ 𝐴′.

We consider two cases: (a) for all 𝑗 ∈ 𝐶, 𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥′); (b) there is a
community 𝑗 ∈ 𝐶 such that 𝑛 𝑗 (𝑥′) > 𝑛 𝑗 (𝑥∗).

We prove Case (a) first. By the assumption 𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥′) for all 𝑗 ∈ 𝐶,
this implies that 𝑥′ is obtained from 𝑥∗ by forming some trading cycles. But
the fact that all agents in 𝐴′ strictly prefer 𝑥′ to 𝑥∗ contradicts to the use of the
TTC algorithm. This completes the proof of Case (a).

Next, we prove Case (b). Because there is a community 𝑗 such that
𝑛 𝑗 (𝑥′) > 𝑛 𝑗 (𝑥∗), there must be at least one agent, denoted 𝑖′, satisfying 1).
𝑖′ ∈ 𝐴′ and 2). 𝑥′𝑖′ 𝑗 = 1.

By the assumption 𝑛 𝑗 (𝑥′) > 𝑛 𝑗 (𝑥∗), we have

𝑛 𝑗 (𝑥′) ≥ 𝑛 𝑗 (𝑥∗−𝑖′ , 𝑗), (5.1)

which implies
𝐸𝑈𝑖′ ((𝑥∗−𝑖′ , 𝑗)) ≥ 𝐸𝑈𝑖′ (𝑥′) (5.2)

By Theorem 1, we know that 𝑥∗ is IS. Thus,

𝐸𝑈𝑖′ (𝑥∗) ≥ 𝐸𝑈𝑖′ ((𝑥∗−𝑖′ , 𝑗)) (5.3)

Thus, by inequalities (5.2) and (5.3), we have

𝐸𝑈𝑖′ (𝑥∗) ≥ 𝐸𝑈𝑖′ (𝑥′), (5.4)

which is a contradiction to the assumption agent 𝑖′ is in 𝐴′. This completes the
proof. □

Our next example answers the question whether all CS allocations can be
obtained by the Tickets-TTC algorithm. The answer is negative. Surprisingly
the Tickets-TTC algorithm is selective among all CS allocations by choosing
the ones that are the most efficient.
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Example 3. A CS allocation may not be obtained by the Tickets-TTC algo-
rithm. Let an affordable housing economy be given by 𝐴 = {1, 2, 3, 4}, 𝐶 =
{1, 2}, 𝑢1 = 𝑢2 = 𝑢3 = (12, 7), and 𝑢4 = (5, 2). Each community has a unit
capacity, i.e., 𝑞 = (1, 1).

There are four CS allocations:

𝑥1 =
©­­­«

1 0
1 0
0 1
1 0

ª®®®¬
, 𝑥2 =

©­­­«

1 0
0 1
1 0
1 0

ª®®®¬
, 𝑥3 =

©­­­«

0 1
1 0
1 0
1 0

ª®®®¬
and 𝑥4 =

©­­­«

1 0
1 0
1 0
0 1

ª®®®¬
.

The expected utility vectors for allocations from 𝑥1 to 𝑥3 are, respectively,
(4, 4, 7, 5

3 ), (4, 7, 4, 5
3 ) and (7, 4, 4, 5

3 ), with the same total expected utility of
14 + 5

3 . The expected utility vector for allocation 𝑥4 is (4, 4, 4, 2), with the
total expected utility of 14, less efficient than others. To achieve 𝑥4, we need
agent 4 in community 𝐶2. But we find out that the Tickets-TTC algorithm can
only achieve the three more efficient CS allocations from 𝑥1 to 𝑥3 but cannot
achieve 𝑥4, even though 𝑥4 is CS.

Table 2: Outcomes of the Tickets-TTC Algorithm with All Orders

𝐴𝑔𝑒𝑛𝑡𝑠′ 𝑂𝑟𝑑𝑒𝑟𝑠 𝐴𝑔𝑒𝑛𝑡𝑠 𝑖𝑛 𝐴𝑔𝑒𝑛𝑡𝑠 𝑖𝑛
𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝐶1 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝐶2

(1, 2, 3, 4); (1, 2, 4, 3); (1, 4, 2, 3); (3, 2, 1, 4) 1, 3, 4 2(3, 2, 4, 1); (3, 4, 2, 1); (4, 2, 3, 1); (4, 2, 1, 3)
(1, 3, 2, 4); (1, 3, 4, 2); (1, 4, 3, 2); (2, 3, 1, 4) 1, 2, 4 3(2, 4, 3, 1); (3, 2, 4, 1); (4, 3, 2, 1); (4, 3, 1, 1)
(2, 1, 3, 4); (2, 1, 4, 3); (2, 4, 1, 3); (3, 1, 2, 4) 2, 3, 4 1(3, 1, 4, 2); (3, 4, 1, 2); (4, 1, 3, 2); (4, 1, 2, 3)

Table 2 provides the outcomes of the Tickets-TTC algorithm for all possible
orders. As one can see from Table 2, agent 4 is not allocated to community 𝐶2,
no matter which order has been used. It is worthwhile noting that under the
RSD algorithm, agent 4 will be assigned to community 𝐶2 as long as she is
ranked the second in an order. This example shows that there is a substantial
difference between RSD and the Tickets-TTC algorithm.
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5.3. Strictly Envy-free Allocations

Definition 5. A feasible allocation 𝑥 ∈ 𝑋 is (ex ante) Pareto optimal (PO) if
there exists no other feasible allocation 𝑥′ ∈ 𝑋 such that 𝐸𝑈𝑖 (𝑥′) ≥ 𝐸𝑈𝑖 (𝑥) for
all 𝑖 ∈ 𝐴 and the strict inequality holds for at least one 𝑖 ∈ 𝐴.

If a feasible allocation 𝑥 is PO, then there does not exist any feasible
allocation 𝑦 that makes at least one agent better off without making the rest
worse off. It is easy to have an example such that an EF allocation is not PO.

The following definition of a strictly envy-free (SEF) allocation is just
slightly stronger than the EF allocation, i.e., inequality is strict for every agent
in 𝐴 and any community 𝑙 ≠ 𝑗 such that 𝑥𝑖 𝑗 = 1 in the EF definition. This
definition is equivalent to an EF allocation in an economy with strict ordinal
preferences. As in the housing market in Shapley & Scarf (1974) where
strict preferences are quite important to the model, the strict inequality in the
definition of an SEF allocation has an enormous consequence for the problem
(𝐴,𝐶, 𝑞, 𝑢). Recall our notation of 𝑥𝑖 that also denotes the community 𝑗 such
that 𝑥𝑖 𝑗 = 1.

Definition 6. A feasible allocation 𝑥 ∈ 𝑋 is SEF if 𝐸𝑈𝑖 (𝑥) > 𝑢𝑖𝑙𝑧𝑙 (𝑥) for all
agents 𝑖 ∈ 𝐴 and communities 𝑙 ∈ 𝐶 such that 𝑙 ≠ 𝑥𝑖.

Theorem 3. Every SEF allocation 𝑥∗ ∈ 𝑋 is Pareto optimal.

Proof. Let 𝑥∗ be an SEF allocation. Assume, on the contrary, that 𝑥∗ is not
Pareto optimal. Thus, there must be a feasible allocation 𝑥′ ∈ 𝑋 such that 𝑥′
Pareto dominats 𝑥∗, denoted by 𝑥′𝑃𝑥∗. We consider two cases: (a) for all 𝑗 ∈ 𝐶,
𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥′); and (b) there is a community 𝑗 such that 𝑛 𝑗 (𝑥′) > 𝑛 𝑗 (𝑥∗).

We prove Case (a) first. Because 𝑥∗ is SEF, we have 𝐸𝑈𝑖 (𝑥∗) > 𝑢𝑖 𝑗 𝑧 𝑗 (𝑥∗)
for all 𝑖 such that 𝑗 ≠ 𝑥∗𝑖 and 𝐸𝑈𝑖 (𝑥∗) ≥ 𝑢𝑖 𝑗 𝑧 𝑗 (𝑥∗) for all 𝑖 and 𝑗 . By the
assumption that 𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥′) for all 𝑗 , we have that for all 𝑗 , 𝑧 𝑗 (𝑥∗) = 𝑧 𝑗 (𝑥′).
Thus, we obtain

𝐸𝑈𝑖 (𝑥′) = 𝑢𝑖𝑥′𝑖 𝑧𝑥
′
𝑖
(𝑥′) = 𝑢𝑖𝑥′𝑖 𝑧𝑥

′
𝑖
(𝑥∗) ≤ 𝐸𝑈𝑖 (𝑥∗)

for all 𝑖, which is a contradiction to the assumption 𝑥′𝑃𝑥∗. This completes the
proof of Case (a).

Next we prove Case (b): ∃ 𝑗 such that 𝑛 𝑗 (𝑥′) > 𝑛 𝑗 (𝑥∗). This implies that
there must be at least one agent, denoted 𝑖∗, such that 𝑥′𝑖∗ = 𝑗 and 𝑥∗𝑖∗ ≠ 𝑗 .
Moreover, the fact that 𝑛 𝑗 (𝑥′) > 𝑛 𝑗 (𝑥∗) implies 𝑧 𝑗 (𝑥′) ≤ 𝑧 𝑗 (𝑥∗). Because 𝑥∗
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is SEF, we have that for all 𝑖 such that 𝑗 ≠ 𝑥∗𝑖 , 𝐸𝑈𝑖 (𝑥∗) > 𝑢𝑖 𝑗 𝑧 𝑗 (𝑥∗). Thus, it
follows 𝐸𝑈𝑖∗ (𝑥∗) > 𝑢𝑖∗ 𝑗 𝑧 𝑗 (𝑥∗) and then

𝐸𝑈𝑖∗ (𝑥∗) > 𝑢𝑖∗ 𝑗 𝑧 𝑗 (𝑥∗) ≥ 𝑢𝑖∗ 𝑗 𝑧 𝑗 (𝑥′) = 𝐸𝑈𝑖∗ (𝑥′),

which is a contradiction to the assumption 𝑥′𝑃𝑥∗. This completes the proof of
Case (b) and the proof of the theorem. □

It is clear that an SEF allocation is also IS. The following result shows
that an SEF allocation is the unique allocation that is both IS and PO. The
uniqueness is somehow a surprise, given the fact that there are so many PO
allocations. The proof of this result is given in Appendix IX.C.

Theorem 4. An SEF allocation 𝑥∗ ∈ 𝑋 is the unique allocation that is both
individually stable and Pareto optimal.

Example 4. An IS allocation may not be SEF or PO. Consider Example

1 with 𝑢1 = (2, 3) and 𝑢2 = (3, 2). Consider two allocations 𝑥′ =
(
1 0
0 1

)

and 𝑥∗ =

(
0 1
1 0

)
. The expected utilities of the two allocations are given by

𝐸𝑈 (𝑥′) = (2, 2) and 𝐸𝑈 (𝑥∗) = (3, 3). Note that both 𝑥′ and 𝑥∗ are IS. But 𝑥∗
is the only SEF allocation. Also note that 𝑥∗𝑃𝑥′. So an IS allocation may be
neither PO nor weakly PO.

Even though an IS allocation may not be SEF, starting with an IS allocation,
we can always achieve the unique SEF allocation, if any exists, using the noted
TTC.15

Theorem 5. Starting with an IS allocation 𝑥 that is not SEF, one can get the
SEF allocation 𝑥∗, if any, by using the Tickets-TTC algorithm.

Proof. Follow from Theorems 2 and 4. If the allocation 𝑥∗ is not SEF, then 𝑥∗

is not in the strict core of the housing market constructed, a contraction to the
result in Roth & Postlewaite (1977) that shows that the strict core is a singleton
consisting of 𝑥∗. □

15 For another use of TTC, see Pápai (2000). Sen (2008) also provided a detailed discussion of
the TTC algorithm.
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A question of interest is how to know when the SEF allocation exists or does
not exist for a given problem (𝐴,𝐶, 𝑞, 𝑢). We find that our Tickets algorithm
can answer this question. There may exist many IS allocations, but there exists
at most one SEF allocation. If an SEF allocation does not exist, our algorithm
reaches an IS allocation. If an SEF allocation exists, then our algorithm only
achieves that SEF allocation, no matter how many IS allocations are there,
without using TTC. This result in Theorem 6 does not depend on the random
orders under which agents enter the room. Thus, Theorem 6 is important
because we can apply the Tickets algorithm to any single order. In practice
such an order is naturally formed in an application process. Recall 𝑥𝑛 denotes
the allocation at the close of the Tickets algorithm.

Theorem 6. For any lottery allocation problem (𝐴,𝐶, 𝑞, 𝑢), an SEF allocation
exists if and only if 𝑥𝑛 is SEF.

The proof is in Appendix IX.D. We have used Example 2 to illustrate how
the Tickets algorithm has reached this more efficient SEF lottery allocation,
if any, over those that are less efficient (see Appendix IX.F). Let us use a
metaphor to illustrate the “peculiar” feature in Theorem 6. Imagine there are
millions of fish in red (IS) or blue (PO) colors. There is one and only one fish
in a purple color (SEF). For some reason we don’t know, our Tickets algorithm,
as a kind of “net”, can catch the only purple fish, no matter which order has
been used and how many fish are there in red or blue colors.

6. HYLLAND AND ZECKHAUSER PSEUDO MARKET

Hylland & Zeckhauser (1979)(HZ) studied an economy with a finite number of
indivisible houses (or jobs) and agents with each agent consuming one house
(or assigned to one job). In their original model each house may have multiple
copies of the same kind with the total number of houses in the economy being
equal to the number of agents so that each agent is assigned to at least one house
(one job). Specifically, HZ studied a housing allocation problem (𝐴,𝐶, 𝑞, 𝑢),
where 𝐴 = {1, 2, · · · , 𝑛} is the set of agents, 𝐶 = {1, 2, · · · , 𝑚} is the set of
houses with a capacity 𝑞 = (𝑞1, 𝑞2, · · · , 𝑞𝑚) such that 𝑞 𝑗 ≥ 1 for all 𝑗 ∈ 𝐶
and

∑𝑚
𝑗=1 𝑞 𝑗 = 𝑛. 𝑢 = (𝑢1, 𝑢2, · · · , 𝑢𝑛)′ denotes the vNM utility matrix with

𝑢𝑖 = (𝑢𝑖 𝑗 ) as agent 𝑖′s utility vector over house 𝑗 ∈ 𝐶 for 𝑖 ∈ 𝐴. A pure
assignment 𝜇 for the economy is a matching 𝜇 : 𝐴 → 𝐶 that assigns an agent a
house, each copy of which is assigned to at most one agent. Each matching 𝜇
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can be represented by a matrix [𝑝𝑖 𝑗 ], each of whose components equals either
0 or 1, satisfying

∑𝑚
𝑗=1 𝑝𝑖 𝑗 = 1 and

∑𝑛
𝑖=1 𝑝𝑖 𝑗 = 𝑞 𝑗 for all 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐶. If

𝑞 𝑗 = 1 for all 𝑗 ∈ 𝐶, [𝑝𝑖 𝑗 ] becomes a permutation matrix.
HZ introduced a Pseudo market with a rent system (ℎ1, ℎ2, · · · , ℎ𝑚) over

the 𝑚 houses in 𝐶. In their market each agent 𝑖 ∈ 𝐴 is assigned an equal budget
𝐵𝑖 > 0 of an artificial money and chooses a probability distribution or lottery
over all houses (𝑝𝑖1, 𝑝𝑖2, · · · , 𝑝𝑖𝑚) to maximize his expected utility

∑𝑚
𝑗=1 𝑝𝑖 𝑗𝑢𝑖 𝑗

subject to his budget constraint
∑𝑚

𝑗=1 𝑝𝑖 𝑗ℎ 𝑗 ≤ 𝐵𝑖. They showed that there always
exists a rent system (ℎ∗1, ℎ∗2, · · · , ℎ∗𝑚) and a lottery allocation [𝑝∗𝑖 𝑗 ] that form
a competitive equilibrium. That is, the lottery (𝑝∗𝑖1, 𝑝∗𝑖2, · · · , 𝑝∗𝑖𝑚) maximizes
the expected utility for each agent 𝑖 among all lotteries (𝑝𝑖1, 𝑝𝑖2, · · · , 𝑝𝑖𝑚) that
satisfy agent 𝑖’s budget constraint and the market clearing condition (by the
property of probability matrix [𝑝∗𝑖 𝑗 ]). Note that entries in [𝑝∗𝑖 𝑗 ] are shares,
not necessarily zero or 1. The random allocation or assignment [𝑝∗𝑖 𝑗 ] is an
ex-ante EF and PO. Most importantly, the competitive equilibrium random
assignment [𝑝∗𝑖 𝑗 ] can be implemented by a centralized draw of a lottery over
all pure assignments. To see how this may be done, we may assume that 𝑞 𝑗 = 1
for all 𝑗 ∈ 𝐶 so that 𝑛 = 𝑚. A competitive equilibrium random assignment
[𝑝∗𝑖 𝑗 ] is doubly stochastic, i.e., a matrix each of whose rows and columns sums
to 1. The noted Birkhoff-von Neumann decomposition theorem shows that a
doubly stochastic matrix can be represented by a convex combination (i.e., a
centralized lottery) of permutation matrices. This result can be extended to
the more general case where each house has multiple identical copies because
each identical copy may be considered as a house with a unit capacity. Note
that identical houses must have identical prices at a competitive equilibrium.

HZ’s model does not apply to affordable housing directly. There are three
obstacles for applying it to affordable housing. First, the capacity in the
economy will be much smaller than the number of agents in the economy for
affordable housing. Second, the random assignment at an equilibrium in HZ
may not satisfy the rule–no duplicate lottery entries, which means that not
all IS allocations in our model can be realized by a competitive equilibrium
in a Pseudo market in HZ and a competitive equilibrium in HZ may not be
feasible for our model. Third, more importantly, the Pseudo market in HZ is
quite complicated and may not be applicable to affordable housing. This is
because the competitive rents (ℎ∗1, ℎ∗2, · · · , ℎ∗𝑚) are unknown, an auctioneer
must find an algorithm to integrate the demand information of an individual
random assignment from each agent so that an adjustment of the rents, which
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are out of equilibrium, can be made to approach (ℎ∗1, ℎ∗2, · · · , ℎ∗𝑚). It is unclear
if there is an effective algorithm to do the job. If there is one, it will not be a
simple task for an economy with a large scale of, say, 48,000 agents. In fact,
the same question regarding applicability of the HZ Pseudo market approach
has been raised and discussed before in BCKM.

Under one specific case, we are able to relate our IS allocation to the result
in Hylland & Zeckhauser (1979), using a much simpler way to compute the
competitive equilibrium of their Pseudo market. Let us add a “null” community
𝑚 + 1 with 𝑛−𝑚 number of the same copies into our model and that in HZ. For
all agents 𝑖, we set 𝑢𝑖(𝑚+1) = 0 for both models. A lottery allocation [𝑝𝑖 𝑗 ] in
HZ for the null community satisfies

∑𝑛
𝑖=1 𝑝𝑖(𝑚+1) = 𝑛 − 𝑚. A lottery allocation

in our model has a specific restriction such that for all agent 𝑖 = 1, 2, · · · , 𝑛
and communities 𝑗 = 1, 2, ..., 𝑚, there is one and only one 𝑝𝑖 𝑗 that is greater
than zero. That is, each agent can only be assigned with a positive probability
to one house that is not null in order to satisfy the rule. By the equal access
principle, each eligible agent has applied for one unit in a community 𝑗 ∈ 𝐶.

Example 5. Let 𝐶 = {1, 2} and 𝑞 = (1, 1). There are three agents whose vNM
utilities are given by 𝑢1 = (1, 0) and 𝑢2 = 𝑢3 = (3, 2).

Now we set 𝐵𝑖 = 1 for all 𝑖 ∈ 𝐴. Then under the Pseudo market approach,
we get the market-clearing rent vector ℎ∗ = ( 9

5 ,
6
5 , 0) and the market-clearing

probability matrix

𝑃𝐻𝑍 = [𝑝∗𝑖 𝑗 ] = ©­
«

5
9 0 4

9
2
9

1
2

5
18

2
9

1
2

5
18

ª®
¬
,

which yields total expected utility of 38
9 . The expected utilities for the three

agents are given by ( 5
9 , 1

2
3 , 1

2
3 ). Under our Tickets algorithm, with the agent

order 𝜎 = (1, 2, 3), we get

𝑥𝑛 (𝜎) = ©­«
𝑥𝑛1
𝑥𝑛2
𝑥𝑛3

ª®¬
= ©­«

1 0
0 1
1 0

ª®¬
𝑎𝑛𝑑 𝑃(𝑥𝑛 (𝜎)) = ©­«

1
2 0 1

2
0 1 0
1
2 0 1

2

ª®¬
,

with total expected utility of 4. The expected utilities for the three agents are
given by ( 1

2 , 2, 1
1
2 ). Clearly, 𝑃(𝑥𝑛 (𝜎)) ≠ 𝑃𝐻𝑍 . There are five more orders

under the Tickets algorithm, each of which gives rise to an IS allocation with
the same total expected utility of 4. So, the Tickets algorithm achieves a better
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PO allocation than the competitive equilibrium in HZ. An interesting aspect
of this observation is the fact that these IS allocations are all at pure Nash
equilibria (see Section VI), which outperform the Pseudo market at competitive
equilibrium. Nonetheless, this is not a general result because there are examples
in which the Pseudo market at competitive equilibrium outperforms the Tickets
algorithm or the NE.

Theorem 7. Let 𝑥∗ be the SEF allocation and 𝑃(𝑥∗) be the induced probability
distribution over communities 𝐶 and the null community. Then 𝑃(𝑥∗) = 𝑃𝐻𝑍 ,
where 𝑃𝐻𝑍 is the competitive equilibrium random assignment under the Pseudo
market in HZ with each agent a budge of 1.

An important observation in the proof of Theorem 7 is that the equilibrium
rent of a house ℎ that is not null equals the reciprocal of the lottery drawing
probability in 𝑃(𝑥∗) for the house ℎ under the SEF allocation. That is, the
lottery drawing probability matrix uniquely determines the equilibrium prices
of the houses. A house’s price at equilibrium is higher because it is more
overly demanded. Thus, for an economy with an SEF allocation, the Tickets
algorithm provides a simple way to implement the unique desired EF and PO
competitive equilibrium in HZ. This overcomes the obstacle using a centralized
auctioneer to integrate individual demand information into the prices in the
Pseudo market.

7. LOTTERY CONGESTION GAMES

Rosenthal (1973) originated the study of a class of symmetric congestion
games. Milchtaich (1996) studied a class of unweighted (singleton) congestion
games with player-specific payoff functions. A congestion game in the class
of Rosenthal has a potential function and the Finite Improvement property
(FIP) (Monderer & Shapley, 1996). Milchtaich showed that a game in his class
may not have the FIP or a potential function. He found out that a best-reply
improvement path or dynamics may also last infinitely by forming a cycle.
Nevertheless, he found a finite best-reply improvement path that ends up with
a pure Nash equilibrium (NE). Konishi et al. (1997) provided a general class of
congestion games that are defined differently from that in Milchtaich. But their
assumptions on the payoff functions, namely, the independence of irrelevant
choices, anonymity, and partial rivalry, make their game equivalent to that in
Milchtaich (Voorneveld et al., 1999). Konishi et al. showed that a pure strategy
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SNE (Aumann, 1959) always exists. The existence theorem about SNE for the
class of congestion games in Rosenthal was proved in Holzman & Law-Yone
(1997). Note that not all potential games have an SNE. In this paper, we go
one step further to provide a condition such that there is a unique SNE, by
means of the SEF notion. If the condition is not satisfied, then the Tickets-TTC
algorithm always achieves an SNE, not necessarily unique.

Our Tickets algorithm is initially designed by following the two-sided
matching literature. We recognize later that our algorithm is in fact an
explicit way to identify a finite best-reply improvement path implicitly stated
in Milchtaich once we transfer our affordable housing lottery into a lottery
congestion game along his framework.16 Our recognition that an unweighted
congestion game in Milchtaich may be transferred into an affordable housing
lottery, and vice versa, provides a new link between the housing allocation
model in HZ and the congestion models in Rosenthal, Konishi et al., and
Milchtaich (see Tables 3 and 4) or the potential games in Monderer and Shapley.
In particular, the unique SNE is equivalent to the unique Pseudo market
equilibrium outcome in HZ, a result that justifies the artificial Pseudo market
economy in HZ. Moreover, the Tickets algorithm always reaches the unique
SNE, if any SEF exists, for any order of applicants, a novel contribution to the
literature of congestion or potential games. The reason the Tickets algorithm
can always reach the unique SEF or SNE is that it achieves an NE that is not
Pareto dominated by others (via Konishi et al.).

Beyond the unique SNE, our main contribution in this section is to show how
to transfer an affordable housing lottery into a congestion game in Milchtaich.
Moreover, an unweighted congestion game in Milchtaich that may be transferred
into an affordable housing lottery along the framework of HZ provides a new
link between the housing allocation model in HZ and the congestion models.
Furthermore, the unique SNE is equivalent to the unique Pseudo market
equilibrium outcome in HZ, a result that contributes to a new view of the
Pseudo market of HZ.

Next we construct a lottery congestion game that belongs to the class studied
by Milchtaich from an affordable housing lottery. Our first result of this section
is that every pure Nash equilibrium outcome of the lottery congestion game

16 We thank Abraham Neyman for communications and comments that brought our attention
to the congestion game in Milchtaich during the 2015 International Conferences in honor of
Abraham Neyman and Sergiu Hart in which our main results about the Tickets algorithm were
presented.
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induces an IS allocation, and vice versa. First, we introduce the congestion
game in Milchtaich:

Definition 7. (Milchtaich, 1996). An unweighted congestion game with
player-specific payoff functions Γ(𝐴,𝐶,𝑈) is defined as follows: Let 𝐴 be the set
of players and 𝐶 be the common set of strategies with 𝑞 𝑗 = 1 for all 𝑗 ∈ 𝐶.
Let 𝑠 = (𝑠1, 𝑠2, · · · , 𝑠𝑛) ∈ 𝐶𝑛 be a profile of strategies. The payoff player 𝑖
receives for playing strategy 𝑗 , i.e., 𝑠𝑖 = 𝑗 , is a monotonically nonincreasing
function 𝑈𝑖 𝑗 of the total number 𝑛 𝑗 (𝑠) of players playing the 𝑗 th strategy, i.e.,
𝑛 𝑗 (𝑠) = |{𝑖 ∈ 𝐴|𝑠𝑖 = 𝑗}| for all 𝑗 ∈ 𝐶.

An unweighted congestion game with player-specific payoff functions
becomes a symmetric (singleton) congestion game studied by Rosenthal if
there is a payoff function 𝑈 𝑗 such that 𝑈𝑖 𝑗 = 𝑈 𝑗 for all 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐶. It is
easy to see how a game Γ(𝐴,𝐶,𝑈) may be transferred into an affordable housing
lottery problem. Each 𝑗 ∈ 𝐶 may be seen as a house and the vNM utility for a
house is derived by limiting the strategy profiles to those 𝑠 such that 𝑛 𝑗 (𝑠) = 1
for all 𝑗 ∈ 𝐶. If the utility does not satisfy the vNM condition, then we can
derive the ordinal preferences from 𝑈𝑖 𝑗 by varying all 𝑠 ∈ 𝐶𝑛.

Definition 8. A strategy profile 𝑠 is a Nash equilibrium (NE) of an unweighted
congestion game with player-specific payoff functions if and only if each 𝑠𝑖 is a
best-reply strategy:

𝑈𝑖𝑠𝑖 (𝑛𝑠𝑖 (𝑠)) ≥ 𝑈𝑖 𝑗 (𝑛 𝑗 (𝑠) + 1), 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑗 ∈ 𝐶. (7.1)

Monderer and Shapley showed that an ordinal potential game is equiv-
alent to a game that has FIP. They defined a path by a sequence 𝛾 =
(𝑠(0), 𝑠(1), 𝑠(2), · · · ) such that for every 𝑘 ≥ 1, there exists a unique de-
viator 𝑖, say, such that 𝑠(𝑘) = (𝑠−𝑖 (𝑘 − 1), 𝑠𝑖 (𝑘)) with 𝑠𝑖 (𝑘) ≠ 𝑠𝑖 (𝑘 − 1). If the
path is finite, 𝑠(0) is the initial point of 𝛾 and the last element is called the termi-
nal point. It is a finite improvement path if for all 𝑘 ≥ 1,𝑈𝑖𝑠𝑖 (𝑘) (𝑛𝑠𝑖 (𝑘) (𝑠(𝑘))) >
𝑈𝑖𝑠𝑖 (𝑘−1) (𝑛𝑠𝑖 (𝑘−1) (𝑠(𝑘 − 1))) for the unique deviator 𝑖 at step 𝑘 . The game has
FIP if every improvement path is finite. It is a best-reply improvement path
(BRIP) if for all 𝑘 ≥ 1, 𝑈𝑖𝑠𝑖 (𝑘) (𝑛𝑠𝑖 (𝑘) (𝑠(𝑘))) > 𝑈𝑖𝑠𝑖 (𝑘−1) (𝑛𝑠𝑖 (𝑘−1) (𝑠(𝑘 − 1)))
for the unique deviator 𝑖 at step 𝑘 and 𝑠𝑖 (𝑘) is a best reply strategy against
𝑠−𝑖 (𝑘 − 1). A game that has FIP must have a finite BRIP, but the converse is
not true. Even worse, a best-reply improvement path may last infinite for a
game in Milchtaich.
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Example 6. (Milchtaich, 1996). Let 𝐴 = {1, 2, 3} and 𝐶 = {𝐶1, 𝐶2, 𝐶3}. The
ordinal preferences of the three players over (𝐶 𝑗 , 𝑛𝐶 𝑗 ) of communities 𝐶 𝑗 ∈ 𝐶
and its congestion 𝑛𝐶 𝑗 are given in Table 3:

Table 3: Players’ preferences

𝐴𝑔𝑒𝑛𝑡𝑠′ 𝑂𝑟𝑑𝑒𝑟𝑠 𝐴𝑔𝑒𝑛𝑡𝑠 𝑖𝑛 𝐴𝑔𝑒𝑛𝑡𝑠 𝑖𝑛
𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝐶1 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝐶2

(1, 2, 3, 4); (1, 2, 4, 3); (1, 4, 2, 3); (3, 2, 1, 4) 1, 3, 4 2(3, 2, 4, 1); (3, 4, 2, 1); (4, 2, 3, 1); (4, 2, 1, 3)
(1, 3, 2, 4); (1, 3, 4, 2); (1, 4, 3, 2); (2, 3, 1, 4) 1, 2, 4 3(2, 4, 3, 1); (3, 2, 4, 1); (4, 3, 2, 1); (4, 3, 1, 1)
(2, 1, 3, 4); (2, 1, 4, 3); (2, 4, 1, 3); (3, 1, 2, 4) 2, 3, 4 1(3, 1, 4, 2); (3, 4, 1, 2); (4, 1, 3, 2); (4, 1, 2, 3)

The numerical game is given in Table 4, in which we assign numerical
numbers 5, 4, 3, 2, and 1, respectively, for the first, the second, · · · , and the
fifth ranked choice in a player’s preferences and zero for the rest of the choices.

Let 𝛾 = (𝑠(0), 𝑠(1), 𝑠(2), · · · , 𝑠(5), · · · ) be an improvement path given
by 𝑠(0) = (𝐶2, 𝐶1, 𝐶1), 𝑠(1) = (𝐶3, 𝐶1, 𝐶1), 𝑠(2) = (𝐶3, 𝐶3, 𝐶1), 𝑠(3) =
(𝐶3, 𝐶3, 𝐶2), 𝑠(4) = (𝐶2, 𝐶3, 𝐶2), 𝑠(5) = (𝐶2, 𝐶1, 𝐶2), with a cycle

𝑠(0) → 𝑠(1) → 𝑠(2) → 𝑠(3) → 𝑠(4) → 𝑠(5) → 𝑠(0)

with corresponding deviator sequences of (1 : 𝐶2 → 𝐶3), (2 : 𝐶1 → 𝐶3), (3 :
𝐶1 → 𝐶2), (1 : 𝐶3 → 𝐶2), (2 : 𝐶3 → 𝐶1), (3 : 𝐶2 → 𝐶1), where
(𝑖 : 𝐶 𝑗 → 𝐶 𝑗 ′) denotes player 𝑖 deviates from 𝐶 𝑗 to 𝐶 𝑗 ′ . One can check that
each deviator uses a best-reply strategy at each 𝑘 ≥ 1. Thus, 𝛾 is a best-reply
improvement path that lasts infinitely. Nonetheless, the game has two pure NE:
𝑠∗ = (𝐶3, 𝐶1, 𝐶2) and 𝑠0 = (𝐶2, 𝐶3, 𝐶1); it is the former that Pareto dominates
the later.

Note that a best-reply improvement path that starts with an NE must stop
there. Thus, a best-reply improvement path approach can reach both NE,
including the less efficient one with equilibrium payoffs (4, 4, 4). Under the
Tickets algorithm, the more efficient NE (𝐶3, 𝐶1, 𝐶2) is the only one that is
obtained.

Theorem 8. (Milchtaich, 1996). Every unweighted congestion game with
player-specific payoff functions has a Nash equilibrium in pure strategies.
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Table 4: A Lottery Game with Infinite BRIP

𝐴2
𝐶1 𝐶2 𝐶3

𝐴1

𝐶1 (0,0,0) (0,1,3) (0,4,3)
𝐶2 (4,2,3) (2,0,4) (4,4,4)
𝐶3 (5,2,3) (3,0,4) (2,3,4)

𝐴3: 𝐶1

𝐴2
𝐶1 𝐶2 𝐶3

𝐴1

𝐶1 (0,2,5) (1,0,2) (1,4,5)
𝐶2 (3,5,2) (0,0,0) (3,4,2)
𝐶3 (5,5,5) (1,3,1) (2,3,5)

𝐴3: 𝐶2

𝐴2
𝐶1 𝐶2 𝐶3

𝐴1

𝐶1 (0,2,1) (1,1,1) (1,3,0)
𝐶2 (4,5,1) (3,0,1) (4,3,0)
𝐶3 (2,5,0) (2,1,0) (0,0,0)

𝐴3: 𝐶3

The strategy in the proof of Theorem 8 is to find a best-reply improvement
path that is finite. Milchtaich started with a one player game Γ(𝐴,𝐶,𝑈) with
| 𝐴 |= 1, which has a pure NE. Then let Γ(𝐴,𝐶,𝑈) be a game with | 𝐴 |= 𝑖
and assume that it has a pure NE 𝑠𝑖. Starting with the equilibrium profile
𝑠𝑖, Milchtaich found a finite best-reply improvement path that ends up with a
pure NE 𝑠𝑖+1 in the game Γ(𝐴,𝐶,𝑈) , where | 𝐴 |= 𝑖 + 1. His induction approach
is motivated by the definitions of FIP and the best-reply improvement path,
each of which allows a single deviator at each step 𝑘 . The Tickets algorithm
follows the random order rematching process in Ma (1996) for the marriage
problem that allows a single player to enter the market to make a proposal. The
induction approach consists of a sequence of games such as the game defined
in Table 4. The Tickets algorithm consists of a sequence of applicants working
directly on preferences given in Table 3, with each applicant knowing her

Journal of Mechanism and Institution Design 8(1), 2023

“jMID-vol8(1)-01” — 2023/12/21 — 17:49 — page 33 — #37



“p˙01” — 2023/12/21 — 17:49 — page 34 — #34

34 Stable and Envy-free Lottery Allocations for Affordable Housing

private preference but without knowing the private preferences of all others.
In fact we can transfer a lottery allocation problem (A,C,q,u) into a lottery

congestion game G as follows. 𝐴 is the set of players and 𝐶 is the common
set of strategies. Each strategy 𝑗 ∈ 𝐶 has an integer 𝑞 𝑗 ≥ 1. A profile of
strategies 𝑠 = (𝑠1, 𝑠2, · · · , 𝑠𝑛) ∈ Π𝑛

𝑖=1𝐶 induces a lottery allocation 𝑥(𝑠) such
that 𝑥𝑖 𝑗 (𝑠) = 1 if 𝑠𝑖 = 𝑗 and 𝑥𝑖 𝑗 (𝑠) = 0 otherwise. Note that 𝑥(𝑠) ∈ 𝑋 . Then we
define a vector of congestion by 𝑛(𝑠) = (𝑛1(𝑥(𝑠)), 𝑛2(𝑥(𝑠)), · · · , 𝑛𝑚 (𝑥(𝑠))),
where 𝑛 𝑗 (𝑥(𝑠)) is defined by (4.1) by replacing 𝑥 with 𝑥(𝑠). Given a strategy
profile 𝑠, the payoff vector 𝑈 (𝑠) = (𝑈1(𝑠),𝑈2(𝑠), · · · ,𝑈𝑛 (𝑠)) is defined by
𝑈𝑖 (𝑠) = 𝐸𝑈𝑖 (𝑥(𝑠)) for all 𝑖 ∈ 𝐴 via (4.3). Equivalently, using notation in
Milchtaich, we have 𝑈𝑖𝑠𝑖 (𝑛𝑠𝑖 (𝑠)) = 𝐸𝑈𝑖 (𝑥(𝑠)).

InG, 𝑛 𝑗 (𝑥(𝑠)) is a measure for congestion of strategy 𝑗 under strategy profile
𝑠. It follows from (4.2) that 𝑧 𝑗 (𝑥(𝑠)) is a monotonically nonincreasing function
of 𝑛 𝑗 (𝑥(𝑠)). Thus the payoff function 𝐸𝑈𝑖 (𝑠) is a monotonically nonincreasing
function of 𝑛 𝑗 (𝑥(𝑠)). So our lottery congestion game G belongs to the
class of unweighted congestion games with player-specific payoff functions in
Milchtaich. As in the construction of our lottery game, a pure strategy profile
𝑠 induces a feasible lottery allocation 𝑥(𝑠) in 𝑋 . Moreover, a lottery allocation
𝑥 naturally induces a strategy profile 𝑠(𝑥) for the game G by setting 𝑠𝑖 (𝑥) = 𝑗
for 𝑥𝑖 𝑗 = 1 for all 𝑖 ∈ 𝐴. It is easy to see that a pure Nash equilibrium 𝑠 induces
a lottery allocation that is IS. An IS allocation 𝑥 induces a Nash equilibrium in
pure strategies 𝑠(𝑥) for the game G. Thus, Theorem 1 proves Theorem 8, and
vice versa.
Definition 9. (Envy-freeness). A strategy profile 𝑠 is envy-free (EF) in an
unweighted congestion game with player-specific payoff functions if and only
if no player 𝑖 wants to change his strategy with any other’s, including those
strategies that may not be played:

𝑈𝑖𝑠𝑖 (𝑛𝑠𝑖 (𝑠)) ≥ 𝑈𝑖 𝑗 (𝑛 𝑗 (𝑠)) 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑗 ∈ 𝐶. (7.2)

Thus, a strategy profile 𝑠 is strictly envy-free (SEF) if and only if the
inequality above strictly holds for all 𝑗 ≠ 𝑠𝑖. For example, the NE 𝑠∗ in
Example 6 is SEF but the NE 𝑠0 is not. Clearly, an EF or SEF strategy profile
𝑠 must be an NE; the converse is not true. Next we discuss how an SNE is
related to the SEF lottery allocation.
Definition 10. A profile 𝑠∗ is a strong (pure) Nash equilibrium (SNE) of the
game G if there is no coalition 𝑇 ⊂ 𝐴 and strategies 𝑠𝑇 for the coalition 𝑇 such
that
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𝐸𝑈𝑖 (𝑠∗−𝑇 , 𝑠𝑇 ) > 𝐸𝑈𝑖 (𝑠∗) ∀𝑖 ∈ 𝑇.

An SNE is a Nash equilibrium whose outcome is weakly PO. Because a
symmetric congestion game in Rosenthal is an exact potential game (Monderer
and Shapley), SNE, if any exists, coincides with NE, which is in the Argmax
set of the potential function, as shown by Holzman and Law-Yone. This is
no longer true for the game G. In Example 6, 𝑠0 is Pareto dominated by 𝑠∗

(Konishi et al.).

Theorem 9. (Konishi et al., 1997) Every unweighted congestion game with
player-specific payoff functions has a pure strategy strong Nash equilibrium.

Proof. A CS allocation induces an SNE. The existence follows from Theorem
2. □

With the SEF notion for the game G, we prove a result that is much stronger
than Theorem 9. The following directly follows from Theorem 6.

Theorem 10. An unweighted congestion game with player-specific payoff
functions G has an NE that is SEF if and only if the outcome of the Tickets
algorithm is SEF in the related affordable housing lottery.

Theorem 11. Let 𝑠∗ be an NE in the game G that is also SEF. Then the NE 𝑠∗

is the unique SNE in the game G. Moreover, such an NE 𝑠∗ induces a unique
probability distribution matrix at a competitive equilibrium under the Pseudo
market in HZ with each agent being assigned an equal budget of 1.

Proof. An SEF allocation is the unique CS allocation which induces a unique
SNE; Moreover, it can be achieved by the Tickets algorithm for any given
order (Theorems 5 and 6). The connection between SNE and the competitive
equilibrium in HZ follows from Theorem 7. □

8. CONCLUSIONS

There are so many affordable housing lotteries using a simple rule–preventing
duplicate lottery entries on ex ante lottery allocations, a rule that is used in the
design that guarantees an equal access and opportunity for eligible applicants
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to affordable housing. The same type rule is used as well in many school choice
lotteries. This rule is incompatible with, in the general domain, the competitive
equilibrium of a Pseudo market in HZ and the EF and PO allocations generated
by the algorithms in BM and BCKM. We study an affordable housing lottery
with a model in HZ with a more restrictive domain, which fits well those
affordable housing or school choice lotteries implemented in practice. These
lotteries have a flaw in their designs because they generate outcomes that are
not EF and PO, even if they exist. We provide a fix by a Tickets algorithm that
incorporates an optimization process with the rejection-acceptance idea in the
noted deferred acceptance algorithm. We have proposed a new fairness notion
of individual stability along the lines of a stable matching in Gale and Shapley.
Such a notion is justified with the Nash equilibrium in a lottery congestion game
in Milchtaich. In fact, we provide a way to transfer an affordable housing lottery
that is modeled by the housing allocation problem in HZ into a congestion game
in Milchtaich, and vice versa, to establish several equivalence results between
IS and NE, between SEF and the competitive equilibrium in HZ, and between
the CS allocations and the SNE outcomes. In particular, we provide conditions
for the existence of a unique SNE for the lottery congestion game and show
that the Tickets algorithm always reaches the unique SNE for any order of
applicants, a result contributing to two different strands of the literature of the
housing allocation problem in HZ and the congestion or potential games. This
link paves a new way to address other important issues in affordable housing
lotteries by means of congestion or potential games, which have been more
extensively studied.

No issue with affordable housing lotteries is small. Households in the
millions have been living in affordable housing in the U.S. alone and there are
more to come as time goes by. There are also many different lottery protocols
for affordable housing in the U.S. and across the world, each of which may be
considered fair. But fairness should not be taken for granted as with the NYC
lottery. Any slight change in a lottery protocol can affect the lottery allocations
ex ante or ex post. A change in the rule also changes the outcome completely
because agents play very different games, as noted in the celebrated papers
by Crawford (1979, 1980). It remains open if our main results in this paper
hold for other lottery mechanisms with different rules.

The central goal of this research is to explore the HZ economy and provide a
model for achieving a fair lottery allocation to practical problems like affordable
housing or school choice lotteries. The HZ model and our Tickets algorithm
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may be useful for other applications involving lotteries. Subsequent works
should target other rules over allocation–like rental control–so that the unique
SEF lottery allocation always exists. The rental control literature in Talman &
Yang (2008); Andersson & Svensson (2014, 2016); Andersson et al. (2015) may
be an excellent start. Since ex post allocations can affect the ways agents behave
ex ante, another interesting extension of this paper would be a combination
of this paper’s model with the ex post allocation proposed in Andersson et al.
(2016).

9. APPENDICES: SUMMARY OF MAIN RESULTS AND PROOFS

9.1. Summary of Main Results

Figure 1. The Relations of the Main Results

IS, NE
(Thms 1&8)

*
SEF,HZ,SNE(PO)
(Thms 6,7&11)

Tickets-TTC
(Thms 5&8)

Tickets
(Thm 1)

CS=SNE (weakly PO)
(Thms 2&9)

Note: Figure 1 summarizes our main results in this paper. Note that Figure
1 is drawn for an economy with and without an SEF lottery allocation in the
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same graph. For an economy with an SEF allocation, the three inner circles in
Figure 1 will all shrink to a single point ∗: the SEF allocation is a singleton
that is achieved by the Tickets algorithm without using TTC; it is also the
unique SNE outcome and the unique Pseudo market competitive equilibrium
in HZ. For an economy that does not have an SEF allocation, the allocations
that can be achieved by the Tickets-TTC algorithm are a subset of all CS lottery
allocations or SNE outcomes. The Tickets-TTC algorithm is selective because
it only achieves those NE outcomes that are not Pareto dominated. The Tickets
algorithm achieves an IS allocation or an NE outcome that may not be CS or
SNE. The IS allocations or NE outcomes achieved by the Tickets algorithm are
a subset of all IS allocations or NE outcomes.

Proof of Theorem 1. The sequence {𝑥𝑖}, 𝑖 = 1, 2, 3, ..., 𝑛, consists of lottery
allocations such that each 𝑥𝑖 is an IS allocation with respect to agents 𝐴𝑖 =
{1, 2, · · · , 𝑖} in the room at step 𝑖 and the communities 𝐶, with the same 𝑞.
We have to show that the algorithm ends in a finite number of steps and the
final allocation 𝑥𝑛 is an IS allocation for the problem (𝐴,𝐶, 𝑞, 𝑢). We can
compare the two lottery allocations 𝑥𝑖−1 and 𝑥𝑖. After 𝑖 enters the room, the
expected utilities for agents from 1 to (𝑖 − 1) under 𝑥𝑖 are non-increasing and
there exists at least one agent from 1 to (𝑖 − 1) whose expected utility has been
decreased if there is anyone from 1 to (𝑖 − 1) who returns his ticket, due to
agent 𝑖’s entry. This is because only one agent enters the door each time during
the process. The number of agents who hold a lottery ticket from a machine
𝑗 , for all 𝑗 , under 𝑥𝑖 is also nondecreasing under 𝑥𝑖−1 after agent 𝑖 enters the
room. Moreover, there exists one and only one machine such that the number
of agents who hold a lottery ticket from that machine increases by one from
𝑥𝑖−1 to 𝑥𝑖. Note that 𝑢𝑎 𝑗 is positive for at least one 𝑗 ∈ 𝐶 and for any 𝑎 ∈ 𝐴.

It is clear that 𝑥1 is IS with respect to agent 1, when he is the only agent in
the room and he chooses the lottery ticket that he likes the most. Assume 𝑥𝑖−1

is IS with respect to agents {1, 2, · · · , 𝑖 − 1} and 𝐶. After agent 𝑖 enters the
room, if there is no agent ℎ, ℎ = 1, 2, · · · , 𝑖 − 1, who would like to return his
lottery ticket and goes back to the door, then we obtain 𝑥𝑖, which is IS with
respect to {1, 2, · · · , 𝑖} and 𝐶, by the algorithm and the fact that 𝑥𝑖−1 is IS with
respect to {1, 2, · · · , 𝑖 − 1} and 𝐶. If there is an agent ℎ who would like to
return his lottery ticket and goes out of the door, then agent ℎ is seen as 𝑖. Note
that the lottery allocation in the room before ℎ reenters the room is IS with
respect to {1, 2, · · · , 𝑖} \ {ℎ} and 𝐶. After ℎ reenters, he chooses the lottery
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ticket that he likes the most. Such a lottery ticket cannot be the one he just
returned.

Since ℎ has chosen the lottery ticket he likes the most when he reenters,
he will not return his ticket again and go back to the door within the process
from 𝑥𝑖−1 to 𝑥𝑖. Note that as long as there is an agent by the door during the
process, the number of lottery tickets issued by each machine remains the same.
This implies that the process from 𝑥𝑖−1 to 𝑥𝑖 will not form a cycle because
the number of agents in the room is finite at (𝑖 − 1) and no agent will visit
the door twice in the process. Therefore, the process will end with a lottery
allocation 𝑥𝑖 in a finite number of steps. During the process, starting with 𝑖, 𝑥𝑖
is obtained such that no agent from {1, · · · , 𝑖} would like to return his lottery
ticket anymore. Thus, 𝑥𝑖 must be IS with respect to {1, 2, · · · , 𝑖} and 𝐶. This
shows that 𝑥𝑛 is an IS allocation for (𝐴,𝐶, 𝑞, 𝑢). Note that the total number of
steps to achieve 𝑥𝑛 is bounded by (𝑛(𝑛 + 1))/2. Thus, this completes the proof
of Theorem 1. □

Proof of Theorem 4. Let 𝑥∗ be an SEF allocation. We know from Theorem 3
that 𝑥∗ is PO. Assume, on the contrary, that there is another allocation 𝑥′ ∈ 𝑋
which is also individually stable and Pareto optimal. As in the proof of Theorem
3, we consider two cases: (a) 𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥′) for all 𝑗 ∈ 𝐶; and (b) there is a
community 𝑗0 such that 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗0 (𝑥′).

We prove Case (a) first. Because 𝑥∗ ≠ 𝑥′, there exists at least an agent 𝑖′
such that 𝑥∗𝑖′ ≠ 𝑥′𝑖′ . By the assumption 𝑥∗ is SEF, it follows that 𝐸𝑈𝑖′ (𝑥∗) >
𝐸𝑈𝑖′ (𝑥′). Using the fact that 𝑥∗ is SEF and 𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥′), we also have
that 𝐸𝑈𝑖 (𝑥∗) ≥ 𝐸𝑈𝑖 (𝑥′) for all agents 𝑖. But, this implies that 𝑥∗𝑃𝑥′, which
contradicts the assumption that 𝑥′ is Pareto optimal. This completes the proof
of Case (a).

Now we prove Case (b): ∃ 𝑗0 such that 𝑛 𝑗0 (𝑥′) > 𝑛 𝑗0 (𝑥∗). In this case, we
show that we can find an infinite chain of communities, 𝑗0, 𝑗1, 𝑗2, · · · , with
distinct vertexes, such that

𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗0 (𝑥′),

𝑛 𝑗1 (𝑥∗) + 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗1 (𝑥′) + 𝑛 𝑗0 (𝑥′),
𝑛 𝑗2 (𝑥∗) + 𝑛 𝑗1 (𝑥∗) + 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗2 (𝑥′) + 𝑛 𝑗1 (𝑥′) + 𝑛 𝑗0 (𝑥′),

· · · · · ·
But this is impossible because the number of communities is finite.
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To complete the proof, we start with a chain, 𝑗0, 𝑗1, · · · , 𝑗𝑘 , with distinct
vertexes, such that

𝑛 𝑗𝑘 (𝑥∗) + · · · + 𝑛 𝑗1 (𝑥∗) + 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗𝑘 (𝑥′) + · · · + 𝑛 𝑗1 (𝑥′) + 𝑛 𝑗0 (𝑥′). (9.1)

Then we claim that there exists 𝑗𝑘+1 such that 𝑗𝑘+1 ∉ { 𝑗0, 𝑗1, · · · , 𝑗𝑘 } and

𝑛 𝑗𝑘+1 (𝑥∗)+𝑛 𝑗𝑘 (𝑥∗)+· · ·+𝑛 𝑗1 (𝑥∗)+𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗𝑘+1 (𝑥′)+𝑛 𝑗𝑘 (𝑥∗)+· · ·+𝑛 𝑗1 (𝑥′)+𝑛 𝑗0 (𝑥′).
(9.2)

By assumption, (9.1) holds for 𝑘 = 0, i.e., 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗0 (𝑥′), there exists at
least one agent 𝑖0 such that 𝑥′𝑖0 = 𝑗0 and 𝑥∗𝑖0 ≠ 𝑗0. For notational convenience,
let 𝑗1 = 𝑥∗𝑖0 . Clearly, 𝑗0 ≠ 𝑗1.

Because 𝑥′ is IS, we have, by the IS definition,

𝐸𝑈𝑖0 (𝑥′) ≥ 𝐸𝑈𝑖0 (𝑥′−𝑖0 , 𝑗1),

which leads to
𝑢𝑖0 𝑗0𝑧 𝑗0 (𝑥′) ≥ 𝑢𝑖0 𝑗1𝑧 𝑗1 (𝑥′−𝑖0 , 𝑗1). (9.3)

By the assumption 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗0 (𝑥′), we have 𝑧 𝑗0 (𝑥∗) ≥ 𝑧 𝑗0 (𝑥′). Then

𝑢𝑖0 𝑗0𝑧 𝑗0 (𝑥′) ≤ 𝑢𝑖0 𝑗0𝑧 𝑗0 (𝑥∗) (9.4)

must hold. Because 𝑥∗ is SEF, it follows from the SEF definition that

𝑢𝑖0 𝑗0𝑧 𝑗0 (𝑥∗) < 𝑢𝑖0 𝑗1𝑧 𝑗1 (𝑥∗). (9.5)

Now it follows from inequalities (9.3)-(9.5) that

𝑢𝑖0 𝑗1𝑧 𝑗1 (𝑥∗) > 𝑢𝑖0 𝑗1𝑧 𝑗1 (𝑥′−𝑖0 , 𝑗1),

which gives us 𝑧 𝑗1 (𝑥∗) > 𝑧 𝑗1 (𝑥′−𝑖0 , 𝑗1) and then

𝑛 𝑗1 (𝑥∗) ≤ 𝑛 𝑗1 (𝑥′). (9.6)

It follows from (9.6) and 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗0 (𝑥′) that

𝑛 𝑗1 (𝑥∗) + 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗1 (𝑥′) + 𝑛 𝑗0 (𝑥′). (9.7)

Now, we can follow the procedure to find 𝑗2, etc, up to 𝑘 for the chain
𝑗0, 𝑗1, · · · , 𝑗𝑘 . We want to show that we can find the next 𝑗𝑘+1. Once again,
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it follows from (9.1) that there must exist at least one agent 𝑖𝑘 such that 𝑥′𝑖𝑘 ∈{ 𝑗0, 𝑗1, · · · , 𝑗𝑘 } and 𝑥∗𝑖𝑘 ∉ { 𝑗0, 𝑗1, · · · , 𝑗𝑘 }. Let 𝑥′𝑖𝑘 = 𝑗𝛼 ∈ { 𝑗0, 𝑗1, · · · , 𝑗𝑘 }.
For convenience, let 𝑗𝑘+1 = 𝑥∗𝑖𝑘 . Note that 𝑗𝑘+1 ∉ { 𝑗0, 𝑗1, · · · , 𝑗𝑘 }.

When 𝑗𝛼 = 𝑗0, the proof (9.3)-(9.5) yields 𝑛 𝑗1 (𝑥∗) ≤ 𝑛 𝑗1 (𝑥′), which gives
us

𝑧 𝑗1 (𝑥∗) ≥ 𝑧 𝑗1 (𝑥′). (9.8)

Now we show the case when 𝑗𝛼 = 𝑗1. Once again, we can follow the proof
(9.3)-(9.5) (in which (9.8) has been used) to get 𝑛 𝑗2 (𝑥∗) ≤ 𝑛 𝑗2 (𝑥′), which gives
us the desired inequality

𝑧 𝑗2 (𝑥∗) ≥ 𝑧 𝑗2 (𝑥′). (9.9)

Thus, by duplicating the proof of (9.3)-(9.5) for 𝛼 = 0, 1, 2, · · · , 𝑘 , we get
the following sequence

𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗0 (𝑥′) ⇒ 𝑧 𝑗0 (𝑥∗) ≥ 𝑧 𝑗0 (𝑥′) (9.10)
⇒ 𝑛 𝑗1 (𝑥∗) ≤ 𝑛 𝑗1 (𝑥′) ⇒ 𝑧 𝑗1 (𝑥∗) ≥ 𝑧 𝑗1 (𝑥′)

· · · · · ·
⇒ 𝑛 𝑗𝑘 (𝑥∗) ≤ 𝑛 𝑗𝑘 (𝑥′) ⇒ 𝑧 𝑗𝑘 (𝑥∗) ≥ 𝑧 𝑗𝑘 (𝑥′)

Note that 𝑗𝑘+1 = 𝑥∗𝑖𝑘 and 𝑗𝑘+1 ∉ { 𝑗0, 𝑗1, · · · , 𝑗𝑘 }. Once again, due to 𝑧 𝑗𝑘 (𝑥∗) ≥
𝑧 𝑗𝑘 (𝑥′), we can follow the proof of (9.3)-(9.5) to get 𝑛 𝑗𝑘+1 (𝑥∗) ≤ 𝑛 𝑗𝑘+1 (𝑥′),
which, together with (9.1), yields (9.2). This completes the proof. □

Discussion of the proof of Theorem 6
In the proof of Theorem 6, we introduce a special door clock to track agents

and their allocated tickets. We set a clock on the door and let it tick once
when an agent is entering the room. The clock does not tick when an agent
inside goes out of the door. When that agent reenters the room, the clock ticks
one more time. For example, if 1 and 2 are the first two agents in an order to
enter the room, then, when agent 1 is entering the room, the clock ticks once
and records a time 𝑧 = 1. The clock ticks one more time and records a time
𝑧 = 2 when agent 2 is entering the room. Things now become a little bit more
complicated because agent 1 may want to return his ticket after agent 2 enters
and takes a ticket from the same pool as agent 1’s. If that is the case, we allow
agent 1 to go out of the room but the clock does not tick when agent 1 goes
out. The clock ticks one more time and records a time 𝑧 = 3 when agent 1 is
reentering. If agent 1 does not want to return his ticket after agent 2 enters,
agent 1 stays in the room and the clock stops at 𝑧 = 2. After that, the next agent
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Table 5: Door time for Example 3

agent at the door door time (1,2,3,4)
1 1 ( , , , )
2 2 (𝐶2, , , )
1 3 ( , 𝐶2, , )
3 4 (𝐶3, 𝐶2, , )
4 5 (𝐶3, 𝐶2, 𝐶2, )

null 6 (𝐶3, 𝐶2, 𝐶2, 𝐶1)

in the order can get in and the clock ticks accordingly. When all agents in 𝐴
form any fixed or random order to enter the room, the clock records a sequence
of door times {𝑧} = 1, 2, · · · , 𝑇 , where 𝑇 is the door time when the algorithm
ends. Note 𝑇 is at least as large as 𝑛, and at most as large as 𝑛(𝑛+1)

2 .
An agent’s door time is a dynamic process, depending on the order of

agents entering the room and the optimization process taking place in the room.
But, we can assign a unique door time {𝑡1, 𝑡2, · · · , 𝑡𝑛} for agents in 𝐴, where 𝑡𝑖
is defined as the door time when agent 𝑖 enters the door the last time. That is,
agent 𝑖 enters the room and gets his ticket at door time 𝑡𝑖, and then keeps the
same ticket from the door time 𝑡𝑖 to the door time 𝑇 . Clearly, each 𝑡𝑖 is a time
in the sequence of door times 1, 2, · · · , 𝑇 .

For each community, there is a unique door time 𝑡 𝑗 , where 𝑡 𝑗 is the first
door time such that community 𝑗 has a number of outside tickets that equals
𝑛 𝑗 (𝑥𝑛). That is, the total number of outside tickets held by agents remains the
same for 𝑗 from time 𝑡 𝑗 to time 𝑇 .

Table 7 presents the door time in Example 2 for the order (1,2,3,4) under
the Tickets algorithm. According to our definition, the unique door times of
the four agents are given by 𝑡1 = 3, 𝑡2 = 2, 𝑡3 = 4, 𝑡4 = 5, while the unique
door times of the three communities are given by 𝑡𝐶1 = 6, 𝑡𝐶2 = 5, 𝑡𝐶3 = 4.
Agent 1 reenters the room and the clock ticks at 𝑧 = 3 and he chooses 𝐶3 and
then holds 𝐶3 to the end. Thus, 𝑡1 = 3. At the door time 𝑧 = 5, the number of
agents who hold 𝐶2 equals 2, that remains the same from 𝑧 = 5 to 𝑧 = 6, which
is the end. Thus, 𝑡𝐶2 = 5.

We now define a sequence of allocations (𝑦1, 𝑦2, · · · , 𝑦𝑇 ), where each 𝑦𝑧
is the allocation in the room at the door time 𝑧 for those agents who have been
inside the room, 1 ≤ 𝑧 ≤ 𝑇 , and the agent at time 𝑧, if any, who is willing to
return his lottery, has gone out of the door.
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It should be noted that the allocation (𝑦1, 𝑦2, · · · , 𝑦𝑇 ) may be different from
the allocation (𝑥1, 𝑥2, · · · , 𝑥𝑛) in the algorithm because𝑇 may be different from
𝑛. But, note that 𝑦2 = 𝑥1 and 𝑦𝑇 = 𝑥𝑛. Let 𝑛 𝑗 (𝑦𝑧) denote the number of agents
who hold tickets in community 𝑗 under 𝑦𝑧, 𝑧 = 1, 2, · · · , 𝑇 . Let 𝑡1 and 𝑡2 be two
door times such that 𝑦𝑡1 = 𝑥𝑖 and 𝑦𝑡2 = 𝑥𝑖+1. Then, for any door time 𝑡 such that
𝑡1 ≤ 𝑡 < 𝑡2 and any community 𝑗 ∈ 𝐶, we have 𝑛 𝑗 (𝑦𝑡) = 𝑛 𝑗 (𝑦𝑡2). Thus, 𝑛 𝑗 (𝑦𝑧)
must be monotonically increasing with respect to door time 𝑧 = 1, 2, · · · , 𝑇 .

For each community, there is a unique door time 𝑡 𝑗 , where 𝑡 𝑗 is the first
door time such that community 𝑗 has a number of outside tickets that equals
𝑛 𝑗 (𝑥𝑛). That is, the total number of outside tickets held by agents remains
the same for 𝑗 from time 𝑡 𝑗 to time 𝑇 . This definition makes sense because
𝑛 𝑗 (𝑦𝑧) ≤ 𝑛 𝑗 (𝑦𝑧+1) for 𝑧 = 1, 2, · · · , 𝑇 − 1. Thus, each community 𝑗 has a
unique 𝑡 𝑗 .

There are useful properties associated with these definitions of door times.
(A). 𝑡𝑖1 ≠ 𝑡𝑖2 if and only if 𝑖1 ≠ 𝑖2 for any two agents 𝑖1 and 𝑖2 in 𝐴.
(B). 𝑡 𝑗1 ≠ 𝑡 𝑗2 if and only if 𝑗1 ≠ 𝑗2 for any two communities 𝑗1 and 𝑗2 in 𝐶.
(C). If 𝑡𝑖1 > 𝑡𝑖2 for two agents 𝑖1 and 𝑖2, then either 𝑖1 is an agent from the

order who enters the room at time 𝑡𝑖1 and keeps his choice from 𝑡𝑖1 to 𝑇 , or
agent 𝑖1 must have gone out of the room and reentered at least once after door
time 𝑡𝑖2 .

(D). 𝑛 𝑗 (𝑦𝑘 ) is nondecreasing in door time 𝑘 for all 𝑗 ∈ 𝐶. That is,
𝑛 𝑗 (𝑦1) ≤ 𝑛 𝑗 (𝑦2) ≤ · · · ≤ 𝑛 𝑗 (𝑦𝑇 ) for all 𝑗 ∈ 𝐶. That is, no community
becomes less congested as more and more agents enter the room.

(E). It follows from the definition of 𝑡 𝑗 , 𝑛 𝑗 (𝑦𝑡) < 𝑛 𝑗 (𝑦𝑇 ) for all 𝑡 =
1, 2, · · · , 𝑡 𝑗−1 and 𝑛 𝑗 (𝑦𝑡) = 𝑛 𝑗 (𝑦𝑇 ) for all 𝑡 = 𝑡 𝑗 , 𝑡 𝑗+1, · · · , 𝑇 for all 𝑗 ∈ 𝐶.

(F). Allocation 𝑦𝑡 , 𝑡 = 1, 2, · · · , 𝑇 , is always IS with respect to agents in
the room. Under our assumption 𝑢𝑖 𝑗 > 0 for at least one 𝑗 ∈ 𝐶, each agent in
the room under 𝑦𝑡 holds one and only one lottery ticket.

(G). The agent who enters the room as the clock ticks and records door
time 𝑡 𝑗 − 1 must have chosen community 𝑗 . For any 𝑡 > 𝑡 𝑗 , if there exists an
agent who chooses 𝑗 , there must exist the other agent who returns his 𝑗 ticket
and gets out of the door and reenters to choose a ticket that is not 𝑗 .

Proof of Theorem 6. Assume, on the contrary, there exists an SEF allocation
𝑥∗ and 𝑥𝑛 ≠ 𝑥∗. We consider two cases.

Case 1. There is a community 𝑗0 such that 𝑛 𝑗0 (𝑥∗) < 𝑛 𝑗0 (𝑥𝑛). This leads to
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Case (b) in the proof of theorem 4. Note that in the proof of theorem 4 in Case
(b), we only use the IS, not PO assumption. From that proof, we can conclude
that 𝑥𝑛 is not IS, which is a desired contradiction.

Case 2. Assume that 𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥𝑛) for all 𝑗 ∈ 𝐶. Because 𝑥∗ ≠ 𝑥𝑛, 𝑥∗
is SEF, 𝑥𝑛 is IS, it follows from Theorem 5 that we can get 𝑥∗ by using the
TTC algorithm from 𝑥𝑛. This is due to the fact that 𝑥∗ is unique and 𝑥𝑛 is IS.
Let Ω1 = {𝑖1, 𝑖2, · · · , 𝑖𝜔} be any TTC cycle from the TTC algorithm such that
𝜔 ≥ 2. Because Ω1 is a TTC cycle, without loss of generality, we may suppose
the cycle Ω1 has been formed as follows: Agent 𝑖𝜃 receives agent 𝑖(𝜃+1)’s ticket
for all 𝜃 = 1, 2, · · · , 𝜔 − 1 and agent 𝑖𝜔 receives agent 𝑖1’s ticket.

For notation convenience, we use 𝜃 for 𝑖𝜃 , 𝜃 = 1, 2, · · · , 𝜔. Let 𝜇𝜃 = 𝑥∗𝜃 and
𝜈𝜃 = 𝑥𝑛𝜃 . 𝜇𝜃 and 𝜈𝜃 are the tickets held by agent 𝜃 under 𝑥∗ and 𝑥𝑛, respectively.
Note that agents 𝜃, 𝜃 = 1, 2, · · · , 𝜔, trade their tickets under 𝑥𝑛 to get their
tickets under 𝑥∗. We need to show that there exists no Ω1 cycle such that
|Ω1 | ≥ 2, by a contradiction.

Because 𝑥∗ is strictly envy-free, all agents 𝜃 become strictly better off by
trading their tickets in the cycle Ω1. The following must hold for all agents 𝜃,
𝜃 = 1, 2, · · · , 𝜔,

𝐸𝑈𝜃 (𝑥𝑛) < 𝐸𝑈𝜃 (𝑥∗), (9.11)

which implies that
𝑢𝜃𝜇𝜃 𝑧𝜇𝜃 (𝑥∗) > 𝑢𝜃𝜈𝜃 𝑧𝜈𝜃 (𝑥𝑛), (9.12)

since 𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥𝑛) for all 𝑗 ∈ 𝐶, by assumption.
Now, we state three lemmas, which only apply to Case 2.

Lemma 1. There exists at least one agent 𝑖𝜃 in Ω1 such that 𝑡𝜈𝜃 < 𝑡𝜃 .

Recall that 𝜈𝜃 is agent 𝜃’s lottery ticket under 𝑥𝑛, the outcome from the
algorithm. From (E), the total number of agents who hold a lottery in 𝜈𝜃
remains the same for 𝑡 ≥ 𝑡𝜈𝜃 . By the definition 𝑡𝜃 , agent 𝜃 will keep the same
lottery for all 𝑡 ≥ 𝑡𝜃 . Due to (F), Lemma 1 states that there exists one agent 𝜃
in the cycle Ω1 such that agent 𝜃 enters the room and chooses the lottery 𝜈𝜃
and keeps the same lottery to the close of the algorithm. Moreover, the claim
𝑡𝜈𝜃 < 𝑡𝜃 implies that after agent 𝜃 enters at 𝑡𝜃 to choose 𝜈𝜃 , there exists another
agent who must return his lottery ticket in community 𝜈𝜃 and reenters to choose
a lottery ticket that is not 𝜈𝜃 . We can even make a stronger statement. Define 𝜂
to be the agent such that 𝑡𝜂 = max{𝑡𝜃 |𝜃 = 1, 2, · · · , 𝜔}. That is, all agents in
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Ω1, except 𝜂, keep their lottery tickets at least from door time (𝑡𝜂 − 1) to the
end of the algorithm. 𝜂 is the last agent in Ω1 who will keep the same lottery
from the door 𝑡𝜂 to the end of the algorithm. That is, all agents in Ω1 will keep
the same lottery tickets from door time 𝑡𝜂 to the end of the algorithm. The next
lemma shows that Lemma 1 also applies to this agent 𝜂.

Lemma 2. The inequality 𝑡𝜈𝜂 < 𝑡𝜂 also holds.

We now continue our proof of Theorem 6. By Lemma 2, we have 𝑡𝜈𝜂 < 𝑡𝜂.
It follows from the definition of 𝑡𝜂 and Lemma 2 that there must exist at least
one agent, denoted 𝛾1, who holds a ticket in community 𝜈𝜂 under the allocation
𝑦𝑡𝜂 at the door time 𝑡𝜂 but a ticket in a different community, 𝜈𝛾1 , say, under
the lottery allocation 𝑥𝑛. Because agent 𝛾1 must go back to the door after 𝑡𝜂
at least once, it follows that 𝑡𝛾1 > 𝑡𝜂. The next lemma shows that if that is the
case, then we can find another agent 𝛾2 such that 𝑡𝛾2 > 𝑡𝛾1 .

Let Ω2 be the cycle where agent 𝛾1 belongs and 𝑡𝜂2 = max{𝑡𝛿 | 𝛿 ∈ Ω2}.
Note that 𝛾1 ∉ Ω1 since 𝑡𝜂 < 𝑡𝛾1 . Thus, Ω1 and Ω2 are two different cycles.
After we find this 𝛾1, we show that this 𝛾2 must be in the third cycle Ω3.

Lemma 3. There exists an agent who is in the third cycle Ω3.

The remaining proof of Theorem 6 directly follows Lemma 3 because Ω3
is either a singleton set or consists of at least two agents. In either case, we
can find the fourth cycle Ω4 that is nonempty (see the proof of Lemma 3 in the
Appendix). This process leads to an infinite sequence of cycles, Ω1,Ω2, · · · ,
a desired contraction because the number of cycles can only be finite. This
completes the proof of Theorem 6. □

Proof of Lemma 1. Recall our definitions of the door times 𝑡𝜃 for agent 𝜃 and 𝑡𝜈𝜃
for his lottery in community 𝜈𝜃 : 𝑡𝜈𝜃 is the door time such that 𝑛𝜈𝜃 (𝑡) = 𝑛𝜈𝜃 (𝑥𝑛)
for all door time 𝑡 = 𝑡𝜈𝜃 , (𝑡𝜈𝜃 + 1), · · · , 𝑇 . Thus, one agent must give up his
lottery in community 𝜈𝜃 and goes out of the door if there is any other agent
who enters and chooses a lottery ticket from 𝜈𝜃 after time 𝑡𝜈𝜃 . 𝑡𝜃 is the door
time such that agent 𝜃 keeps his lottery ticket 𝜈𝜃 to the end of the algorithm,
the door time 𝑇 . The inequality 𝑡𝜈𝜃 < 𝑡𝜃 implies that either agent 𝜃 returns his
ticket at the door time (𝑡𝜃 − 1) and reenters to choose 𝜈𝜃 at the door time 𝑡𝜈𝜃 ;
or he is an agent from the original order who just enters at the door time 𝑡𝜃 and
chooses 𝜈𝜃 . By 𝑡𝜈𝜃 < 𝑡𝜃 , Lemma 1 claims that after 𝜃 chooses his ticket 𝜈𝜃 ,
by property (G), there must exist one other agent in the room who will return
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his lottery in community 𝜈𝜃 and gets out of the door. This agent reenters and
chooses a ticket that is not in community 𝜈𝜃 .

Define 𝑡′ = max
𝜃=1,2,··· ,𝜔

𝑡𝜈𝜃 . Then, for all 𝑡 such that 𝑡 = (𝑡′+1), (𝑡′+2), · · · , 𝑇 ,
for all agents 𝜃 in Ω1, the following holds

𝑛𝜈𝜃 (𝑦𝑡) = 𝑛𝜈𝜃 (𝑦𝑇 ).
Moreover, for all 𝑡 such that 𝑡 ≤ 𝑡′, there is at least one 𝜃 ∈ Ω1 such that

𝑛𝜈𝜃 (𝑦𝑡) < 𝑛𝜈𝜃 (𝑦𝑇 ),
by property (D). Therefore, there is one and only one community 𝜈∗ in
{𝜈 |𝜈𝜃 = 𝜈, 𝜃 ∈ Ω1} such that

𝑛𝜈∗ (𝑦𝑡′) < 𝑛𝜈∗ (𝑦𝑇 )
at the door time 𝑡′. Thus, 𝑛𝜈∗ (𝑦𝑡) < 𝑛𝜈∗ (𝑦𝑇 ) for all door time 𝑡 < 𝑡′ and
𝑛𝜈∗ (𝑦𝑡) + 1 = 𝑛𝜈∗ (𝑦𝑇 ) for 𝑡 = 𝑡′. Moreover, 𝑛𝜈∗ (𝑦𝑡) = 𝑛𝜈∗ (𝑦𝑇 ) for all door time
𝑡 > 𝑡′.

Now, assume, on the contrary, that 𝑡𝜃 ≤ 𝑡𝜈𝜃 for all 𝜃 ∈ Ω1. This means that
all agents 𝜃 ∈ Ω1 will keep their lotteries to the door time 𝑇 . That is, there is no
agent 𝜃 ∈ Ω1 who will go outside of the door after the door time 𝑡′. Let 𝜃∗ be
the agent in Ω1 such that 𝜇𝜃∗ = 𝜈∗, where 𝜇𝜃∗ is the lottery ticket in community
𝜈∗ agent 𝜃∗ obtains after forming the cycle Ω1. Then, at the door time 𝑡′, the
following holds

𝑛𝜈𝜃∗ (𝑦𝑡′) = 𝑛𝜈𝜃∗ (𝑦𝑇 ) and 𝑛𝜇𝜃∗ (𝑦𝑡′) + 1 = 𝑛𝜇𝜃∗ (𝑦𝑇 ).
Thus, at the door time 𝑡′, agent 𝜃∗ holds the ticket in community 𝜈𝜃∗ , but he
strictly prefers a lottery in community 𝜈∗, by (9.11). This implies that the
lottery allocation at the door time 𝑡′ cannot be IS (with respect to the set of
agents in the room and communities 𝐶) because agent 𝜃∗ will return his lottery
ticket 𝜈𝜃∗ for the better lottery ticket 𝜈∗. However, this is a contradiction to the
property (F). This completes the proof of Lemma 1. □

Proof of Lemma 2. We need to prove that, at the door time 𝑡𝜂 when agent 𝜂
enters the room and chooses a lottery ticket from community 𝜈𝜂, there exists
another agent who will return his lottery ticket in community 𝜈𝜂 and go back
to the door. Here we have used property (D).
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By Lemma 1, there is an agent 𝜃∗ ∈ Ω1 such that 𝑡𝜈𝜃∗ < 𝑡𝜃∗ . If 𝜃∗ = 𝜂, we
are done. If not, then 𝜃∗ ≠ 𝜂 and

𝑡𝜂 > 𝑡𝜃∗ > 𝑡𝜈𝜃∗ .

Now consider agent (𝜃∗+1) ∈ Ω1 and his lottery ticket 𝜈(𝜃∗+1) . By the definition
of Ω1, it follows from (9.11) that

𝐸𝑈𝜃∗ (𝑥𝑛) < 𝐸𝑈𝜃∗ (𝑥∗) = 𝑢𝜃∗𝜇𝜃∗ 𝑧𝜇𝜃∗ (𝑥∗). (9.13)

The equality “=” above follows from the definition of expected utility and
the lottery ‘house’ 𝜇𝜃∗ is obtained by 𝜃∗ in the cycle Ω1. For all 𝑗 ∈ 𝐶,
𝑧 𝑗 (𝑥𝑛) = 𝑧 𝑗 (𝑥∗) and 𝜇𝜃∗ = 𝜈(𝜃∗+1) , we have

𝑢𝜃∗𝜇𝜃∗ 𝑧𝜇𝜃∗ (𝑥∗) = 𝑢𝜃∗𝜈 (𝜃∗+1) 𝑧𝜈 (𝜃∗+1) (𝑥𝑛). (9.14)

For notational convenience, let 𝑦𝑡𝜂 = 𝑂. Because 𝑂 is IS by the property (F),
we have

𝐸𝑈𝜃∗ (𝑂) ≥ 𝐸𝑈𝜃∗ (𝑂−𝜃∗ , 𝜈(𝜃∗+1)) = 𝑢𝜃∗𝜈 (𝜃∗+1) 𝑧𝜈 (𝜃∗+1) (𝑂−𝜃∗ , 𝜈(𝜃∗+1)). (9.15)

Because 𝑡𝜈𝜃∗ < 𝑡𝜂, we have 𝑛𝜈𝜃∗ (𝑂) = 𝑛𝜈𝜃∗ (𝑥𝑛). Thus,

𝐸𝑈𝜃∗ (𝑥𝑛) = 𝐸𝑈𝜃∗ (𝑂). (9.16)

By equations (9.13)-(9.16), we have

𝑢𝜃∗𝜈 (𝜃∗+1) 𝑧𝜈 (𝜃∗+1) (𝑥𝑛) > 𝑢𝜃∗𝜈 (𝜃∗+1) 𝑧𝜈 (𝜃∗+1) (𝑂−𝜃∗ , 𝜈(𝜃∗+1)). (9.17)

Thus, we must have

𝑛𝜈𝑦(𝜃∗+1)
(𝑡𝜂) + 1 > 𝑛𝜈 (𝜃∗+1) (𝑥𝑛), (9.18)

which yields
𝑛𝜈𝑦(𝜃∗+1)

(𝑡𝜂) ≥ 𝑛𝜈 (𝜃∗+1) (𝑥𝑛), (9.19)

and then,
𝑡𝜈 (𝜃∗+1) < 𝑡𝜂 . (9.20)

Now, due to (9.20), we can apply the same idea in the proof with agent 𝜃∗
above to agent (𝜃∗ + 1) to find agent (𝜃∗ + 2) and 𝜈(𝜃∗+2) , and then the following
inequality also holds

𝑡𝜈 (𝜃∗+2) < 𝑡𝜂 .
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Continuing with this process, we must eventually reach the agent 𝜂 since he is
also an agent in Ω1. Thus, the inequality

𝑡𝜈𝜂 < 𝑡𝜂

must hold. This completes the proof of Lemma 2. □

Proof of Lemma 3. Now we consider two cases for 𝛾1. Case (𝛼). |Ω2 | ≥ 2;
Case (𝛽). Ω2 = {𝛾1}.

First, we prove Case (𝛼). By the assumption, Ω2 consists of at least two
agents. Let 𝛾1 ∈ Ω2 = {𝑖′1, 𝑖′2, · · · , 𝑖′ℎ}. But, for notation convenience, we use
𝛿 for 𝑖′𝛿, 𝛿 = 1, 2, · · · , ℎ. Let 𝜂2 ∈ Ω2 such that 𝑡𝜂2 = max{𝑡𝛿 |𝛿 ∈ Ω2}. By
Lemma 2, we have 𝑡𝜂2 > 𝑡𝜈𝜂2

. Now, property (G) implies that when 𝜂2 enters
and chooses the lottery 𝜈𝜂2 in community 𝜈𝜂2 , there exists an agent who returns
his lottery in community 𝜈𝜂2 and goes out of the door. This implies that there
is an agent 𝛾2, say, such that 𝑡𝛾2 > 𝑡𝜂2 , which implies that 𝛾2 must be in the
third cycle Ω3. This completes the proof of Case (𝛼).

Next, we prove Case (𝛽). Under this case,

𝐸𝑈𝛾1 (𝑥𝑛) = 𝐸𝑈𝛾1 (𝑥∗). (9.21)

Recall that 𝜂 ∈ Ω1 and 𝛾1 does not hold a lottery in the community where 𝜂 is,
under 𝑥𝑛. Because 𝑥∗ is SEF, and 𝜂 and 𝛾1 are not in the same communities
under 𝑥𝑛, we have

𝐸𝑈𝛾1 (𝑥∗) > 𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑥∗). (9.22)

By our assumption in Case (b), 𝑛 𝑗 (𝑥∗) = 𝑛 𝑗 (𝑥𝑛) for all 𝑗 ∈ 𝐶, which implies
that 𝑧 𝑗 (𝑥∗) = 𝑧 𝑗 (𝑥𝑛) for all 𝑗 ∈ 𝐶. Thus, 𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑥∗) = 𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑥𝑛). And
then (9.22) gives us

𝐸𝑈𝛾1 (𝑥∗) > 𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑥𝑛). (9.23)

Since 𝐸𝑈𝛾1 (𝑥𝑛) = 𝑢𝛾1𝜈𝛾1
𝑧𝜈𝛾1

(𝑥𝑛), it follows from (9.21) and (9.23) that

𝑢𝛾1𝜈𝛾1
𝑧𝜈𝛾1

(𝑥𝑛) > 𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑥𝑛). (9.24)

Because 𝑦𝑡𝜂 is IS (with respect to agents in the room at time 𝑡𝜂) and 𝛾1 holds a
lottery ticket in community 𝜈𝜂, which is not equal to 𝜈𝛾1 , we obtain, by the IS
definition,

𝐸𝑈𝛾1 (𝑂) ≥ 𝐸𝑈𝛾1 ((𝑂−𝛾1 , 𝜈𝛾1)),
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where 𝑂 = 𝑦𝑡𝜂 , and then

𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑂) ≥ 𝑢𝛾1𝜈𝛾1
𝑧𝜈𝛾1

((𝑂−𝛾1 , 𝜈𝛾1)). (9.25)

Now, by Lemma 2, at the door time 𝑡𝜂, the inequality 𝑡𝜈𝜂 < 𝑡𝜂 holds. Thus,
by property (E), we get

𝑧𝜈𝜂 (𝑂) = 𝑧𝜈𝜂 (𝑥𝑛). (9.26)

By (9.26), 𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑥𝑛) = 𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑂). Then, by (9.24) and (9.25), we get

𝑢𝛾1𝜈𝛾1
𝑧𝜈𝛾1

(𝑥𝑛) > 𝑢𝛾1𝜈𝜂 𝑧𝜈𝜂 (𝑂) ≥ 𝑢𝛾1𝜈𝛾1
𝑧𝜈𝛾1

((𝑂−𝛾1 , 𝜈𝛾1)), (9.27)

which yields
𝑛𝜈𝛾1

(𝑥𝑛) < 𝑛𝜈𝛾1
(𝑂) + 1,

and then

𝑛𝜈𝛾1
(𝑥𝑛) ≤ 𝑛𝜈𝛾1

(𝑂). (9.28)

But, by property (D), 𝑛 𝑗 (𝑡) is nondecreasing function in 𝑡 for all 𝑗 ∈ 𝐶.
Thus, it must hold that

𝑛𝜈𝛾1
(𝑥𝑛) ≥ 𝑛𝜈𝛾1

(𝑂),
which, together with (9.28), gives us

𝑛𝜈𝛾1
(𝑥𝑛) = 𝑛𝜈𝛾1

(𝑂), (9.29)

which implies that 𝑡𝜈𝛾1
< 𝑡𝜂, and then the following must hold

𝑡𝜈𝛾1
< 𝑡𝜂 < 𝑡𝛾1 .

Now, by property (G), there must exist an agent, denoted 𝛾2, who holds the
ticket of 𝜈𝛾1 at the door time 𝑡𝛾1 , but not a ticket of a different community, 𝜈𝛾2 ,
say, in the lottery allocation 𝑥𝑛. Thus, we have 𝑡𝛾2 > 𝑡𝛾1 , which implies that 𝛾2
is in the third cycle Ω3 because Ω2 is singleton. This completes the proof of
Case (𝛽).

□

Proof of Theorem 7. Let 𝐵𝑖 = 1 be the budgets for all 𝑖 ∈ 𝐴 and ℎ 𝑗 = 1
𝑧 𝑗 (𝑥∗) for

𝑗 ∈ 𝐶 be the prices. For the null commodity, let its price ℎ𝑚+1 be zero. Now
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consider agent 𝑖’s optimization problem in the choice of random allocations, as
if all goods are divisible, under his budget constraint:

max
(𝑝𝑖1,𝑝𝑖2,··· ,𝑝𝑖𝑚,𝑝𝑖 (𝑚+1) )

𝑚+1∑︁
𝑗=1

𝑝𝑖 𝑗𝑢𝑖 𝑗

subject to
𝑚+1∑︁
𝑗=1

𝑝𝑖 𝑗ℎ 𝑗 = 1.

For all 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐶 ∪ {𝑚 + 1}, let

𝑝∗𝑖 𝑗 =



𝑧 𝑗 (𝑥∗) if 𝑥∗𝑖 𝑗 = 1, 𝑗 ≠ 𝑚 + 1;
1 − 𝑧 𝑗 (𝑥∗) if 𝑥∗𝑖 𝑗 = 1, 𝑗 = 𝑚 + 1;
0 if 𝑥∗𝑖 𝑗 = 0.

We claim that [𝑝∗𝑖 𝑗 ] satisfies

a). the budget constraints for all agents 𝑖: For all 𝑖 ∈ 𝐴,

𝑚+1∑︁
𝑗=1

𝑝∗𝑖 𝑗 × ℎ 𝑗 =
1

𝑧 𝑗 (𝑥∗) (𝑧 𝑗 (𝑥
∗)) + 0 = 1;

b). the market clearing condition:

𝑛∑︁
𝑖=1

𝑝∗𝑖 𝑗 = 𝑞 𝑗 ;

c). the optimization condition where each agent maximizes his expected
utility subject to his budget constraint: Because 𝑥∗ is SEF, we have, for all 𝑖, 𝑗
such that 𝑥∗𝑖 𝑗 ≠ 1 and 𝑥∗𝑖 𝑗∗ = 1,

𝑢𝑖 𝑗∗𝑧 𝑗∗ (𝑥∗) > 𝑢𝑖 𝑗 𝑧 𝑗 (𝑥∗). (9.30)

Let 𝑃′ = [𝑝′𝑖 𝑗 ] be a random assignment that satisfies the budget constraints
∑︁
𝑗∈𝐶

𝑝′𝑖 𝑗ℎ 𝑗 = 1, ∀𝑖 ∈ 𝐴.
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Denote 𝑝′𝑖 𝑗ℎ 𝑗 = 𝑜𝑖 𝑗 . Then we have
∑︁
𝑗∈𝐶

𝑜𝑖 𝑗 = 1, ∀𝑖 ∈ 𝐴. (9.31)

Thus, the expected utility of agent 𝑖 under the random assignment 𝑃′ is given
by

𝐸𝑈𝑖 (𝑃′) =
∑︁
𝑗∈𝐶

𝑢𝑖 𝑗 𝑝
′
𝑖 𝑗 =

∑︁
𝑗∈𝐶

𝑢𝑖 𝑗
1
ℎ 𝑗

𝑜𝑖 𝑗 =
∑︁
𝑗∈𝐶

𝑢𝑖 𝑗 𝑧 𝑗 (𝑥∗)𝑜𝑖 𝑗 .

Replacing 𝑢𝑖 𝑗 𝑧 𝑗 (𝑥∗) with 𝑢𝑖 𝑗∗𝑧 𝑗∗ (𝑥∗) in the above, and then using inequality
(9.30) and equality (9.31), we have, ∀𝑖 ∈ 𝐴,∑︁

𝑗∈𝐶
𝑢𝑖 𝑗 𝑧 𝑗 (𝑥∗)𝑜𝑖 𝑗 ≤ 𝑢𝑖 𝑗∗𝑧 𝑗∗ (𝑥∗).

Thus, we have 𝐸𝑈𝑖 (𝑃∗) ≥ 𝐸𝑈𝑖 (𝑃′) for all 𝑖 ∈ 𝐴. Moreover, the equality holds
only if 𝑃′ = 𝑃∗. The uniqueness follows. Therefore, 𝑃(𝑥∗) = 𝑃𝐻𝑍 . This
completes the proof. □

9.2. Tickets Algorithm versus Lottery Game in Example 2

Example 2 (Continued). In Table 6, we present the Tickets algorithm for the
remaining 21 orders in Example 2. In Table 7, in the game of Example 2, we
denote agent 𝑖 by 𝐴𝑖, to avoid confusion. Agent 𝐴1 is the row player, agent
𝐴2 is the column player, agent 𝐴4 is the matrix player, and agent 𝐴3 is the
matrix group player. There are two pure Nash equilibria 𝑠 = (𝐶1, 𝐶2, 𝐶2, 𝐶3)
and 𝑠∗ = (𝐶3, 𝐶2, 𝐶2, 𝐶1), with equilibrium payoffs (2, 1

2 ,
1
2 , 2) and (3, 1

2 ,
1
2 , 3),

respectively. 𝑠∗ is SNE while 𝑠 is NE but not SNE (Konishi et al., 1997). We
find out that our Tickets algorithm can reach the only SNE 𝑠∗ no matter which
order has been used, as shown in the table.
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Table 6: Tickets Algorithm for Example 2

steps
Order (1,3,4,2) (1,4,2,3) (1,4,3,2)

1 (𝐶2, , , ) (𝐶2, , , ) (𝐶2, , , )
2 (𝐶2, , 𝐶2, ) (𝐶2, , , 𝐶1) (𝐶2, , , 𝐶1)

(𝐶3, , 𝐶2, )
3 (𝐶3, , 𝐶2, 𝐶1) (𝐶2, 𝐶2, , 𝐶1) (𝐶2, , 𝐶2, 𝐶1)

(𝐶3, 𝐶2, , 𝐶1) (𝐶3, , 𝐶2, 𝐶1)
4 (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1)

steps
Order (2,1,3,4) (2,1,4,3) (2,3,1,4)

1 ( , 𝐶2, , ) ( , 𝐶2, , ) ( , 𝐶2, , )
2 (𝐶3, 𝐶2, , ) (𝐶3, 𝐶2, , ) ( , 𝐶2, 𝐶2, )
3 (𝐶3, 𝐶2, 𝐶2, ) (𝐶3, 𝐶2, , 𝐶1) (𝐶3, 𝐶2, 𝐶2, )
4 (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1)

steps
Order (2,3,4,1) (2,4,1,3) (2,4,3,1)

1 ( , 𝐶2, , ) ( , 𝐶2, , ) ( , 𝐶2, , )
2 ( , 𝐶2, 𝐶2, ) ( , 𝐶2, , 𝐶1) ( , 𝐶2, , 𝐶1)
3 ( , 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, , 𝐶1) ( , 𝐶2, 𝐶2, 𝐶1)
4 (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1)

steps
Order (3,1,2,4) (3,1,4,2) (3,2,1,4)

1 ( , , 𝐶2, ) ( , , 𝐶2, ) ( , , 𝐶2, )
2 (𝐶3, , 𝐶2, ) (𝐶3, , 𝐶2, ) ( , 𝐶2, 𝐶2, )
3 (𝐶3, 𝐶2, 𝐶2, ) (𝐶3, , 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, )
4 (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1)

steps
Order (3,2,4,1) (3,4,1,2) (3,4,2,1)

1 ( , , 𝐶2, ) ( , , 𝐶2, ) ( , , 𝐶2, )
2 ( , 𝐶2, 𝐶2, ) ( , , 𝐶2, 𝐶1) ( , , 𝐶2, 𝐶1)
3 ( , 𝐶2, 𝐶2, 𝐶1) (𝐶3, , 𝐶2, 𝐶1) ( , 𝐶2, 𝐶2, 𝐶1)
4 (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1)

steps
Order (4,1,2,3) (4,1,3,2) (4,2,1,3)

1 ( , , , 𝐶1) ( , , , 𝐶1) ( , , , 𝐶1)
2 (𝐶2, , , 𝐶1) (𝐶2, , , 𝐶1) ( , 𝐶2, , 𝐶1)
3 (𝐶2, 𝐶2, , 𝐶1) (𝐶2, , 𝐶2, 𝐶1) (𝐶3, 𝐶2, , 𝐶1)

(𝐶3, 𝐶2, , 𝐶1) (𝐶3, , 𝐶2, 𝐶1)
4 (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1)

steps
Order (4,2,3,1) (4,3,1,2) (4,3,2,1)

1 ( , , , 𝐶1) ( , , , 𝐶1) ( , , , 𝐶1)
2 ( , 𝐶2, , 𝐶1) ( , , 𝐶2, 𝐶1) ( , , 𝐶2, 𝐶1)
3 ( , 𝐶2, 𝐶2, 𝐶1) (𝐶3, , 𝐶2, 𝐶1) ( , 𝐶2, 𝐶2, 𝐶1)
4 (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1) (𝐶3, 𝐶2, 𝐶2, 𝐶1)
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Table 7: Tickets Algorithm for Example 2
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ABSTRACT
This paper considers common use of natural, renewable resources. It identi-
fies good prospects for efficiency and welfare. To be precise, a core outcome
–hence cooperation – can be secured over time by principal planning of total
quotas, and in time by agents who share these in short-term markets. Informa-
tion flows in two directions: to the principal as market prices and from him as
total quantities. Of particular interest is eventual convergence to a golden-rule,
steady state.
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1. INTRODUCTION

ECONOMIC THEORY, like political science, has long regarded use of com-
mon resources as largely determined by self-concerned individuals. Then,

if such parties see no proper rights or frames, outcomes have often been
grossly inefficient.

It’s fortunate therefore that the two fields increasingly note, and often crit-
icise, lack of mitigating or welfare-enhancing institutions (March & Olsen,
1989). Both stress that dedicated agencies ought balance competition against
coordination and conflict against cooperation. Clearly, many instances are
overwhelmingly complex. Yet two major features stand out. First, since no-
body can attend to everything, competencies must be divided and responsibili-
ties delineated. Second, for efficiency, short-term concerns must comply with
those of the long run.
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58 Golden Rule in Cooperative Commons

Addressing these features, this paper argues for a two-level splitting of
roles and tasks. At the upper level, a directorate or principal sets aggregate
quotas in macro and over time. At the lower level, legitimate agents recur-
rently use short-term allowances in micro and time. Between the two levels,
and between the agents, market-like mechanisms channel information, deter-
mine prices, and allocate quantities.

Thus the principal cares, in the aggregate, for the natural resources, their
abundance, dynamics and sustainable yields. Lacking knowledge as to minor
details, mainly of an economic or operative nature, that agency must leave
short-term calculations and small-scale decisions to resource users. Each
among the latter parties, applying their own quota and technology, appropri-
ates some resource rent or profit, period after period. Set up this way, the
organizational design divorces central governance from decentralized discre-
tion. Yet, as argued below, it can coordinate choices and elicit necessary
information.

The renewable resources, considered here, are confined to a “region” or
local community. By assumption, property and user rights therein are of in-
termediary nature, between sole ownership and open access, but regulated or
well defined.1 Multi-agent fishery and forestry are cases in point.2 Suppose
that legitimate parties are so few and foresighted as to honour short and long
term commitments. On these premises, the questions addressed here are: Can
the users share resources efficiently and fairly in and across time? Can they
operate throughout as would a well informed, highly competent syndicate?

This paper answers these questions in the positive. Broadly, it decouples
long-term control from short-term choices.3 Further, it aligns the principal’s
foresight with the agents’ myopia. And finally, it marries centralized planning
to decentralized sharing. In other terms, a directorate governs an open-ended
cooperative game in the large. Play unfolds, however, in the small, among re-
source users, like a sequence of competitive equilibria. At each stage, money
makes for transferable utility, and it facilitates exchange of quotas or informa-
tion.

The motivation comes from the prospects for improving efficiency. To that
end, the paper goes far by way of decomposition across governance, parties,

1 Establishing (or enforcing) rights is important, but not an issue discussed here.
2 See ”Rainforests need laws, not saws” in The Economist, 4th-10th March, 2023.
3 Single-agent control dominates parts of the received literature (Gale, 1967; Majumdar & Roy,

2009; Peleg & Ryder, 1974; Rockafellar, 1976).
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resources, species and times. The framing fits a resource-based society in
which rights are respected, supervised and well defined. There is centralized
control of aggregate take-outs. The economy moves iteratively, by efficient
sharing of single-period quotas, and it heads towards a long-run steady state.
Quota allocations are determined as if supported by market-clearing, price-
taking behaviour (Flåm, 2020).4 Consequently, all along the system trajectory,
competitive equilibria prevail in quota markets, hence so do Pareto optimality
and core solutions as well.5

These novelties appear importnt. They indicate constitutional and institu-
tional reforms. However, the optic doesn’t directly or easily fit public cost-
benefit analysis (Millner & Heal, 2018).

This paper addresses economists concerned with management and use of
renewable resources.6 The main thrusts and novelties are threefold: First,
invoking convex preferences, convoluted criteria and money, it indicates, by
way of decomposition, good prospects for overall efficiency.7 Second, it em-
phasises the chief roles of agencies: decentralized trade of quotas unfolds
besides centralized programming of aggregate take-outs. Third, the paper
adds to the single-agent, single-stock, institution-free setting which dominates
much received literature.

The rest of the paper goes as follows. Section 2 presents preliminaries.
Section 3 considers single-period sharing of total take-out. It is organized
around efficient, short-term allocation, implemented and held up by shadow
pricing of available resources. Such allocation is realized period after period.
Most important, the outcomes form a sequence of contingent competitive equi-
libria.
Section 4 introduces the ecosystem, its dynamics and principal manager. Be-
ing science-based, the latter casts planning as a syndicated problem of dy-
namic programming. Section 5 considers a long-run steady state: a golden
rule in cooperative commons. Section 6 concludes.

4 Transactions can, but need not, be mediated by markets. Efficiency is described here as
though facilitated and upheld by clearing prices. In terms of strategic behavior, single-period
equilibrium might emerge as a Coase or ”folk” theorem (Dutta, 1995).

5 In principle, there is open access to quota markets but not directly to the natural resources at
hand. Resource rent won’t be dissipated but rather restored and shared.

6 It connects to game theory, optimization and operation research, but no links are spelled out.
7 For brevity and readability - and for political science - technical prerequisites are minimal.
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60 Golden Rule in Cooperative Commons

2. PRELIMINARIES

Each vector space is real, finite-dimensional - with standard partial order ≤,
”dot ·” inner product, and associated norm ‖·‖. Multi-dimensional quotas
form such a space Q.8 Any vector “quantity” q ∈ Q is seen as a bundle of
consumption (or harvest), taken out, during a single season, from one and the
same local habitat of natural, renewable resources.

q∗ ∈ Q∗ is shorthand for a linear price system on Q. Thus, under price-
taking behavior, take-out q ∈Q is worth q∗q := q∗(q) := q∗ ·q ∈ R.

Each economic agent, considered below, operates with a pecuniary payoff
function π : Q→R∪{−∞} of his own. The value π(q) =−∞ serves as a con-
ceptual but convenient device to account for implicit constraints. It precludes
infeasible or nonsensical choice q. Declare a payoff function π(·) proper iff
finite-valued somewhere, meaning dom(π) := {q | π(q) ∈ R} is non-empty.

As usual, optimality conditions invoke differentiability. That notion is
generalized here - and global in nature:

Definition 1. (Generalized derivatives) A payoff criterion π : Q→ R∪{−∞}
has a supgradient q∗ ∈Q∗ at q ∈Q, written q∗ ∈ ∂π(q), iff q maximizes the
function q̂ 7→ π(q̂)−q∗q̂ with finite value. The set ∂π(q) of all such supgradi-
ents is called the supdifferential.

π(q) =−∞ makes ∂π(q) empty. Otherwise, provided π(q) be finite,

q∗ ∈ ∂π(q)⇐⇒ π(q̂)≤ π(q)+q∗(q̂−q) for all q̂ ∈Q. (1)

By (1), the set ∂π(q) is closed convex. When a concave π(·) is classically dif-
ferentiable, ∂π(q) reduces to the customary gradient π ′(q). For both practical
computation and realism, it is important though, to accommodate non-smooth
instances:

Example 1. (Generating payoff by programs) Suppose that a resource user,
while holding bundle q ∈Q as input, faces a linear primal problem:

π(q) := max
y

{y∗y | Ay ≤ q & y ∈ Y+} ,

presumed solvable with finite optimal value. His output y belongs to a Eu-
clidean space Y, and y∗ ∈ Y∗ prices output linearly. The matrix A maps Y

8 In geometrical terms, Q is Euclidean.
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into Q. If A∗ denotes the transposed matrix, a price q∗ ∈ Q∗, not necessarily
unique, belongs to ∂π(q) iff it solves the dual problem:

π(q) = min
q∗

{
q∗q

∣∣ A∗q∗ ≥ y∗ & q∗ ∈Q∗
+

}
. (2)

For any subset R of the real numbers R, its supremum, denoted supR
is the smallest r̄ ∈ R∪{±∞} which is ≥ each r ∈ R. [By convention here,
sup∅ = −∞.] Infimum, denoted infR, equals −sup(−R). The following
derives from elementary convex analysis:

Proposition 1. (On price-taking profit) Suppose that a resource user, who has
a proper and pecuniary payoff function π : Q→ R∪{−∞}, faces cost regime
q∗ ∈Q∗ when taking out any q ∈Q.
• Then, his (price-taking) competitive profit function is given by

q∗ ∈Q∗ 7→ π∗(q∗) := sup{π(q)−q∗q | q ∈Q} , (3)

is closed9 and convex;
• The supremum π∗(q∗) in (3) is attained as maximum at q iff q∗ ∈ ∂π(q).
Then, q∗ ∈ ∂π(q)⇐⇒ π(q) = π∗(q∗)+q∗q, meaning that payoff π(q) splits
into profit π∗(q∗) plus competitive factor cost q∗q;
• If the payoff function π(·) is concave and bounded below near q ∈ Q, the
supdifferential ∂π(q) is non-empty;
• Reasonably, π(0)≥ 0, and in that case, π∗(q∗)≥ 0 for any q∗ ∈Q∗;
• If the agent faces user cost q∗, and holds private “property”q ∈Q, he may
aim at taking home π∗(q∗)+q∗q = π(q)+q∗(q−q), composed of pure profit
π∗(q∗) plus “resource rent”q∗q.

3. EFFICIENCY WITHIN SEASON

The paper attempts to decompose a long-term problem of resource manage-
ment into short-term parts. This section begins by considering allocation of
the seasonal total quota(s) across legitimate parties. Such quotas are presumed
perfectly divisible, marketable and transferable - with no externalities, fees or
frictions.

9 It’s lower semicontinuous, meaning that {q∗ ∈Q∗ | π∗(q∗)≤ r} comes closed for each r ∈
R.

Journal of Mechanism and Institution Design 8(1), 2023

“jMID-vol8(1)-01” — 2023/12/21 — 17:49 — page 61 — #65



62 Golden Rule in Cooperative Commons

Emphasis is here on efficient sharing during any fixed season (Flåm, 2020).
An impatient reader, chiefly concerned with intertemporal allocation and long
run, may first skip this section and later return to it.

Accommodated henceforth is a fixed finite ensemble I of economic agents,
#I ≥ 2, construed as resource users. In each period, member i ∈ I applies
the same proper, pecuniary payoff function πi : Q→ R∪{−∞}, and he targets
maximal profit.

Absent externalities in season, arguments as to short-term allocative effi-
ciency will revolve around convolution (4) of individual payoffs:

Definition 2. (Supremal convolution) If each i ∈ I has a proper payoff func-
tion qi ∈ Q 7→ πi(qi) ∈ R∪{−∞}, their sup-convoluted payoff function is de-
fined by

qI ∈Q 7→πI (qI ) := sup
(qi)

{
∑

i∈I

πi(qi)

∣∣∣∣∣ ∑
i∈I

qi = qI

}
. (4)

If some πi(·) increases on domπi, then

πI (qI ) = sup
(qi)

{
∑

i∈I

πi(qi)

∣∣∣∣∣ ∑
i∈I

qi ≤ qI

}
.

With each πi(·) (quasi-)concave, πI (·) also becomes (quasi-)concave.

Proposition 2. (On efficient allocation by equal margins (Flåm, 2020, 2021b))
For any best choice (qi) in (4) it holds

∂πI (qI )⊆ ∩i∈I ∂πi(qi).

Conversely, provided qI =∑i∈I qi, it also holds the turned-around inclusion:

∂πI (qI )⊇ ∩i∈I ∂πi(qi).

If moreover, ∩i∈I ∂πi(qi) is non-empty, then (qi) solves (4).

In this section, but this only, function πI (·) (4) is mainly a conceptual
construct, serving analysis. No member i ∈ I states problem (4). Indeed,
maybe not knowing more than his own criterion πi(·) - or, seeing just a local
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approximation to it - he can neither identify πI (·) nor solve any particular in-
stance πI (qI ) (4). It suffices though, that the agents together solve problem
(4) themselves; see Remark 2 below.

It is worth mentioning that Proposition 2 presumes no concavity of objec-
tives. It just needed that ∂πI (qI ) be non-empty.10

Added here are some results on Pareto optimality, core outcome and com-
petitive equilibrium. As is well known, these concepts connect to theory
on games and economic welfare (Luenberger, 1995; Osborne & Rubinstein,
1994). Their relevance for resource economics appears less noticed:

Proposition 3. (On single-season Pareto optimality, core solution and com-
petitive equilibrium (Flåm, 2021b, 2023))

• Any solution (qi) to (4) is a Pareto optimal allocation of qI .
• If agent i ∈ I already “owns”q

i
, “coalition” I ⊆ I can - by going

alone, in autarky - aim at no less joint payoff than

π I(qI) := sup
(qi)

{
∑
i∈I

πi(qi)

∣∣∣∣∣ ∑
i∈I

qi = ∑
i∈I

qi =: qI

}
.

So, for any shadow price q∗ ∈ ∂πI (qI ) on actual resource use, the cash
payment profile i ∈ I 7→ κi(q∗) := π∗

i (q
∗)+q∗qi constitutes a core solution

in that

∑
i∈I

κi(q∗)≥ πI(qI
)

for each I ⊂ I with equality for I = I and q
I

= qI .
• Still suppose agent i ∈ I “owns”qiwith ∑i∈I qi = q

I
. Then, any

shadow price q∗ ∈ ∂πI (q
I
), alongside any optimal allocation (qi) of q

I
=

qI to (4) constitutes a competitive equilibrium in that the quota market
clears, and agent i takes home maximal total profit π∗

i (q
∗)+q∗qi.

11

Clearly, activities, quotas qi or rents q∗q
i

can be distributed rather un-
evenly.

Concluding this section is a summary on how resource users enter a season
and proceed therein:

10 For that, presence of many and minor agents may help. While (4) preserves concavity, it may
also contribute to ”create” it.

11 These items could - or ought - be taxed.
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64 Golden Rule in Cooperative Commons

Assumption 1. (On sharing of seasonal quotas)
(I) At the very beginning of a season, prior to any trade of quotas, the princi-
pal sets a total quota qI . Immediately thereafter qI is split among legitimate
users by some time-invariant rule

i ∈ I , qI ∈Q 7→ qi = Qi(qI ), ∑
i∈I

Qi(qI ) = qI . (5)

(II) Subsequently, but prior to any use of quotas, the said users settle on a
profile i ∈ I 7→ qi ∈Q which solves (4).

Remark 1. (On allotted shares) q
i

in (5) can reflect grand-fathered or tradi-
tional rights; see Flåm (2020). If q

i
6= 0 and qi = 0, agent i just owns rights,

but uses none. He only collects rent. Conversely, if qi = 0 and qi 6= 0, be-
ing “propertyless,” he fully rents his user rights. When q

i
6= 0 and qi 6= 0,

agent i acts in twin capacities: as owner and user. Part (I) of Assumption 1 is
constitutional. It relates to established law, presumed here, but not discussed.

Remark 2. (On allocation of allotted shares) Part (II) of Assumption 1 is
institutional. It points to auctions, bargaining, barter quid pro quo, direct
deals or markets. These institutions or platforms may help agents to solve (4)
by themselves, but no mechanism is singled out or modelled here; see Flåm
(2021b, 2023).12

4. EFFICIENCY ACROSS SEASONS

Henceforth, suppose quotas will be traded, in each season, for money, up
to price-supported Pareto efficiency (Proposition 2) - in fact, up to single-
period, competitive equilibrium (Proposition 3). On that premise, this section
considers how a harvest might be allocated across seasons?

The ecosystem comprises a finite set S of renewable resources or species
s ∈ S. Let the vector space X= RS comprise all bundles x = (xs). A system
state x = (xs) ∈ X+ informs about the actual biomass xs ≥ 0 of each species
s ∈ S. That state remains in some rectangle set X := [x, x̄] ⊂ X, bounded by
sustainable stock levels 0 ≤ xs < x̄s, s ∈ S.

12 Circumvented here are issues on control of prices versus quantities (Weitzman, 1974).

Journal of Mechanism and Institution Design 8(1), 2023

“jMID-vol8(1)-01” — 2023/12/21 — 17:49 — page 64 — #68



Sjur Didrik Flåm 65

Natural growth x ∈ X+ 7→ Gs(x) ∈ R of species s ∈ S - after harvest,
during the season - is presumed concave. Let G(x) := [Gs(x)]s∈S ∈ X and
g(x) := G(x)− x.13

Most often, the state affects payoffs.14 So, from here onwards, πi(x,qi)
takes the place of the above simplified version πi(qi). By assumption, (x,qi) 7→
πi(x,qi) is jointly concave. It’s separately differentiable and increasing in
x ∈ X , but maybe neither in qi; see Example 1.

Naturally, for the quota space, introduced earlier, let Q := X, and posit
Q := X for the set of short-term total quotas.

Time t ∈ T := {0,1, ..} is discrete, with open horizon. An initial point
x−1 ∈ X is specified.

Assumption 2. (On the principal’s long-term program) Given initial point
x−1 ∈ X, discount factor δ ∈ (0,1), and convoluted, single-period payoff func-
tion

t ∈ T 7→ (xt ,qt) ∈ X ×Q 7→ π(xt ,qt) := sup

{
∑

i∈I

πi(xt ,qit)

∣∣∣∣∣ ∑
i∈I

qit = qt

}
, (6)

the principal will

maximize present value ∑
t∈T

δ tπ(xt,qt) s.t. xt+1 ≤ G(xt)−qt ∀t ∈ T. (7)

Proposition 4. (Existence of optimal profiles) Suppose single-period payoff
π in (6) and growth g both be upper semicontinuous. If feasible, problem (7)
has a best solution.

Program (7) is an instance of deterministic, discrete-time optimal control.
For discussion, let multiplier vector λt ∈ RS

+ value the time-t excess G(xt)−
xt+1 −qt ≥ 0. Thus emerges a Lagrangian

L(x,q,λ ) := ∑
t∈T

δ t {π(xt ,qt)+λt [G(xt)− xt+1 −qt ]} . (8)

In (8), the primal planning profiles x : = (xt) and q = (qt) both belong to the
space l∞ of bounded sequences in X.15 So, any dual price profile λ should

13 Ecological interdependence is possible and quite likely. Reasonably, xs < xs =⇒ gs(x) ≤ 0,
whence the system collapses. (Moreover, gs(·) needs not be concave when xs ∈ [0,xs]; see
Majumdar & Roy (2009) and references therein.) By contrast, xs > x̄s =⇒ gs(x) < 0 so that
viable biomasses and stocks stay bounded. If left alone, a pristine system would evolve by
the law ∆x := x+1 − x = g(x).

14 For instance, use a density-dependent matrix A(x) in Example 1.
15 In fact, each (xt ,qt) ∈ X ×Q.
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be a continuous linear mapping from l∞ into R. As a matter of natural and
reasonable modelling, take λ = (λt) to be a member of the linear space

l1 :=

{
λ = (λt)

∣∣∣∣∣ ∑
t∈T

δ t ‖λt‖<+∞

}
. (9)

It comprises precisely those price regimes λ =(λt) that associate finite present
value λx :=∑t∈T δ tλtxt to any bounded sequence x = (xt) in X.16

For the subsequent argument, introduce the Hamiltonian

H(x,q,λ ) := π(x,q)+λ [g(x)−q] (10)

to account for aggregate payoff plus shadow pricing λ of net savings g(x)−q.

Theorem 1. (On the principal’s long-term control) Suppose t ∈ T 7→ (xt ,qt)∈
X ×Q solves (7). Then there is an adjoint, dual trajectory of shadow prices
t ∈ T 7→ λt ∈ RS

+ on resources such that for every t ∈ T and (xt ,qt) it holds





the system dynamics: xt+1 ≤ G(xt)−qt ,

the adjoint equation: λt −δ−1λt−1 ∈ − ∂
∂x H(xt ,qt ,λt), and

the maximum condition: qt ∈ arg maxH(xt , ·,λt),

(11)

with complementarity λt [G(xt)−xt+1−qt ] = 0, and specified initial point x−1.
Moreover, at each time t ∈ T , the valuation vector λt ∈ RS

+ - on resources
saved in situ - equals a market equilibrium price vector q∗t ∈Q∗ on resources
actually consumed. Thus, Assumption 1, part II, is satisfied with

λt = q∗t ∈
∂

∂qt
π(xt ,qt) = ∩i∈I

∂
∂qit

πi(xt ,qit). (12)

Proof. Recall Hamiltonian H (10) to rewrite the Lagrangian (8) as

L(x,q,λ ) = ∑
t∈T

δ t {H(xt ,qt ,λt)−λt(xt+1 − xt)} .

16 By the Riesz representation theorem l1 has l∞ as dual space, but not conversely (Dudley,
1989).
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By ∂
∂λt

L(x,q,λ ) ≥ 0, the system dynamics hold for all t ∈ T . Also, the com-
plementarity conditions come up as usual. Note that L features state xt just
two times. The corresponding terms are singled out next:

L(x,q,λ ) = · · ·+

δ t−1 {H(xt−1,qt−1,λt−1)−λt−1(xt − xt−1)}+

δ t {H(xt ,qt,λt)−λt(xt+1 − xt)}+ · · · .

From this and ∂
∂xt

L(x,q,λ ) = 0, the adjoint equation follows. Also, because
L(x,q,λ ) is additively separable with respect to qt , t ∈ T, and should be max-
imized in each qt , the maximum condition is immediate. Taken together,

∂
∂qt

H(xt ,qt,λt) = 0 and Proposition 2 give (12).

Remark 3. (On qualified constraints) Normally, proper use of the Lagrangian
requires some constraint qualification. Granted concave functions π and G, as
here, the most convenient one - called the Slater condition - amounts to strict
feasibility. Specifically, suppose the resource system be productive, meaning
that some state x ∈ X can be reached at which Gs(x)> xs for each s ∈ S.

Remark 4. (On value functions, differentiability and duality) Letting

π(x,x+1) := sup
q
{π(x,q) | x+1 ≤ G(x)−q} ,

the overall, joint program has optimal value function

x 7→V (x) := sup
x

∑
t∈T

δ tπ(xt ,xt+1), x0 = x.

Under standard conditions, it holds the Bellman equation

V (x) = max
x+1

{π(x,x+1)+δV (x+1) | x+1 ∈ X } ,

and ∂V (x) = ∂xπ(x,x+1) with supposedly unique and optimal continuation
x+1 (Benveniste & Scheinkman, 1979).
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5. GOLDEN RULE

Does problem (7) have a globally stable, steady state? For this, it’s expe-
dient that both functions π , G be strongly concave. For G, this means that
[g′(x)−g′(x̃)] · [x− x̃]≤−µg ‖x− x̃‖2 with some modulus µg > 0. Further, as
stressed by Weitzman (1998), δ should be “large enough” - or tuned to - the
associated moduli µπ , µg of strong concavity (Rockafellar, 1976).17 Here, for
brevity, stability is simply presumed:

Assumption 3. (On asymptotic stability) Optimal control leads to a golden
steady state x = limt→+∞ xt - a long-term, fixed point of the system - presumed
unique and well defined.

To characterize the golden state, let

H (x,λ ) := max{H(x,q,λ ) : q ∈Q} (13)

be the reduced Hamiltonian. Define its composite differential by

(x∗,λ ∗) ∈ ∂H (x,λ ) := ∂xH (x,λ )×∂λ H (x,λ )⇐⇒




H (x̂,λ )≤ H (x,λ )+ x∗(x̂− x) for all x̂ ∈ X,

H (x, λ̂ )≥ H (x,λ )+λ ∗(λ̂ −λ ) for all λ̂ ∈ Λ.

The first inequality captures that H (x,λ ) is concave in x. Hence ∂x denotes
a partial supdifferential. The second inequality tells that H is convex in λ .18

In these terms, by Theorem 1 and (13), the controlled system moves by

xt+1 − xt ∈ ∂λ H (xt ,λt) & λt −δ−1λt−1 ∈ −∂xH (xt ,λt). (14)

Hamiltonian dynamics (14) resemble classical studies of primal-dual program-
ming. As said, stability and limit behavior link to strong concavity (Rockafel-
lar, 1976), notably in state variable x (Hauswith et al., 2020), derived from
growth G and payoffs π .

17 Invoking uncertainty as to the far distant future, (Weitzman, 1998) argues that the largest
possible discount factor should be used.

18 Accordingly, ∂λ [·] := −∂λ [−·] is the partial subdifferential.
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Proposition 5. (On existence of a steady state) Under natural assumptions -
on π ,g being closed concave on compact, convex domains - system (14) has
at least one fixed point (x,λ ) corresponding to the stationary version

[−(1−δ−1)λ ,0] ∈ ∂H (x,λ )

of (14) - with steady harvest q = g(x), and discount factor δ = 1/(1+ ρ)
defined by interest rate ρ > 0. Further, it holds Hotelling’s modified rule:

ρλ ∈ ∂
∂x

H (x,λ ). (15)

Proof. From (14), the convex-valued point-to-set correspondence (x,λ ) ⇒
(x+,λ+) defined by

x+ ∈ x+∂λ H (x,λ ) & λ+ ∈ δ−1λ −∂xH (x,λ ) (16)

is well defined, with closed graph and non-empty values, on some compact
convex suitably chosen state space Ξ ⊂X+×X+. Each “value” - that is, each
right hand side of (16) - intersects Ξ. Hence by Kakutani’s theorem the said
correspondence has a fixed point.19

Proposition 6. (Decomposed golden rule) The steady state x gives constant
user cost q∗ ∈ ∂

∂qH(x,q,λ ), shadow price λ = q∗ ∈ ∂
∂xHx(x,q,λ )/ρ on re-

sources saved, and fixed total take-out g(x) = q ∈ argmaxH(x, ·,λ ). Any
optimal allocation (qi) of the stable aggregate take-out q solves

π(x,q) := sup
(qi)

{
∑

i∈I

πi(x,qi)

∣∣∣∣∣ ∑
i∈I

qi = q

}
. (17)

Whatever price q∗ ∈ ∂qπ(x,q)
∣∣
q=g(x) on resource use, agent i gets price-taking

maximal profit

π∗
i (x,q

∗) := sup
q̂i

{πi(x, q̂i)−q∗q̂i | q̂i ∈Q}= πi(x,qi)−q∗qi.

If he can claim property or user right to qi, ∑i∈I qi = g(x), he takes home
overall profit π∗

i (x,q
∗)+q∗q

i
. In the steady state, an owner of right q

i
holds

capital value q∗q
i
/(1−δ ).

19 For existence of a steady state, see also Peleg & Ryder (1974).
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Returning to the non-reduced Hamiltonian H(x,q,λ ) (10), a steady solu-
tion (x,q,λ ), with λ ∈ RS

++, features




stationary stock levels: g(x) = q = ∑i∈I qi,

Hotelling’s rule: ρλ ∈ ∂xH(x,q,λ ), and

balanced shadow pricing: λ ∈ ∂qπ(x,q)⊆ ∩i∈I ∂qiπi(x,qi).

(18)

If a function is differentiable, the inclusion sign in (18) should be replaced by
equality.20

Clearly, with fixed agent ensemble I , payoff functions πi, state x, and
seasonal quota q, convoluted outcome π(x,q) (17) is unaffected by the prop-
erty rights in Assumption 1 (I). However, for any specified state x, admission
of extra agents, each with πi(x,0)≥ 0 - that is, an enlargement of I - cannot
but increase (or at least maintain) π . Thus, the incumbents might see potential
entrants.

Ending this section are some second thoughts on the public cost-benefit
criterion (7) - and on the principal’s access to necessary information.

Remark 5. (On principal discounting) Suppose that agent i ∈ I prefers dis-
count factor δi ∈ (0,1). If D := {δi | i ∈ I } reduces to a singleton, no issues
emerge. Otherwise, many papers consider collective choices among time pro-
files (Chambers & Echenique, 2018; Harstad, 2020; Jackson & Yariv, 2015;
Millner & Heal, 2018). Main objects of study there are social preference or-
ders % on bounded flows r = (rt) of some single and common commodity.
This one-dimensional perspective may fit if the time-t common item rt ∈ R
denotes joint revenue - or, it represents the amount of some single resource.
Here, however, monetary revenue rit = πi(xt ,qit) is private - or, there are sev-
eral resources. So, the setting doesn’t directly fit public cost-benefit analysis.

It’s desirable, though, that the principal’s order be representative. For
that, suppose agent i ∈I enjoys increasing, twice continuously differentiable
utility ui(r) of single-period revenue r ∈ R. Then, in case all ui are equal,

20 System (18) captures directly the steady state. It would be vastly more challenging to find
first, the entire value function x ∈ X 7→ V (x) = max{π(x,q)+ δV(G(x)− q)} by dynamic
programming, invariably using convoluted payoff (17), and finally, to require that g(x) = q.
Usually, computation requires discretization of spaces, whence clustering techniques.
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Jackson & Yariv (2015) prove that the principal may use a discount factor δ =

∑i∈I wiδi, with weights (wi)> 0. summing to one. Thereby time-consistency
obtains, and unanimity prevails, in that r % r̂ ⇒∑t δ t

i ui(rt) ≥ ∑t δ t
i ui(r̂t) for

each i ∈ I .
By contrast, when the single-period utility functions ui differs, Jackson &

Yariv (2015) show that time-consistency requires a dictatorial (or paternalis-
tic) choice δ ∈ D .

For these reasons, following Weitzman (1998), patience speaks for itself.
That is, a prudent principal could well choose δ = maxD .21 This choice also
fits concerns with stability, mentioned above.

Remark 6. (On principal information) For his planning the principal needs a
firm grip on the function (x,q) 7→ π(x,q). Clearly, if each agent i∈I honestly
hands in his function πi - say, by a double auction - once and for all,22 no
problems emerge. Otherwise, the principal must somehow estimate, know or
synthesize π in (4).

Ignored here, or taken as given, is strategic communication. Even when
such mode of play is absent or unimportant, challenges remain. To illustrate,
returning to Example 1, suppose agent i faces, time and again, the program
form

πi(x,qi) := sup{y∗i yi | Ai(x)yi ≤ qi & yi ∈ Yi+} .
He knows y∗i ∈ Y∗

i and the state-dependent ”technology” Ai(x) : Yi →RS. By
contrast, if the principal knows or sees neither, he can hardly synthesize the
corresponding criterion:

(x,q) 7→ π(x,q) = sup

{
∑

i∈I

y∗i yi

∣∣∣∣∣ ∑
i∈I

Ai(x)yi ≤ q and yi ∈ Yi+

}
.

Clearly, his task simplifies when the stock x impacts no technology hence
no payoff. In that case, the principal might use time series t 7→ [qt, π(qt),
q∗t ∈ ∂π(qt)], observed so far - say, up to time τ - to overestimate π(·), step
by step and “on line,” as a one-sided, time-t envelope:

For τ ∈ T and q ∈ Q posit πτ(q) := min
t≤τ

{π(qt)+q∗t (q−qt)} ≈ π(q),

21 It’s implicit here that rotation of (finitely lived) principals cause no time inconsistency
(Harstad, 2020)

22 Given any relevant x∈X , the function qi 7→ πi(x,qi) could stem from parametric optimization
on the part of agent i.
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thus πτ ≥ π .

6. CONCLUDING REMARKS

Considering management of common-property, renewable resources, this pa-
per argues that three agencies can play chief and complementary roles.23 At
the upper level, a competent principal decides total take-outs over time. At
the lower level, legitimate users share short-term aggregate quotas in time.
Between the two levels, various mechanisms channel information and value
resources.

This paper indicates that efficiency and stability may obtain. Indeed, it
appears that private and public interests can be aligned, competitive equilibria
being constituent components. To this end, the paper has assumed that
• information on payoffs is communicated to the principal by diverse market
mechanisms;24

• user rights must be clearly defined, perfectly divisible, marketable and trans-
ferable (Flåm, 2020);
• qualified users operate, directly or indirectly, with monetary criteria (Flåm,
2021a; Luenberger, 1995);
• there are no single-period externalities and transaction costs;
• aggregate and optimal quotas obtain, via dynamic programming;
• and finally, discounting must be moderate (Rockafellar, 1976; Weitzman,
1998).

Then, modulo oversight and policing, a golden steady state may emerge
as limit of short-term, competitive equilibria in quota markets. Clearly, ques-
tions remain as to convergence and stability. Others queries include: Who
are qualified to which rights - and then, on what grounds (Flåm, 2020)? Who
controls compliance or metes out penalties? When viewed as an integrated
enterprise, might not the principal - or the greater public - tax resource rent?

Among other concerns, important but not considered here, three issues
merit further study. First, do long-lived investments play crucial roles (Clark
et al., 1979)?25 Second, how and where should uncertainty be accounted
for (Mitra & Roy, 2023; Stokey & Lucas, 1989)? Third, can eventual lack

23 Likewise, three fields also enter: Economic theory on expediency of markets; mathematical
optimization on relaxation methods, and political science on separation on powers.

24 Double auctions appear most attractive (Flåm, 2021b).
25 Ownership to highly specialized capital can be divorced from rental use.
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of concavity hence occasional presence of increasing margins in payoffs or
growth affect management considerably (Majumdar & Roy, 2009)?
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Flåm, S. D. (2021b). Towards competitive equilibrium by double auctions. Pure and
Applied Functional Analysis, 6, 1211–25.
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ABSTRACT

We study multi-category housing allocation problems: A finite set of objects,
which is sorted into categories of equal size, has to be allocated to a finite set
of individuals, such that everyone obtains exactly one object from each cate-
gory. We show that, in the large class of category-wise neutral and non-bossy
mechanisms, any strategy-proof mechanism can be constructed by simply let-
ting individuals choose an object from each category one after another fol-
lowing some priority order. We refer to these mechanisms as multi-category
serial dictatorships and advocate for selecting priority orders across categories
as fairly as possible.
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1. INTRODUCTION

CONsider the problem of allocating m×n objects to n individuals based on
the individuals’ reported preference information over objects, such that

every individual obtains a bundle containing m objects. Different solutions to
this problem have been proposed by both researchers and practitioners.
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76 Multi-Category Housing Allocation Problems

On one hand, the theoretical literature has focused almost exclusively on
strategy-proof mechanisms.1 In this line of research (serial and sequential)
dictatorship mechanisms stand out, as they are the only mechanisms that are
simultaneously strategy-proof and (Pareto) efficient (Pápai, 2001; Klaus &
Miyagawa, 2002; Ehlers & Klaus, 2003; Hatfield, 2009; Monte & Tumen-
nasan, 2015):
Under a dictatorship mechanism individuals are assigned their most preferred
bundle of m objects — among the remaining objects — one after another
following some choosing order.

On the other hand, practitioners have proposed mechanisms that focus less
on strategy-proofness and more on balancing both fairness and efficiency of
the resulting allocation. In this context, an important class of fair and approx-
imately (Pareto) efficient mechanisms are so called the draft mechanisms:
Under a draft mechanism individuals are assigned their most preferred object
— among the remaining objects — one after another following some choosing
order, which is reversed in each subsequent round until everyone has obtained
m objects.2

However, how do these two classes of mechanisms compare? Using data
on individuals reported as well as true preferences for the Harvard Business
School course allocation, Budish & Cantillon (2012) show that draft mecha-
nisms are indeed manipulated in practice and that these manipulations cause
meaningful welfare losses. At the same time, they also find that, despite
their shortcomings, draft mechanisms outperform dictatorship mechanisms
in terms of welfare.3

1 Under a strategy-proof mechanism truthful reporting of preferences over objects is a (weakly)
dominant strategy for the individuals — allowing them to avoid costly and risky strategic
behavior (Roth, 2008).

2 Note that both draft and dictatorship mechanisms work in the same way if there are only as
many objects as individuals (m = 1). For such single-object allocation problems (Hylland &
Zeckhauser, 1979), also known as housing allocation problems, dictatorship mechanisms are
the natural candidates arising, while if there are predefined property rights (Shapley & Scarf,
1974), also known as housing markets, top trading cycles mechanisms (also known as core
mechanisms) are used to find an allocation. For more details, see for example Sönmez &
Ünver (2011).

3 Budish & Cantillon (2012) give the following intuition for this result: Under a dictator-
ship mechanism, individuals who get to pick early make their last choices independently
of whether these objects would be some later-picking individuals’ first choices; Individuals
“callously disregard” the preferences of those who choose after them. This matters for wel-
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These findings suggest that we should look at mechanisms that, akin to dic-
tatorship mechanisms, (i) are strategy-proof while ensuring that, analogous to
the allocations produced by draft mechanisms, (ii) the objects are distributed
more equally (fairly) and are approximately efficient. Unfortunately, there ex-
ists a trilemma for multi-object allocation problems: Any mechanism satisfies
at most two out of the three desired properties of strategy-proofness, fairness,
and efficiency — even for some sensible weakenings/approximations of these
properties (Caspari, 2020).4

In this paper, our main contribution is to show a positive result for an
important special case of multi-object allocation problems — multi-category
housing allocation problems: A total of n×m indivisible objects, which are
sorted into m categories containing n objects each, must be allocated to a set
of n individuals, based on the individuals’ reported preference information
over objects, such that everyone obtains exactly one object from each of the m
categories. That is, we show that the presence of categories is sufficient for the
existence of strategy-proof mechanisms producing fair and (approximately)
efficient allocations:
Starting with one category, individuals are assigned their most preferred ob-
ject — among the remaining objects — one after another following some
choosing order which is reversed in each subsequent round and category until
everyone has m objects — one from each category.

Intuitively, letting individuals choose objects one after another — analo-
gous to draft mechanisms — can be implemented in a strategy-proof manner,
as restricting individuals to choose from a given category each round removes
any potential gains from strategic behavior. At the same time, efficiency is not
lost as individuals actually want to have an object from every category. As a
practical application, we consider the problem of allocating teaching-assistant
positions to graduate students, where everyone has to assist exactly one spring-
semester and one fall-semester course. Monte & Tumennasan (2015) analyse

fare as the benefit to the early-picking individuals from these last choices will generally be
small relative to the harm these choices cause to the later-picking individuals.

4 One notable exception concerns large markets: Budish (2011) describes the approximate
competitive equilibrium from equal incomes (ACEEI) mechanisms which are approximately
efficient, fair, and strategy-proof if the size of the market makes participants price takers.
ACEEI has been applied to course allocation problems (Sönmez & Ünver, 2010) and was
successfully implemented at Wharton Business School (Othman et al., 2010; Budish et al.,
2016).
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a multi-category housing allocation problem with two categories, and discuss
several practical applications, including benefit and assistance programs and
the allocation of new physicians in the United Kingdom. Overall, depending
on the application in mind, categories can either be interpreted as containing
different types of objects, containing the same set of objects for different time
periods, or some combination of both.

We formally introduce multi-category housing allocation problems in Sec-
tion 2. Moreover, Section 2.1 introduces the necessary framework for individ-
uals to report rankings over categories as opposed to their full preference rela-
tion over all possible bundles. Any particularities stemming from this model
choice are discussed there.5

Section 3 contains our main theoretical result: Any strategy-proof, category-
wise neutral, and non-bossy mechanism can be obtained by specifying a choos-
ing order — referred to as a priority order — for each category. We refer to
this class of mechanisms as multi-category serial dictatorships.6

Section 3.1 takes a look at two ways to select priority orders for multi-
category serial dictatorships: On one hand, analogous to (serial) dictatorships,
one can choose an identical order for each category — referred to as the sub-
class of identical priority multi-category serial dictatorships. Alternatively,
analogous to the draft mechanism, one can select a priority order that is
reversed in every other category, referred to as the subclass of fair priority
multi-category serial dictatorships. As both are strategy-proof, we can solely
compare these mechanisms in terms of fairness and efficiency. We show that
identical priority multi-category serial dictatorships are (Pareto) efficient but
extremely unfair (Proposition 1), while identical priority multi-category serial
dictatorships achieve maximal fairness while being approximately efficient
(Proposition 2). Moreover, we provide a discussion, that places Proposition 1
and 2 into the broader context of the literature on dictatorship mechanisms.

Section 4 discusses the implementation of a fair priority multi-category
serial dictatorship to allocate spring-semester and fall-semester teaching posi-
tions to graduate students, while Section 5 concludes.

5 The overall approach relates to Brams & Fishburn (2000), Brams et al. (2003), and Edelman
& Fishburn (2001).

6 The result can be seen as a generalization of a well-known characterization result by Svens-
son (1999) from housing allocation problems to multi-category housing allocation problems.
Related, Monte & Tumennasan (2015) have shown that in multi-category housing allocation
problems any strategy-proof, non-bossy, and Pareto efficient mechanism is a sequential dicta-
torship.
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2. THE MULTI-CATEGORY HOUSING ALLOCATION PROBLEM

Let I be a finite set of |I| = n individuals, O be a finite set of |O| = m× n
objects, and K be a finite set of |K| = m types or time periods. The set of
objects can be partitioned into m different categories (Ok) k∈K , each contain-
ing |Ok| = n distinct objects of type k, or |Ok| = n distinct objects from time
period k, respectively.

Each individual has a preference relation %i comparing all sets of objects
that contain exactly one object from the same categories. Formally, let %i be
a partial order, such that we either have O′ % O′′, O′′ % O′, or both if and
only if |O′∩Ok|= |O′′∩Ok| ≤ 1 for all k ∈ K.7 Note that, we have implicitly
assumed that preferences over objects (singleton sets) within each category
are strict, while objects (singleton sets) from different categories cannot be
directly compared with each other.

We want to distribute the available objects among the individuals such
that every individual is assigned exactly one object from each category, and
no two distinct individuals are assigned the same object. That is, a feasible
allocation A = (Ai)i∈I assigns every individual i ∈ I a set of objects Ai with
|Ai ∩Ok| = 1 for all k ∈ K, and Ai ∩A j = /0 for all i ∈ I, j ∈ I \ { j}. Let A
denote the set of all feasible allocations. Moreover, let ak

i ∈ Ok ∩Ai denote
the object from allocation A in category Ok that is assigned to individual i.

We assume that preferences over allocations are separable in terms of
categories: For all A,A′ ∈ A and i ∈ I, if {ak

i } %i {a′ki } for all k ∈ K then
Ai %i A′

i, and if {ak
i } ≻i {a′ki } for at least one k ∈ K then Ai ≻i A′

i. We denote
the set of all separable preferences %i for individual i by Qi.

As it is generally done, we assume there are no externalities, i.e., for all
i∈ I we have that Ai %i A′

i implies A%i A′. That is, any individual’s preference
over allocations solely depends on the object the individual is assigned.

7 A partial order is reflexive, transitive, and antisymmetric binary relation. If either O′ % O′′,
O′′ % O′, or both we say that O′ and O′′ are comparable. Moreover, for any O′,O′′ ⊂ O such
that O′ %i O′′ but O′′ 6%i O′, we say that O′ is strictly preferred to O′′ and write O′ ≻i O′′.
Finally, note that, anti-symmetry implies that for any O′,O′′ ⊂ O such that O′ %i O′′ and
O′′ %i O′ we have O′ = O′′. In other words, preferences are strict whenever two comparable
sets are not identical.
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2.1. Rankings instead of Preferences

We assume that, instead of having to report their entire preferences, individ-
uals simply need to report a separate ranking for each category. That is,
for each k ∈ K, each individual i ∈ I reports a transitive, asymmetric, and
complete order Pk

i over Ok. We denote the associated transitive, antisym-
metric, and strongly complete order by Rk

i .8 The list containing all rankings
of a single individual i is denoted by Pi = (Pk

i )k∈K and analogously the list
containing all rankings of all individuals is denoted by P = (Pi)i∈I. We let
P−i = (Pj) j∈I\{i} denote the list containing all individuals’ rankings, except
individual i’s rankings. Finally, the set of all possible lists of rankings for a
single individual, all individuals, and all but one of the individuals are denoted
by Pi, P , and P−i respectively.

Abstracting away from truthful revelation of rankings for the moment, if
Pi is reported we can narrow down the possible preference profiles i might
have. That is, a preference %i is consistent with the reported rankings Pi
if it ranks objects in each category in the same way as the reported ranking.
Formally, %i∈ Qi is consistent with Pi if for all k ∈ K, o ∈ Ok, o′ ∈ Ok we
have o Rk

i o′ if and only if {o}%i {o′}. Let QPi ⊂ Qi denote the subset of all
separable preferences that are consistent with the reported rankings Pi.

Following the introduction of rankings, we now limit our attention to
strategy-proof mechanisms that take a profile of rankings as input. Formally,
a ranking mechanism ψ : P → A selects an allocation A ∈ A for any re-
ported list of rankings P ∈ P . Given a list of reported rankings P, we let
ψ(P)i denote the set of objects obtained by individual i under mechanism ψ ,
and slightly abusing notation, we let ψ(P)k

i denote both the object as well
as the singleton set containing the object obtained by individual i in category
k under mechanism ψ . Moreover, a ranking mechanism is strategy-proof if
an individual having preferences %i∈ QPi consistent with rankings Pi cannot
benefit from reporting a different list of rankings P̂i instead of Pi. That is, a
ranking mechanism ψ is strategy-proof if for any i ∈ I, Pi ∈ Pi, P̂i ∈ Pi,
P−i ∈ P−i we have

ψ(P)i %i ψ(P̂i,P−i)i for all %i∈ QPi.

8 That is, unlike Pk
i which is asymmetric, Rk

i also compares any object in Ok with itself. Oth-
erwise, both relations rank any two distinct objects in Ok in the same way. See, for example,
Roberts (1985) for an overview on binary relations and their properties.
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2.1.1. Dominance Relation

In this part, we discuss what we can infer about the preference of an individ-
ual based on her reported list of rankings. To fix ideas, consider any list of
rankings Pi and two allocations A and A′ such that for every object ak

i ∈ Ai of
category Ok we can find a weakly lower ranked object from the same category
in the other allocation a′ki ∈ A′

i. Note that, in this case A must be preferred to
A′ under any (separable) preference %i∈ QPi consistent with Pi.

We can generalize this idea by defining a partial order ≥Pi — referred to as
a dominance relation — over the set of allocations A for any list of rankings
Pi: Formally, fix any Pi, then for all A,A′ ∈A we have Ai ≥Pi A′

i if and only if
ak

i Rk
i a′ki for all k ∈ K.9 In a second step, we show the following result:

Lemma 1. Fix any Pi and A,A′ ∈ A . We have that Ai %i A′
i for all %i∈ QPi if

and only if Ai ≥Pi A′
i.

Lemma 1 states that if an individual reports a list of rankings Pi then any
separable preference %i∈ QPi that is consistent with Pi will order any allo-
cations in the same way as the dominance relation ≥Pi constructed from the
same list of rankings Pi. Simultaneously, if two allocations are not compa-
rable by the dominance relation then not all separable preferences that are
consistent with Pi will rank the two allocations in the same way.

The dominance relation together with Lemma 1 is necessary for charac-
terizing the set of strategy-proof ranking mechanisms. Moreover, we use the
dominance relation later to define a weaker efficiency notion.

3. CHARACTERIZATION OF STRATEGY-PROOF MECHANISMS

We now show that, under two additional mild requirements, all strategy-proof
mechanisms can be constructed by simply picking a priority order for each
category, i.e., choosing an order specifying the sequence in which individuals
are assigned an object following their reported rankings. Formally, a priority
order is a bijection f : I 7→ {1, . . . ,n}, with a lower number f (i) indicating
a higher priority. For a given list of priority orders for every category f =
( f k)k∈K , the multi-category serial dictatorship mechanism is defined for
ℓ ∈ {1, . . . ,n} as follows:

9 We use Ai >Pi A′
i to denote that Ai ≥Pi A′

i but A′
i 6≥Pi Ai. Similarly we use Ai =Pi A′

i whenever
Ai ≥Pi A′

i and A′
i ≥Pi Ai— in which case Ai =A′

i. Note that ≥Pi is a partial order, i.e., a reflexive,
antisymmetric, and transitive binary relation.
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Step ℓ. For each k ∈ {1, . . . ,m}, consider the ℓth highest priority individual
( f k)−1(ℓ) according to f k.10 Then, following P( f k)−1(ℓ), assign indi-
vidual ( f k)−1(ℓ) her most preferred object in category Ok among the
remaining objects.

For the characterization result to go through, we are left with defining two
requirements: Nonbossiness and category-wise neutrality. Nonbossiness re-
quires that no individual can influence the allocation of another individual
without affecting her own allocation, while category-wise neutrality requires
that the mechanism is immune to a relabeling of the object within each cat-
egory. First, a ranking mechanism ψ is nonbossy if for all Pi, P̂i ∈ Pi, and
P−i ∈ P−i we have

ψ(P)i = ψ(P̂i,P−i)i =⇒ ψ(P) = ψ(P̂i,P−i).

Second, let π : O → O be a permutations s.t. if o ∈ Ok then π [o] ∈ Ok —
with Π denoting the set of all such permutations. We permute a list of simple
orders P, denoted by π [P], as follows: For all i ∈ I, k ∈ K and o,o ∈ Ok we
have π [o] π [Pk

i ] π [o′] if and only if o Pk
i o′. We say a ranking mechanism ψ is

category-wise neutral if for all k ∈ K, i ∈ I, and π ∈ Π we have

π [ψ(P)k
i ] = ψ(π [P])k

i .

Now we go through the characterization result step-by-step. First, let us
state an alternative strategy-proofness definition, which we will use to proof
the next lemma. Formally, a ranking mechanism ψ is strongly strategy-proof
if for any i ∈ I, Pi ∈ Pi, P̂i ∈ Pi, P−i ∈ P−i we have

ψ(P)i ≥Pi ψ(P̂i,P−i)i.

The following statement is a corollary of Lemma 1. Additionally, note that
Corollary 1 holds for ranking mechanisms but not necessarily in general.

Corollary 1. A ranking mechanism is strategy-proof if and only if it is strongly
strategy-proof.

10 Since f k is a bijection, the function f k is invertible. That is, ( f k)−1 : {1, . . . ,n} 7→ I with
f−1(ℓ) giving the ℓth highest priority individual under f k.
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Second, Lemma 2 guarantees that if an individual changes her reported
list of rankings from Pi to P̂i, the outcome of a strategy-proof and non-bossy
ranking mechanism ψ cannot change unless some objects, ranked lower than
those in the same category assigned under ψ(P)i, are now ranked higher under
P̂i. In other words, one can reorder objects in category Ok without affecting
the allocation of strategy-proof and nonbossy ranking mechanisms, as long as
for any object o ∈ Ok such that ψ(P)k

i Pk
i o we have ψ(P)k

i P̂k
i o. Lemma 2 is

adapted from Svensson (1999). Using Lemma 1, in the proof we substitute
strategy-proofness for strong strategy-proofness and use the fact that Ai =Pi A′

i
implies Ai = A′

i.

Lemma 2. Let ψ be a nonbossy and strategy-proof ranking mechanism. Con-
sider any Pi ∈ Pi, P−i ∈ P−i, and some P̂i ∈ Pi such that for all A ∈ A
where ψ(P)i ≥Pi Ai we have ψ(P)i ≥P̂i

Ai. Then ψ(P) = ψ(P̂i,P−i).

Third, Lemma 3 establishes that for identical rankings — all individuals
submit an identical ranking in each category — any category-wise neutral
mechanism can be obtained through a multi-category serial dictatorship.

Formally, the set of all identical rankings is defined as I = {P ∈ P :
Pk

j = Pk
i for all i, j ∈ I and k ∈ K}.

Lemma 3. Let ψ be a ranking mechanism that is category-wise neutral. For
every identical ranking P ∈ I , k ∈ K, and ℓ ∈ {1, . . . ,n} the same individual
ikℓ ∈ I is assigned the ℓth-highest ranked object in Ok according to ranking Pk

i .

Finally, it remains to be shown what happens for arbitrary rankings P∈P .
We will invoke Lemma 2 to show that for any arbitrary preference profile
P ∈ P \I there exists an identical preference profile P ∈ I leading to the
same outcome.

Theorem 1. For any multi-category housing allocation problem a ranking
mechanism ψ is strategy proof, nonbossy, and category-wise neutral if an
only if ψ is a multi-category serial dictatorship.

3.1. Two Subclasses

In the class of multi-category serial dictatorship mechanisms, two subclasses
stand out. As the name suggests, the subclass of identical priority multi-
category serial dictatorships ψ IPD specify identical priority orders across
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all categories, i.e., f = f k for all k ∈ K. On the contrary, if priority orders
are selected as fairly as possible — for all i, j ∈ I we have |{k ∈ K : f k(i) <
f k( j)}| ≥ ⌊m

2 ⌋ — we refer to this subclass as fair priority multi-category
serial dictatorships ψFPD.

We show that, identical priority multi-category serial dictatorships are
Pareto efficient. That is, a mechanism ψ is Pareto efficient if for all P ∈ P ,

∄A ∈ A s.t. Ai %i ψ(P)i for all i ∈ I and Ai ≻i ψ(P)i for at least some i ∈ I.

In comparison, fair priority multi-category serial dictatorship mechanisms
are not Pareto efficient but satisfy a weaker form of efficiency: It rules out effi-
ciency improvements that can directly be inferred from the reported rankings
and is referred to as Pareto possibility (Budish, 2011). Formally, a mechanism
ψ is Pareto possible if for all P ∈ P ,

∄A∈A s.t. Ai ≥Pi ψ(P)i for all i∈ I, and Ai >Pi ψ(P)i for at least some i∈ I.

Next, we formulate a straightforward fairness notion to capture the trade
off between fairness and efficiency when comparing identical priority with
fair priority multi-category serial dictatorships. That is, for any two individ-
uals i ∈ I and j ∈ I \ {i}, we simply count the number of categories where j
obtains a better object than i — following i’s reported ranking Pi — to cal-
culate i’s envy toward j. We then say that a mechanism is ℓ envy-free if any
individual i’s envy toward any other individual j is at most ℓ for any possible
resulting allocation. Formally, a mechanism ψ is ℓℓℓ envy-free if for all i ∈ I,
j ∈ I \{i}, and P ∈ P we have

|{k ∈ K : ψ(P)k
j Pk

i ψ(P)k
i }| ≤ ℓ.

Two observations follow immediately: First, in the multi-category hous-
ing allocation problem, any mechanism is at best ⌈m

2 ⌉ envy-free and at the very
least m envy-free. Second, fair priority multi-category serial dictatorships are
⌈m

2 ⌉ envy-free, while identical priority multi-category serial dictatorships fail
envy-freeness for any ℓ < m. Therefore, the minor improvement in efficiency
when using identical priority multi-category serial dictatorships instead of fair
priority multi-category serial dictatorships comes at the highest possible fair-
ness cost.

Proposition 1. Identical priority multi-category serial dictatorships are Pareto
efficient (Corollary of Monte & Tumennasan (2015) Theorem 2 for m= 2) and
not ℓ envy-free for any ℓ < m.

Journal of Mechanism and Institution Design 8(1), 2023

“jMID-vol8(1)-01” — 2023/12/21 — 17:49 — page 84 — #88



Gian Caspari 85

Proposition 2. Fair priority multi-category serial dictatorships are Pareto
possible and ⌈m

2 ⌉ envy-free.

Next, we discuss Propositions 1 and 2 in the context of the literature on
dictatorship mechanisms, designed for allocation problems with more objects
than individuals (Pápai, 2001; Klaus & Miyagawa, 2002; Ehlers & Klaus,
2003; Hatfield, 2009; Monte & Tumennasan, 2015). With two exceptions, the
class of multi-category serial dictatorships cannot be directly compared with
other definitions in this literature, as it is specifically designed with multi-
category housing allocation problems in mind — although, as do the other def-
initions, the class of multi-category serial dictatorships generalizes the class
of serial dictatorships for single-object assignment problems, e.g., as defined
in Svensson (1999).

One exception is Monte & Tumennasan (2015) who discus a class of se-
quential dictatorships that generalize the subclass of identical priority multi-
category serial dictatorships for the case of two categories. In that sense,
Pareto efficiency of identical priority multi-category serial dictatorships for
two categories can be seen as a corollary of Theorem 2 in Monte & Tumen-
nasan (2015) — with the caveat that this paper analyzes ranking mechanisms
while they look at direct mechanisms, and therefore their analysis does not
specify how sequential dictatorships would work with rankings instead of
preferences as inputs.

The other exception is Caspari (2020) who discusses the class of booster
draft (ranking) mechanisms. This class of mechanisms generalizes the idea
of fair priority multi-category serial dictatorships to multi-object allocation
problems, by creating an arbitrary partition of the objects into categories —
referred to as boosters. Moreover, if we specify the same priority order for ev-
ery booster, we can also generalize the idea of identical priority multi-category
dictatorships to multi-object allocation problems. Note that for this class of
generalized multi-category dictatorship mechanisms to be strategy-proof, we
would have to specify the partition into boosters/categories prior to the elicita-
tion of preferences. Furthermore, for any given specification of priority orders,
even if we could choose the partition into boosters/categories after observing
the reported rankings, this class of mechanisms will not satisfy Pareto possi-
bility when preferences are separable — as most of the time, there will not
exist a partition, such that every individual will prefer any subset, containing
exactly one object from each subset of the created partition, to any other every
other subset. When it comes to the fairness notion, while envy-freeness for

Journal of Mechanism and Institution Design 8(1), 2023

“jMID-vol8(1)-01” — 2023/12/21 — 17:49 — page 85 — #89



86 Multi-Category Housing Allocation Problems

multi-object allocation problems (Budish, 2011; Budish & Cantillon, 2012;
Caspari, 2020) is strongly related to our fairness notion discussed here, they
are not identical. This relates to the fact that objects are not directly compara-
ble across different categories, while in the more general problem individuals
can directly compare all the available objects with each other. As a conse-
quence, in multi-object allocation problems we can find mechanisms that are
1-envy free, while for multi-category housing allocation problems, the best
achievable fairness for any class of mechanisms is ⌈m

2 ⌉ envy-freeness. There-
fore, even though booster draft mechanisms are shown to be ⌈m

2 ⌉ envy-free
(Theorem 4 in Caspari (2020)), this does not directly imply that fair prior-
ity multi-category serial dictatorships are ⌈m

2 ⌉ envy-free. Finally, readers in-
terested in an example that contrasts the two classes of mechanisms which
illustrate our theoretical framework can find Example 1 in the appendix.

4. AN APPLICATION: TEACHING ASSIGNMENTS FOR
GRADUATE STUDENTS

In this section, we examine the allocation of teaching positions to graduate
students at the economics department of Boston College: From 2019 until
the present, following the proposal of this paper, a fair priority multi-category
serial dictatorship has been in place and thus replaced the previous allocation
system — kick-started by multiple complaints from graduate students over
their final assignments in 2018.

We have used the rankings submitted by graduate students for the 2018
academic year, to compare fair priority multi-category serial dictatorships
with identical priority multi-category serial dictatorships as well as the actual
allocation made that year. That is, analogous to our theoretical part, there are
as many students as teaching positions in each semester, and everyone submits
a separate ranking for both the fall and spring semester. Moreover, as there are
multiple versions of the same position, students end up having to rank only
seven different options for each semester.11 Then, based on 10,000 randomly

11 The same positions were available in each semester (category), with the number in brackets
giving the total number available for each semester: ta (teaching assistant) principles (12,12),
ta statistics (3,3), ta econometrics (3,3), lab (laboratory) stats (5,5), lab econometrics (4,4), tf
(teaching fellow) principles (4,4), tf statistics (1,1), and “special arrangements” (5,5). In our
data 5 out of 37 students made “special arrangements” outside the available positions,e.g.,
having received a fellowship that freed them of work for one semester. These 5 students
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generated priority orders, we have simulated the resulting allocations under
both fair and identical priority multi-category serial dictatorships.

First, under the actual allocation, the number of graduate students envying
both assignments of at least one other graduate student was roughly 29% —
providing a potential reason for the complaints following the 2018 allocation.
Surprisingly, even under identical priority multi-category serial dictatorships,
on average, only 15% of graduate students would have envied both assign-
ments of at least one other graduate student — while obviously amounting to
0% under any fair priority multi-category serial dictatorship.

Second, to obtain a grasp of how well graduate students like their assign-
ment, we simply took the average rank of their assignment as a proxy — with
the best value being 2 (first choice in both semesters) and the worst value
being 14 (last choice in both semesters). We found that both classes of mech-
anisms lead to an expected average rank of 3.21, which is a stark improvement
over the 4.72 of the actual 2018 allocation. We note that this measure does
not capture the existence of potential inefficiencies under a fair priority multi-
category serial dictatorship, where two graduate students would like to trade
their bundles with each other. However, even though knowledge of the as-
signments is publicly available and a cohort of economic graduate students is
generally aware of the concept of Pareto improving trades, no one has come
forth suggesting a trade of assignments. This suggests that these trades are
not particularly relevant in this application.

Third, the standard deviation in the average rank is roughly 2.2 for identi-
cal priority multi-category serial dictatorships compared to 1.6 for fair priority
multi-category serial dictatorships. That is, while under an identical priority
multi-category serial dictatorship, graduate students have a better chance to
get their first two choices compared to a fair priority multi-category serial dic-
tatorship, they also have a higher probability of ending up with a much worse
average rank — with the worst possible assignment (assignment with positive
probability to realize) under the former being 12 and under the latter being 9.
Assuming that graduate students are at least mildly risk averse, the last two

automatically rank their special arrangement first, in the respective semester, while all other
students rank them last — ensuring these students end up with their “special arrangements.”
Apart from this exception, students then had to simply rank the seven positions for each
semester. As there was a new director of graduate studies in charge of the allocation for 2018
it was therefore unknown how the reported rankings would translate into the final allocation,
one would reasonably expect that graduate students reported their rankings truthfully.
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points imply that fair priorities lead to more preferable lotteries than identi-
cal priorities, i.e., lotteries with the same expected average rank but a lower
variance.

5. CONCLUSION

We consider the problem of allocating a set of objects, which is sorted into
categories of equal size, to a set of individuals, such that everyone obtains
exactly one object from each category. Our main theoretical result shows that,
in the large class of category-wise neutral and non-bossy mechanisms, any
strategy-proof mechanism can be constructed by simply letting individuals
choose an object from each category one after another, following some prior-
ity order. In this class of mechanisms two ways of selecting priority orders
stick out: Either choose an identical priority order for each category or select
a priority order that is reversed in every other category. Both intuition and the
sparse empirical literature (Budish & Cantillon, 2012) seem to suggest that
the second variant should lead to better results. This research also aligns with
the discussion for future research of Monte & Tumennasan (2015), suggesting
a need to look into solution concepts other than Pareto efficiency, due to its
restrictiveness when applied to multi-category housing allocation problems.

A. MATHEMATICAL APPENDIX

Proof of Lemma 1. If. Fix any Pi, A, A′ and suppose that Ai ≥Pi A′
i.

Given the definition of the dominance relation, Ai ≥Pi A′
i implies ak

i Rk
i ak′

i for
all k ∈ K.
Pick any %i∈ QPi , we have that ak

i %i ak′
i for all k ∈ K.

Finally, by separability it follows that Ai %i A′
i for all %i∈QPi, concluding the

proof.
Only if. Fix any Pi, A, A′ and suppose that Ai 6≥Pi A′

i.
Note that, Ai 6≥Pi A′

i implies that Ai and A′
i are distinct allocations. Therefore,

for any %i∈QPi such that Ai %i A′
i, we also have A′

i 6%i Ai as %i is antisymmet-
ric — that is, Ai %i A′

i implies Ai ≻i A′
i and A′

i %i Ai implies A′
i ≻i Ai.

We want to show that there exists at least one %i∈QPi such that A′
i ≻i Ai. Start

by randomly selecting a preference %i∈ QPi. If A′
i %i Ai — which implies

A′
i ≻i Ai, as Ai and A′

i are distinct and %i is antisymmetric — we are done.
Otherwise, consider a preference %′

i constructed as follows. First, recall that
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any two sets of objects O′ and O′′ are comparable under any preference %i∈Q
if and only if |O′∩Ok|= |O′′∩Ok| ≤ 1 for all k ∈K. Then, for any comparable
O′ and O′′ such that O′ = O′′ let O′ %′

i O′′ and O′′ %′
i O′. More importantly,

for any two distinct and comparable sets of objects O′ and O′′, let O′ ≻′
i O′′ if

O′ ≥Pi O′′, let O′′ ≻′
i O′ if O′′ ≥Pi O′, and otherwise let O′ ≻′

i O′′ if O′′ ≻i O′.
By definition we have A′

i 6≥Pi Ai and Ai ≻i A′
i, and hence A′

i ≻i Ai. It remains to
be shown that %′

i∈QPi . First, for any two comparable, singleton sets O′ = {o},
O′′ = {o′} — where by definition {o} and {o′} are in the same category —
we have {o}%′

i {o′} if and only if {o}%i {o′}. That is, since %i is consistent
with Pi, %′

i is also consistent with Pi.
It remains to be shown that %′

i is separable. For any O′ and O′′ such that O′ =
O′′ this is trivially satisfied. Now, suppose by contradiction that %′

i violates
separability for two distinct comparable sets of objects O′ and O′′. That is,
O′′ %′

i O′ but ok′ %′
i ok′′ for all k ∈ {k ∈ K : |O′∩Ok| = |O′′∩Ok|}. As %′

i is
consistent with Pi, we have ok′Piok′′ for all k ∈ {k ∈ K : |O′∩Ok|= |O′′∩Ok|}
and therefore O′ ≥Pi O′′. By construction O′ ≥Pi O′′ implies O′ ≻′

i O′′ — a
contradiction with O′′ %′

i O′.
We have shown that, if Ai 6≥Pi A′

i, then for any %i∈ QPi with Ai %i A′
i — which

implies Ai ≻i A′
i — we can construct another preference %′

i∈ QPi such that
A′

i ≻′
i Ai, concluding the proof.

Proof of Lemma 2. By Lemma 1 we can substitute strategy-proofness for strong
strategy-proofness.
By strong strategy-proofness we have ψ(P)i ≥Pi ψ(P̂i,P−i)i.
By the assumption of the lemma we have ψ(P)i ≥P̂i

ψ(P̂i,P−i)i.
Using strong strategy-proofness again we get ψ(P̂i,P−i)i ≥P̂i

ψ(P)i.
Combining the second and third line we get ψ(P̂i,P−i)i ≥P̂i

ψ(P)i which im-
plies that ψ(P̂i,P−i)i = ψ(P)i.
By nonbossiness it directly follows that ψ(P) = ψ(P̂i,P−i) — if i’s outcome
did not change no-ones outcome changes.

Proof of Lemma 3. Consider the outcome of any category-wise neutral rank-
ing mechanism ψ for any two identical preference profiles P ∈I and P̂ ∈I .
Let us define the ℓth best choice in Ok under the identical preference profile P
as well as P̂: For all ℓ ∈ {1, . . . ,n} and k ∈ K, let ok

ℓ denote o ∈ Ok s.t. |{o′ ∈
Ok : o′ Rk

i o}| = ℓ respectively ôk
ℓ denote o ∈ Ok s.t. |{o′ ∈ Ok : o′ R̂k

i o}| = ℓ.
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Consider the individual ikl that is assigned ok
l under P, i.e. ψ(P)k

ikℓ
= ok

ℓ. We

want to show that the same individual gets the ℓth best choice in Ok under
any other identical preference profile ψ(P̂)k

ikℓ
= ôk

ℓ . Consider the following

permutation π̂ defined for all k ∈ {1, . . . ,m} and ℓ ∈ {1, . . . ,n} as π̂[ok
ℓ] = ôk

ℓ .
By construction, for this particular permutation we have that π̂[Pk] = P̂k for
all k ∈ {1, . . . ,m}. In other words, we have Pk : ok

1 −ok
2 −·· ·−ok

n and π̂ [Pk] :
π̂ [ok

1]− π̂[ok
2]−·· ·− π̂ [ok

n] which is nothing else than π̂ [Pk] : ôk
1− ôk

2−·· ·− ôk
n,

so P̂k = π̂ [Pk] for all k ∈ {1, . . . ,m}.
By neutrality and the construction above, we get π̂ [ψ(P)k

ikℓ
] = ψ((π̂ [P]))k

ikℓ
=

ψ(P̂)k
ikℓ

. Moreover, by the definition of the permutation π̂ we have π̂[ψ(P)k
ikℓ
] =

π̂ [ok
ℓ] = ôk

ℓ. Combining both leads to the desired conclusion that the same in-
dividual gets the ℓth best object in set Ok for any two identical preference
profiles ψ(P̂)k

ikℓ
= ôk

l — both ôk
l and ok

l are assigned to the same individual ikℓ .

Proof of Theorem 1. If. It is obvious that any multi-category serial dictator-
ship is category-wise neutral and nonbossy. For (strong) strategy-proofness,
suppose by contradiction that there exists ψ(P)i 6≥Pi ψ(P′

i ,P−i)i. Then there
exists at least one category Ok such that ψ(P′

i ,P−1)
k
i Pi ψ(P)k

i . However, as
P−i is fixed, all individuals with higher priority will pick identical items in
category k independent of i reporting Pi or P′

i , so i gets to choose from the
same set of remaining objects. Hence, we have that the obtained item under
Pi is weakly preferred to any item obtained by reporting another ranking, i.e.
ψ(P)k

i Ri ψ(P′
i ,P−i)

k
i for all k ∈ K contradicting the initial statement.

Only if. We now show that any (strongly) strategy-proof, nonbossy, and
category-wise neutral mechanism ψ is a multi-category serial dictatorship.
Start by randomly selecting any identical preference profile P ∈ I , and con-
sider any strategy-proof, nonbossy, and category-wise neutral ranking mecha-
nism ψ . Then, construct a priority order f k over individuals I for each cate-
gory k ∈ K as follows:

f k(i) = |o ∈ Ok : o Rk
i ψ(P)k

i |

That is, the individual with the best object in category k under ψ has priority
1 in this category, the individual with the second best object has priority 2 in
this category, and so on. Let ψFP

f denote the multi-category serial dictatorship
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mechanism with priority orders f = ( f k)k∈K as constructed above. By Lemma
3 the mechanism ψ assigns the same individual ikℓ ∈ I the ℓth best object in Ok

according to ranking Pk across every identical ranking P ∈ I . It is therefore
easy to check that, ψFP

f (P) = ψ(P) for any P ∈I — as ikℓ, the uniquely iden-
tifiable individual with the ℓth highest priority in category k under mechanism
ψ , is also the individual with the ℓth highest priority in category k under ψFP

f ,
i.e., ikℓ = ( f k)−1(ℓ). That is, for each strategy-proof, nonbossy, and category-
wise neutral ranking mechanism ψ , we can construct a unique multi-category
serial dictatorship mechanism ψFP

f , such that ψFP
f (P) = ψ(P) for all P ∈ I .

Given ψ , it remains to be shown that ψFP
f gives the same allocation as ψ for

any arbitrary preference profile. Start by randomly selecting any preference
profile P ∈ P and construct an identical preference profile P̂ ∈ I based on
P as follows. For each category k ∈ K, let P̂k rank object ψFP

f (P)k
ik1
= ψ(P)k

ik1
first, object ψFP

f (P)k
ik2
= ψ(P)k

ik2
second, and so on, with object ψFP

f (P)k
ikn
=

ψ(P)k
ikn

ranked last. Note that, for any A ∈ A and i ∈ I, such that ψ(P)i ≥P̂i
A

we also have ψ(P)i ≥Pi A. Therefore, by Lemma 2, we can change i’s rank-
ing from P̂i to Pi without changing the outcome of ψ . Recursively applying
Lemma 2 for each i ∈ I we get that ψ(P) = ψ(P̂). In a similar fashion, it
is easy to check that, under the two preference profiles P and P̂ we have
ψFP

f (P) = ψFP
f (P̂). Combining these two observations, we have ψFP

f (P) =
ψFP

f (P̂) = ψ(P̂) = ψ(P), and therefore ψFP
f (P) = ψ(P) for all preference

profiles P ∈ P , concluding the proof.

Proof of Proposition 1. Identical priority multi-category serial dictatorships
are Pareto efficient.

Consider any Identical priority multi-category serial dictatorship ψ IPD,
and let A 1 = A \ {ψ IPD} be the set of allocations potentially Pareto dom-
inating allocation ψ IPD. Note that, the highest priority individual i1 = f−1(1)
gets her m best objects, i.e., for all P ∈ P and k ∈ K we have ψ IPD(P)k

i1 Pk
i1 o

for all o ∈ Ok \{ψ IPD(P)k
i1}.

By the definition of the dominance relation we get ψ IPD(P)i1 ≥Pi1
Ai for all

A ∈ A 1.
By lemma 1 it follows that ψ IPD(P)i1 %i1 Ai1 for all A ∈ A 1 and for all
%i1∈ QPi1

.
It follows that any allocation Pareto dominating ψ IPD must assign ψ IPD(P)i1
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to i1. That is, the set of allocations potentially Pareto dominating allocation
ψ IPD becomes A 2 = {A ∈ A : Ai1 = ψ IPD(P)i1}\{ψ IPD}.
Invoking an analogous argument for i2 = f−1(2), we get that ψ IPD(P)i2 %i2
Ai2 for all A ∈ A 2 and for all %i2∈ QPi2

, and therefore the set of allocations
potentially Pareto dominating allocation ψ IPD becomes A 3 = {A ∈A : Ai1 =
ψ IPD(P)i1 and Ai2 = ψ IPD(P)i2}.
Iterative applying an analogous argument for individuals i3 = f−1(3) to in−1 =
f−1(n−1) we get that the the set of allocations potentially Pareto dominating
allocation ψ IPD becomes A n−1 = {A∈A : Ai1 =ψ IPD(P)i1 and . . . and Ain−1 =
ψ IPD(P)in−1}\{ψ IPD}= /0, concluding the proof.

Proof of Proposition 1. Identical priority multi-category serial dictatorships
are not ℓℓℓ envy-free for any ℓ < mℓ < mℓ < m.

Consider any identical priority multi-category serial dictatorship ψ IPD and
some ℓ < m. Pick any reported list of rankings in the set of identical rankings
P ∈ I . Consider i1 = f−1(1) and any j ∈ I \ {i1}. By the definition of the
identical multicategory serial dictatorship, it immediately follows that |{k ∈
K : ψ IPD(P)k

i1 Pk
j ψ IPD(P)k

j}|= m > ℓ, concluding the proof.

Proof of Proposition 2. Fair priority multi-category serial dictatorships are
Pareto possible.

Consider any fair priority multi-category serial dictatorship ψFPD and sup-
pose by contradiction there exists A ∈ A such that Ai ≥Pi ψFPD(P)i for all
i ∈ I holding strictly for at least one individual. By the definition of the dom-
inance relation Ai ≥Pi ψFPD(P)i implies ak

i Rk
i ψFPD(P)k

i for all k ∈ K and
for all i ∈ I holding strictly for at least some k and i. Now, pick the highest
priority individual i in the first category Ok such that ak

i Pk
i ψFPD(P)k

i . As in-
dividuals report strict rankings over categories, all higher priority individuals
in that category get the same object as before, i.e., ak

j = ψFPD(P)k
j for all

j ∈ { j ∈ I : f k( j)> f k(i)}. It follows that ak
i is still available when its i’s turn

to choose an object form category Ok, and thus ψFPD(P)k
i Rk

i ak
i contradicting

ak
i Pk

i ψFPD(P)k
i .

Proof of Proposition 2. Fair priority multi-category serial dictatorships are
⌈m

2 ⌉⌈m
2 ⌉⌈m
2 ⌉ envy-free.

Consider any fair priority multi-category serial dictatorship ψFPD. By the
definition of any fair priority multi-category serial dictatorship, for any i ∈ I
and j ∈ J \ {i} we have that |{k ∈ K : f k(i) < f k( j)}| ≥ ⌊m

2 ⌋ and therefore
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|{k ∈ K : ψFPD(P)k
i Pk

i ψFPD(P)k
j}| ≥ ⌊m

2 ⌋ for any P ∈ P . It follows that the
maximum envy any i∈ I can have is m−|{k ∈K : ψFPD(P)k

i Pk
i ψFPD(P)k

j}|≤
|{k ∈ K : ψFPD(P)k

i Pk
j ψFPD(P)k

i }| ≤ ⌈m
2 ⌉ for all P ∈ P , concluding the

proof.

Example 1. Consider two individuals (graduate students) I = {i1, i2}. Sup-
pose that they have to work as teaching assistants for a spring semester course
O1 = {micro1,macro1} and a fall semester course O2 = {micro2,stats2}.
Note that, if both individuals want different teaching assignments within each
category, the chosen priority order does not matter. Therefore, more interest-
ing cases are those where both compete for the same objects. In particular,
assume both individuals are interested in microeconomics and thus report
identical rankings, i.e., for i ∈ I we have

P1
i :micro1−macro1,and

P2
i :micro2− stats2.

The dominance relation ≥Pi tells us that both individuals i∈ I (strictly) pre-
fer — under any preference consistent with the reported ranking %i∈ QPi —
{micro1,micro2} to both {micro1,stats2} and {macro1,micro2} which they in
turn prefer to {macro1,stats2}. Observe that the rankings give no insight into
how either one compares {micro1,stats2} to {macro1,micro2}, i.e., whether
{micro1,stats2} ≻i {macro1,micro2}, {macro1,micro2} ≻i {micro1,stats2},
or {micro1,stats2} ∼i {macro1,micro2}.

Now, consider any fair priority multi-category serial dictatorship ψFPD

where i ∈ I gets to choose first from the spring assignments O1 and j ∈ I \{i}
gets to choose first from the fall assignments O2. This leads to an assignment
of ψFPD

i = {micro1,stats2} to i and ψFPD
i = {macro1,micro2} to j — which

in some sense is a natural way to allocate these objects.
In contrast, it has been suggested that one ought to use identical priority

multi-category serial dictatorships — or similar mechanisms like sequential
dictatorships — due to them being Pareto efficient, while the weaker notion
of Pareto possibility does not rule out all possible inefficiencies. In particular,
in the example there is one possible inefficiency where {macro1,micro2} %i
{micro1,stats2} and {micro1,stats2} % j {macro1,micro2} with at least one
preference holding strictly. However, the way this inefficiency is resolved
under an identical priority multi-category serial dictatorship strikes us as un-
satisfactory: That is, the only strategy-proof way to avoid this inefficiency
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is to assign one of the two individuals their absolute best bundle leaving the
other to pick up the remains — which gets even more problematic the more
categories there are. In this case, the identical priority multi-category serial
dictatorship assigns ψ IPD

i = {micro1,micro2} to i ψFPD
i = {macro1,stats2}

to j or vice versa.
From an economic perspective, why one might find identical priority multi-

category serial dictatorship mechanisms problematic in the example above,
stems from the observation that envy-freeness combined with Pareto possi-
bility might very well be a better proxy for the welfare of the resulting al-
location than Pareto efficiency. To gain an intuition, consider the following
utilities, where the discussed inefficiency occurs and nonetheless fair priority
multi-category serial dictatorship leads to higher welfare:12

{micro1,micro2} {micro1,stats2} {macro1,micro2} {macro1,stats2}
ui 60 40 45 10
u j 60 45 40 10

Here, the fair priority multi-category serial dictatorship (in its worst case)
leads to a welfare of 80 and best case to a welfare of 90, while the identical
priority multi-category serial dictatorship leads to a welfare of 70. Moreover,
if the market designer wants to maximize Rawlsian welfare (Rawls, 1971),
the clear winner is the fair priority multi-category serial dictatorship leading
to either 40 or 45 while the identical priority multi-category serial dictatorship
leads to a Rawlsian welfare of 10. The utilities in the example reflect the intu-
ition provided by Budish et al. (2016), i.e., that moving from a “bad bundle”
to a “medium bundle” leads to higher utility gains compared to moving from
a “medium bundle” to a “good bundle”. This provides a reasonable explana-
tion as to why mechanisms ensuring that individuals’ realized resources are
roughly equal might strike us as more appealing and seem to outperform their
counterparts in practice.
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ABSTRACT

We consider a setting in which a mechanism designer must choose the ap-
propriate social alternative depending on the state of nature. We study the
problem of optimal design and demonstrate that a mechanism which allocates
resources so as to achieve the social optimum and assigns payments equal
to the posterior expected utility of the agent at the social optimum, is an ε-
optimal mechanism for environments with many players.
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1. INTRODUCTION

ONE of the main aspects of the study of mechanism design is aggregat-
ing private information in order to reach a socially optimal objective.

Since the agents may benefit from particular social alternatives being cho-
sen, they have a willingness to pay, so far as social choice aligns with their
preferences. This allows the mechanism designer to extract revenue in the
form of payments from the players in the mechanism while ensuring players
have the incentive to participate truthfully (Hurwicz, 1960; Gibbard, 1973;
Maskin, 1999; Vickrey, 1961; Clarke, 1971; Groves, 1973; Myerson, 1981;
Myerson & Satterthwaite, 1983). This paper provides a construction of an
optimal mechanism in a setting with many players. The expected payments
of the players from the mechanism have a what you give is what you get
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interpretation. The problem studied in the paper is of the nature of statis-
tical decision problems (Wald, 1950; Blackwell & Girshick, 1979; Berger,
2013; Ferguson, 2014; Pratt et al., 1995; DeGroot, 2005). The result in the
paper hinges on the intuition that for settings with many players, an individ-
ual player’s opinion (type reported) does not affect the aggregate, achieving
approximate incentive compatibility. Hence, the socially optimal mechanism
allows the mechanism designer to extract all the surplus. This feature in in-
centive compatibility relates the paper to social learning and herd formation
models (Banerjee, 1992; Bikhchandani et al., 1992; Chamley, 2004; Smith &
Sørensen, 2000; Fudenberg et al., 2021). Further, the paper is also related to
the models in De Condorcet (1785) and Roberts & Postlewaite (1976). Ap-
proximate incentive compatibility in mechanism and market design contexts
has also been considered in Azevedo & Budish (2019), Balcan et al. (2019),
Epasto et al. (2018) and Lee (2016). The result in the paper may also be
viewed as a general result in a standard setting in which optimal payments
may be characterized as agents paying their expected value which perhaps in-
terestingly, is in contrast with the externality based payment scheme of Pigou
(1920) and VCG payments.

2. MODEL

An environment is a tuple E =< N,Ω,(Si)i∈N,A,(ui)i∈N,π0,µ >. The set N
is a finite set and it is the set of all players in the environment. The set Ω is
the set of possible states of nature, assumed to be finite. For each i ∈ N, the
set Si (finite) is the set of possible signals that player i may receive regarding
the true state ω ∈ Ω. Finally, the set A (finite) is the set of alternatives. Player
i ∈ N has a state-dependent utility function ui : A×Ω → R. In terms of the
information structure present in the environment, π0 ∈ ∆(Ω) is a common
prior and µ = µ(.|ω)ω∈Ω ⊆ ∆(S) is the state-dependent signal distribution
for the players, with the set of all possible signal profiles being S = ∏i∈N Si.
We assume that π0(ω) > 0 and µ(s|ω) > 0 for each s ∈ S and ω ∈ Ω. We
denote as π0⊗µ , the joint distribution on the set Ω×S, generated by the prior
π0 and signal distribution µ . For si ∈ Si and s ∈ S, we write π(si) to be the
posterior belief in ∆(Ω) conditional on player i’s signal si and π(s) to be the
posterior belief conditional on the signal profile s i.e. the private signals of all
the players in the environment.

A mechanism is a tuple (σ ,q), in which σ : S → A is a social choice
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function and q = (qi)i∈N is a collection of payment functions, the payment
function for i ∈ N is a function qi : S → R.

We now state and provide some more definitions.

Definition 1. Let ε > 0. A mechanism (σ ,q) is said to be ε-Bayesian incentive
compatible if for each i ∈ N and si, ti ∈ Si,

Eπ0⊗µ [ui(σ(si,s−i),ω)−qi(si,s−i)|si]≥ Eπ0⊗µ [ui(σ(ti,s−i),ω)−qi(ti,s−i)|si]− ε .

Definition 2. A mechanism (σ ,q) is said to be Bayesian individually rational
if for each i ∈ N and si ∈ Si,

Eπ0⊗µ [ui(σ(si,s−i),ω)−qi(si,s−i)|si]≥ 0.

For any given mechanism (σ ,q), we define the revenue Q(σ ,q) from the
mechanism as the expected sum of payments derived from the mechanism i.e.

Q(σ ,q) = Eπ0⊗µ [∑
i∈N

qi(si,s−i)].

We now state the definition of an ε-optimal mechanism.

Definition 3. Let ε > 0. A mechanism (σ ′,q′) is said to be ε-optimal if

1. (σ ′,q′) is ε-Bayesian incentive compatible and Bayesian individually
rational.

2. For any other mechanism (σ ,q) that is ε-Bayesian incentive compatible
and Bayesian individually rational,

Q(σ ′,q′)≥ Q(σ ,q).

We define the following mechanism (σ∗,q∗), which is the main mecha-
nism proposed by the paper. It implements the social optimum and prescribes
payments that are equal to the posterior expected utility of the agent.

1. For each s ∈ S,

σ∗(s) ∈ argmax
a∈A

∑
ω∈Ω

π(s)(ω) ∑
i∈N

ui(a,ω).
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2. For each s ∈ S, for each i ∈ N,

q∗i (s) = ∑
ω∈Ω

π(s)(ω)ui(σ∗(s),ω).

We prove the main theorem.

Theorem 1. Suppose we set A and Ω to be the set of alternatives and the set
of states of nature. Suppose X (finite) is a signal space. Let π0 ∈ ∆(Ω) be
a common prior. Let {ν(.|ω)}ω∈Ω ⊆ ∆(X) be a signal distribution such that
ν(x|ω) > 0 for each x ∈ X, ω ∈ Ω and ν(.|ω) 6= ν(.|ω ′) for ω 6= ω ′.

Let U be a finite set of utility functions u : A×Ω → R such that for each
λ ∈ ∆(U ) and for each ω ∈ Ω, there exists a ∈ A (unique maximiser) such
that

∑
u∈U

λ (u)u(a,ω)> ∑
u∈U

λ (u)u(b,ω), (1)

for each b ∈ A\{a}.

Let ε > 0. Then, there exists n0 ∈ N such that for any environment E =<
N,Ω′,(Si)i∈N,A′,(ui)i∈N,π ′

0,µ > satisfying

1. |N|> n0;

2. Ω′ = Ω; π ′
0 = π0; Si = X, for each i ∈ N; µ(.|ω) = νN(.|ω), for each

ω ∈ Ω (the probability measure νN(.|ω) is the product probability mea-
sure in ∆(S) with index set N, for each ω ∈ Ω);

3. ui ∈ U , for each i ∈ N, the mechanism (σ∗,q∗) is ε-optimal.

Proof. For each λ ∈ ∆(U ) and any ω ∈ Ω, define the set

E(λ ;ω) =
{

e ∈ [0,1] : for each π ∈ ∆(Ω), if π(ω)> e, then

argmax
a∈A

∑
ω ′∈Ω

π(ω ′) ∑
u∈U

λ (u)u(a,ω ′) = argmax
a∈A

∑
u∈U

λ (u)u(a,ω)
}
.

The above defines a correspondence taking input values λ ∈ ∆(U ) and out-
puts the set E(λ ;ω) ⊆ [0,1] i.e. E(.;ω) : ∆(U ) ⇒ [0,1], a correspondence
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E(.;ω) for each ω ∈ Ω. E(λ ;ω) is the set of all values e in [0,1] such that
if a belief π assigns probability greater than e on the state ω , then the op-
timal action for the mixture utility function ∑u∈U λ (u)u(a,ω) in state ω is
the same as in under the belief π . Given that condition 1 in the statement
of the theorem is satisfied, it follows that argmaxa∈A ∑u∈U λ (u)u(a,ω) is
a singleton as there is a unique maximiser. Further, since the expression
∑ω ′∈Ω π(ω ′)∑u∈U λ (u)u(a,ω ′) is continuous (linear) in both λ and π , it
follows that the correspondence E(λ ;ω) is both upper and lower hemicon-
tinuous in λ . Further, by definition, E(λ ;ω) is convex and closed since it
is always a closed interval of the form [e′,1]. Hence, by applying the the-
orem of the maximum (Charalambos & Aliprantis, 2013), we may prove
that e(λ ;ω) := mine∈E(λ ;ω) e is continuous for each ω ∈ Ω. Now, let e =
maxω∈Ω maxλ∈∆(U ) e(λ ;ω). Since it may be argued that e(λ ;ω) < 1 for
each λ ∈ ∆(U ) and ω ∈ Ω, it follows that e < 1.

Let ε > 0. Then, let δ ∈ (0,1) such that

5δ max
u∈U

max
a∈A

||u(a, .)||< ε. (2)

Let X∞ be the space of all sequences in X . For each ω ∈ Ω, let ν∞(.|ω) be the
product probability measure in ∆(X∞). For xn ∈ Xn, let π(xn) be the posterior
belief on the state of nature conditional on signals in xn. Define the following
events in X∞, one for each ω ∈ Ω,

X∞
ω := {x∞ ∈ X∞ : lim

n→∞
π(xn)(ω) = 1}.

Then, it follows that

ν∞(X∞
ω |ω) = 1. (3)

Given n ∈ N, define the following sets in Xn.

Pn
ω = {xn ∈ Xn : ∀y ∈ X ,π(xn,y)(ω)> e}.

T n = {xn ∈ Xn : ∀y,z ∈ X , ||π(xn,y)−π(xn,z)||< δ}.

Then, it follows from (3) that there exists n0 ∈N such that for each n ≥ n0 and
for each ω ∈ Ω,

νn(Pn
ω ∩T n|ω)≥ 1−δ , (4)
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given the n-fold product measure νn(.|ω) in ∆(Xn).

The chosen n0 is the one we pick.

Suppose E =< N,Ω,(Si)i∈N,A,(ui)i∈N,π0,µ > is an environment that sat-
isfies the properties 1), 2) and 3). Then, we show that the mechanism (σ∗,q∗)
is ε-optimal.

We first show that (σ∗,q∗) is ε-Bayesian incentive compatible. Let i ∈ N
and si, ti ∈ Si. Then, we have that

Eπ0⊗µ [(ui(σ∗(ti,s−i),ω)−q∗i (ti,s−i))− (ui(σ∗(si,s−i),ω)−q∗i (si,s−i))|si]

≤ δ max
u∈U

max
a∈A

||u(a, .)||+4δ max
u∈U

max
a∈A

||u(a, .)||.

The above inequality follows since for the given conditional expectation, from
(4), with probability at least 1−δ , two things happen simultaneously : i) the
social optimum does not change with the unilateral deviation from si to ti
i.e. σ∗(si,s−i) = σ∗(ti,s−i) hence ui(σ∗(si,s−i),ω) = ui(σ∗(ti,s−i),ω) and
ii) the change in posterior belief is at most of distance δ i.e. ||π(si,s−i)−
π(ti,s−i)||< δ , hence this means that q∗i (si,s−i)−q∗i (ti,s−i)≤ δ maxu∈U maxa∈A ||u(a, .)||.
Further, with probability at most δ , we get a difference of four terms

(ui(σ∗(ti,s−i),ω)−q∗i (ti,s−i))− (ui(σ∗(si,s−i),ω)−q∗i (si,s−i))

that takes a value of at most 4maxu∈U maxa∈A ||u(a, .)||, by the definition of
q∗.

Hence, it follows from (2) that

Eπ0⊗µ [(ui(σ∗(ti,s−i),ω)−q∗i (ti,s−i))− (ui(σ∗(si,s−i),ω)−q∗i (si,s−i))|si]< ε,

which implies that (σ∗,q∗) is ε-Bayesian incentive compatible.

Next, we show that (σ∗,q∗) is Bayesian individually rational. Let i ∈ N and
si ∈ Si. Then,

Eπ0⊗µ [ui(σ∗(si,s−i),ω)|si] = Es−i [ ∑
ω∈Ω

π(si,s−i)(ω)ui(σ∗(si,s−i),ω)|si]

= Es−i [q
∗
i (si,s−i)|si]

= Eπ0⊗µ [q∗i (si,s−i)|si], (5)
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implying that (σ∗,q∗) is Bayesian individually rational.

Finally, we prove that (σ∗,q∗) is ε-optimal. Let (σ ,q) be any other mech-
anism that is ε-Bayesian incentive compatible and Bayesian individually ra-
tional. We will show that Q(σ∗,q∗) ≥ Q(σ ,q) i.e. Eπ0⊗µ [∑i∈N q∗i (si,s−i)] ≥
Eπ0⊗µ [∑i∈N qi(si,s−i)].

Since (σ ,q) is Bayesian individually rational, we have that for each i ∈ N
and si ∈ Si,

Eπ0⊗µ [ui(σ(si,s−i),ω)|si]≥ Eπ0⊗µ [qi(si,s−i)|si].

Hence, taking the unconditional expectation and summing over all players,
we get that

Eπ0⊗µ [∑
i∈N

ui(σ(si,s−i),ω)]≥ Eπ0⊗µ [∑
i∈N

qi(si,s−i)].

Since, the social choice function σ∗ implements the social optimum it follows
that

Eπ0⊗µ [∑
i∈N

ui(σ∗(si,s−i),ω)]≥ Eπ0⊗µ [∑
i∈N

ui(σ(si,s−i),ω)].

By applying (5), taking unconditional expectations and summing over all play-
ers, we obtain

Eπ0⊗µ [∑
i∈N

q∗i (si,s−i)] = Eπ0⊗µ [∑
i∈N

ui(σ∗(si,s−i),ω)].

Hence, it follows by the previous conclusions, that Q(σ∗,q∗)≥Q(σ ,q). Thus,
we have proved that the mechanism (σ∗,q∗) is ε-optimal.

With the regard to the above theorem, some remarks are in order. Firstly,
by applying standard results on convergence rates for Bayesian posteriors
(Ibragimov et al., 1981; Le Cam, 1986; Ghosal et al., 2000), we may fur-
ther derive a threshold on the number of agents n0 = N(ε,ν) of the order of
O( 1

ε2 ). Secondly, the condition on U implies that each u∈U admits a unique
maximiser, for each state. The condition would also be satisfied if all agents
exhibit the same ordinal preference over alternatives. However, agents could
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disagree in their state-dependent ordinal ranking over states and yet, condi-
tion (1) may be satisfied. The finiteness of U is applied in the proof of the
theorem to ensure that e < 1 indeed exists as the set ∆(U ) is compact. Of
course, in this setting, λ (u) is the proportion of agents having utility function
u. Hence, it is essentially the normalised welfare weight on u in the term for
aggregate social welfare.

We next discuss some examples. Consider a situation involving single object
assignment in which there exist different sets of agent {Nu}u∈U (pairwise
disjoint), where N = ∪u∈U Nu and each agent in Nu has utility function u. Fur-
ther, the set of alternatives is defined as A = U , meaning that the object is
assigned to exactly one of {Nu}u∈U . Whichever Nu is assigned the object,
an agent in Nu derives state-dependent utility according to u and would have
an expected payment equal to the expected value of obtaining the object for
Nu. Hence, if not obtaining the object has no value, this means the agent
does not pay anything in the mechanism. Perhaps interestingly, the theorem
application above would only need ∑u∈U |Nu| to go to infinity and hence we
may have that one set of agents is large relative to other sets of agents. For
another example, one may set aside optimality and instead consider ε-Budget
Balanced mechanisms (Myerson & Satterthwaite, 1983), where the expected
sum of payments would be close to zero. This would be the case, when the
distribution of utilities over agents (i.e. profile of utility functions (ui)i∈N) is
such that the expected welfare is close to zero, hence the expected sum of
payments (for the given payment scheme) would be close to zero. Hence, we
would get a mechanism that would satisfy the properties of being ε-BIC, BIR
and ε-Budget Balanced. This would demonstrate a situation that would prove
to be in contrast to Myerson & Satterthwaite (1983).
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ABSTRACT

This paper studies screening problems with quasilinear preferences, where
agents’ private information is two-dimensional and the allocation instrument
is one-dimensional. We define a preorder to compare types based on their
marginal valuation to the instrument, which facilitates the reduction of incen-
tive compatibility constraints that must be checked. With this approach, the
discretized problem becomes computationally tractable. As an application, we
numerically solve a problem introduced by Lewis & Sappington (1988b).
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1. INTRODUCTION

SCREENING problems arise in several economic situations, including opti-
mal taxation, nonlinear pricing, regulation of monopolists, and auctions.

While much of the existing literature has focused on modeling private infor-
mation with a one-dimensional parameter, a more nuanced approach with at
least two dimensions is required to represent agents’ characteristics accurately.
For example, in the context of nonlinear pricing, customers may exhibit differ-
ences in demand intensity (intercept of demand) and price sensitivity (slope of
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demand), as in Laffont et al. (1987). Regarding the regulation of monopolists,
the regulator may be uncertain about both the marginal and fixed cost of the
company, as in Rochet (2009), or may be uncertain about the cost and demand
functions of the company, as in Lewis & Sappington (1988b). In auctions,
bidders may have private information about both the valuation of the good and
their financial constraints, as in Che & Gale (1998).

Compared to one-dimensional models, the analysis of models with two-
dimensional agent characteristics and a one-dimensional principal’s instrument
has been relatively limited. This is because of the inherent difficulty of finding
explicit solutions and the challenging task of obtaining numerical approxi-
mations. For example, Laffont et al. (1987), Basov (2001), Deneckere &
Severinov (2017), and Araujo et al. (2022), have developed some techniques
to obtain the solution. However, with these techniques, we are limited to using
simple forms of agents’ valuation functions and commonly assuming a uniform
distribution of types.

This article aims to provide a methodology that enables the numerical
solution of a wide variety of bidimensional adverse selection problems. The
central assumption is that the agent’s marginal valuation can be ranked under
each private information parameter. Our main contribution lies in proving
that it is sufficient to consider the incentive compatibility constraint with
types over a unidimensional set for each agent type rather than the entire
bidimensional set as required by definition. Consequently, a significant number
of incentive constraints are ruled out in the discretized problem, rendering
it computationally tractable even with a relatively fine discretization. In this
manner, we can have well-educated predictions about some features of the
solution, such as optimal quality, agents’ surplus, and optimal tariff (if we refer
to the monopolist’s problem), as well as the participation region and how types
are bunched.

In contrast to most numerical approaches that approximate the solution,
this study does not consider the incomplete or relaxed problem in which the
constraints are obtained from the necessary conditions of the original problem
(Wilson, 1996; Tarkiainen & Tuomala, 1999). Moreover, it does not focus on
the Lagrange multipliers associated with the incentive compatibility constraints
(Berg & Ehtamo, 2009), nor does it appeal to optimization methods for the
complete problem (Judd et al., 2017). Instead, this study explores the idea
-from the unidimensional case- that a priori eliminates some constraints when
the set of types is finite, and the Spence-Mirrlees condition holds.

Journal of Mechanism and Institution Design 8(1), 2023

“jMID-vol8(1)-01” — 2023/12/21 — 17:49 — page 108 — #112



“p˙05” — 2023/12/21 — 16:11 — page 109 — #3

Braulio Calagua 109

It is well known that in one dimension, under the Spence-Mirrlees or
single-crossing condition, the types can be ordered by their marginal valuation
for the principal’s instrument. However, in multiple dimensions, the lack of
an exogenous order among types presents challenges in solving the problem.
McAfee & McMillan (1988) proposed a generalization of the Spence-Mirrlees
condition, according to which the bunching of types must be linear. Most
other generalizations have extended the injectivity of marginal valuation as a
function of types. Generalizing the Spence-Mirrlees condition has, therefore,
proven difficult. One of the key innovations of this article is the introduction of
a preorder in the set of types, established by comparing the marginal valuation
for the principal’s instrument. With this definition and by considering the
possible shape of the contour lines of an implementable assignment, we show
that it is sufficient to ensure that each type does not wish to imitate another
type on a subset of the boundary of the type space.

As an application, we numerically solve the regulation model introduced
by Lewis & Sappington (1988b). Armstrong (1999) reviewed this model
and showed that Lewis and Sappington’s solution was incorrect. Since this
model lacks a known analytical solution, obtaining a numerical approximation
becomes essential. In addition, Armstrong (1999) conjectured that it is optimal
to exclude a positive mass of agents, as is the case for the nonlinear pricing
setting. However, the numerical solution suggests that the exclusion should not
be optimal in this case. The analysis of this model exemplifies the importance
of having an approximation of the solution to make robust predictions.

The plan of the paper is as follows: Section 2 describes the model (in the
style of Mussa & Rosen (1978)). Section 3 explains the reduction of incen-
tive constraints, establishes the discretized problem, and studies asymptotic
properties when discretization becomes finer. The regulation model of Lewis
& Sappington (1988b) is numerically solved −for particular parameters− in
Section 4, where I also provide some considerations about the optimality of
exclusion. Appendix A tests the method by comparing the numerical solutions
with the analytical solutions for some models from the literature. All proofs
are included in Appendix B.

2. MODEL

Consider a monopolistic firm that produces a single product with quantity (or
quality) q ∈ Q ⊂ R+ at cost C(q). The set Q ⊂ R+ represents the production
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set of the firm. Customers’ characteristics, reflecting their preferences over the
product, are captured by a bidimensional vector (a,b) ∈ [0,1]× [0,1], which
is labeled as its type. This type refers to the private information for each
customer, but the firm knows the probability distribution over [0,1]2 defined by
a differentiable density function ρ(a,b)> 0. The utility of the customer of type
(a,b) is quasi-linear v(q,a,b)− t, where v(q,a,b) is the value for consumption
q ∈ R+, and t ∈ R+ is the monetary transfer.

The firm designs a menu of options to offer the customer specifying the
quantity and the corresponding payment according to the customer’s type
revealed. Due to the revelation principle (Myerson, 1979), it is sufficient
to restrict attention to contracts where truth-telling is the best response for
customers. Thus, to maximize expected revenue, the monopolist’s problem is

max
q(·,·),t(·,·)

∫ 1

0

∫ 1

0

(
t(a,b)−C(q(a,b))

)
ρ(a,b)dadb (MP)

subject to

v(q(a,b),a,b)− t(a,b)≥ v(q(a′,b′),a,b)− t(a′,b′) (IC)

and
v(q(a,b),a,b)− t(a,b)≥ 0 (IR)

Labels (IC) and (IR) refer to incentive compatibility and individual ratio-
nality constraints. We assume that the reservation utility is type independent
and normalized at zero. For an incentive-compatible contract (q(·, ·), t(·, ·)),
the informational rent is defined as

V (a,b) = v(q(a,b),a,b)− t(a,b)

This variable V is used to eliminate monetary transfer. The monopolist’s
problem can now be set as

max
q(·,·),V (·,·)

∫ 1

0

∫ 1

0

(
v(q(a,b),a,b)−C(q(a,b))−V (a,b))

)
ρ(a,b)dadb (1)

subject to

(IC) V (a,b)−V (â, b̂)≥ v(q(â, b̂),a,b)− v(q(â, b̂), â, b̂)
(IR) V (a,b)≥ 0
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Assumptions. Agent’s valuation function v is three times differentiable,1 and
cost function C is differentiable. Additionally, by denoting qout the exit option,
the following is assumed:

1. v(qout, ·, ·) is constant.

2. vqa > 0 and vqb < 0.

3. d
dq

(
vqa
vqb

)
≥ 0 and d

da

(
vqa
vqb

)
≥ 0.

Assumption 1 is usually presented as v(0, ·, ·) = 0 because, in nonlinear
pricing, the exit option is qout = 0, and all customers assign it zero value.
However, in other adverse selection problems, qout could take other values.
Assumption 2 is the single-crossing condition in each direction, i.e., the agent’s
marginal valuation can be ranked with respect to each private information pa-
rameter. We have assumed the particular signs mentioned above, but what truly
matters is the uniform signs of vqa and vqb. As a consequence, it requires that
an implementable q(·, ·) be nondecreasing with respect to a and nonincreasing
with respect to b. Technical assumptions 3 are given to avoid pathological
cases in our main result.

If, in addition, the following condition is satisfied:

va ≥ 0 and vb ≤ 0 (*)

then the informational rent V is nondecreasing with respect to a, and is non-
increasing with respect to b (since V (a,b) is the optimal value of the agent’s
maximization problem, and according to the envelope theorem, Va(a,b) =
va(q(a,b),a,b) and Vb(a,b) = vb(q(a,b),a,b); hence, Va ≥ 0 and Vb ≤ 0).
Thus, it will be sufficient to impose V (0,1) = 0 to fulfill all the IR constraints.

Unless otherwise stated, condition (*) will not be treated as an assumption
for our model because the main issue concerns IC constraints.

From this point onwards, we focus solely on piecewise almost everywhere
twice-differentiable and continuous contracts (q(·, ·), t(·, ·)).

The following result is from Araujo et al. (2022), and it will be useful for
further analysis because it provides information about the shape of isoquants,
that is, the set of types who are assigned the same quantity.

1 Due to v = v(q,a,b), we denote by vq, va and vb the first, second and third partial derivatives
of v.
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Proposition 1. If q(·, ·) is implementable, then at any point (a,b) ∈ [0,1]2 in
the participation region the vector (−vqb

vqa
(q(a,b),a,b),1) is a tangent to the

contour line of q(·, ·) at level q(a,b).

As a consequence, taking into account Assumption 2, we have that any
isoquant curve in the participation region has a positive slope at any point. In
Appendix B: Mathematical Proofs, we present the methodology for deriving
this conclusion, which involves the analysis of a partial differential equation
obtained from the incentive compatibility restrictions.

3. REDUCTION OF INCENTIVE CONSTRAINTS

The main challenge in numerically solving the problem (1) is associated with
the significant number of incentive compatibility constraints. This issue arises
when discretizing the set of types [0,1]× [0,1] into a grid of n points over
each axis, leading to n4 −n2 IC constraints that can lead to memory storage
problems, especially with fine discretization. To overcome this challenge, I
present a methodology that allows us to reduce the number of IC constraints.
This approach draws inspiration from the idea to address IC constraints in the
unidimensional case with a finite set of types and when the single-crossing
condition holds (see Laffont & Martimort (2001)).

Recall that if a one-dimensional parameter θ ∈ [θ ,θ ] describes the agents’
characteristics, the Spence-Mirrlees or single-crossing condition vqθ > 0 allows
us to rank the agents by their marginal valuation for consumption in view of
vq is an increasing function on parameter θ . Then, from the point of view of
the monopolist, θ1 is worse than θ2 whenever θ1 < θ2. In addition, when the
set of types is finite, we can a priori eliminate all IC constraints with better
types (and verify them ex-post) because better types aim to mimic the worst
types rather than vice versa. In fact, provided that q(·) is nondecreasing, it is
sufficient for each type to verify the IC constraint with the first worse type (the
one adjacent to the left). We extend and apply these ideas to the bidimensional
case.

However, in two dimensions, is there any way to know a priori what types
are better or worse from the monopolist’s viewpoint than an (a,b) type? In
the discrete setting, what could it mean that a fixed type (a,b) verifies the IC
constraint with the first worst type?

To respond to these questions, we work in the continuous setting. First, we
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introduce some kind of generalization of the single-crossing condition because,
for our purpose, there is no satisfactory generalization of such a condition.
Most of the extensions have focused on the injectivity of the function2 vq(q, ·),
but they have not considered the implicit order of types given by the marginal
valuation on the instrument. Thus, to compare two types at least partially, we
define the following binary relation:

Definition 1. Given (a,b),(â, b̂) ∈ [0,1]2, (a,b) is worse than (â, b̂), denoted
by (a,b)⪯ (â, b̂), if and only if

vq(q,a,b)≤ vq(q, â, b̂) ∀ q ∈ Q

Note that ⪯ is a preorder (reflexive and transitive) on [0,1]2. This definition
attempts to capture the idea that when (a,b)⪯ (â, b̂), the (a,b)-agent has no
incentive to announce the type (â, b̂) because for any q ∈ Q, the (â, b̂)−agent
has greater marginal valuation for consumption and is willing to pay more
for each additional unit of the product. Thus, from the point of view of the
monopolist, type (a,b) is worse than type (â, b̂).

As a direct consequence of Assumption 2, we note that type (a,b) is worse
than any other type in the southeast. Figure 1 illustrates these points.

Proposition 2. Given (a,b), if â > a and b̂ < b, then (a,b)⪯ (â, b̂)

Then, for a fixed type, we a priori exclude the IC constraints with any
type in the southeast, and ex-post verify that these constraints are fulfilled.
Specifically, given (a,b) ∈ [0,1]2, the following IC constraints are omitted:

V (a,b)−V (â, b̂)≥ v(q(â, b̂),a,b)− v(q(â, b̂), â, b̂) ∀ â > a , b̂ < b (2)

To address the second question, we denote the northeast boundary of the
set of types for a given (a,b) ∈ [0,1]2 by

F(a,b) := {(s,1) | a ≤ s ≤ 1}∪{(1,s) | b ≤ s ≤ 1} (3)

Now, consider the isoquant passing through (a,b) which, as understood
from Proposition 1, has a positive slope at any point and hence intersects F(a,b).
The first worse type is any type located over the closest isoquant on the left,
as these agents obtain an inferior level of quantity. Instead of dealing with

2 See Levin (1999), Chiappori et al. (2010), Figalli et al. (2011)
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IC constraints with all the types of the isoquant, we can focus on the type
(x,y) located on F(a,b) because it is sufficient to verify the IC constraint with
a representative type over each isoquant (this is shown within the proof of
Theorem 1 below). Since we do not know the exact shape of the isoquant, we
must consider an IC constraint with all the types of F(a,b) in order to guarantee
that the (a,b) type verifies the IC constraint with the first worst type.3 Figure 1
illustrates this situation.

Figure 1: The red curves represent two isoquants. It would be sufficient to impose that
the (a,b) type does not mimic the (x,y) type, but since those curves are endogenously
determined, the IC constraint with all types represented by the green lines is needed.
On the other hand, the purple region represents the types with which the IC constraints
are a priori omitted.

1

1

(a,b)

(x,y)

F(a,b)

Theorem 1. Let (q(·, ·),V (·, ·)) be such that qa ≥ 0, qb ≤ 0 and for any (a,b)∈
[0,1]2:

V (a,b)−V (x,y)≥ v(q(x,y),a,b)− v(q(x,y),x,y) , ∀ (x,y) ∈ F(a,b)

Then, (q(·, ·),V (·, ·)) satisfies all the incentive compatibility constraints.

3 The IC constraint with the horizontal point (1,b) could be ignored, and we do this in the
discretized problem. However, in the continuous problem, it is considered because it will be
used in the proof of Theorem 1 below.
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This result could be understood as analogous to the affirmation local IC
constraints imply global IC constraints, which is correct in the unidimensional
case when single-crossing holds.4

The proof is based on three lemmas. The first lemma justifies that it
is sufficient to verify the IC constraints with a representative type over an
isoquant, and then the constraint will be satisfied with all the types over that
isoquant. As a consequence, any type has no incentive to locally misrepresent
its true type. Therefore, the contract (q(·, ·),V (·, ·)) satisfies the necessary
conditions related to the envelope theorem:

Va(a,b) = va(q(a,b),a,b) ∧ Vb(a,b) = vb(q(a,b),a,b)

The second lemma demonstrates that a contract satisfying the previous con-
ditions and monotonicity qa ≥ 0, qb ≤ 0 will fulfill the a priori omitted IC
constraints in (2) with types in the southeast of any given type. The third
lemma is more technical and roughly states that if a given type verifies the IC
constraint with a particular type over an isoquant, then this constraint is also
verified with all the types on the left of that isoquant. This yields the result.

Note that any information about the shape of isoquants could help us
eliminate more IC constraints. In this sense, the following proposition provides
a sufficient condition of (a,b)⪯ (â, b̂) for a particular valuation function:

Proposition 3. Assume that vq is concave in the second argument and convex
in the third argument. Let (a,b) and (â, b̂) be in [0,1]2 such that a < â, b < b̂.

If ∀ q ∈ Q :
b̂−b
â−a

≤ −vqa

vqb
(q, â,b) then (a,b)⪯ (â, b̂)

To interpret Proposition 3, recall that −vqa
vqb

(q(x,y),x,y) is the slope of the
isoquant at level q(x,y) passing through point (x,y). Thus, if the slope of any
possible isoquant passing through (â,b) is greater than the slope between (a,b)
and (â, b̂), we can be sure that (a,b)⪯ (â, b̂). In example (5.1) of Appendix
A: Testing the method, we use this proposition to further reduce the number of
IC constraints.

3.1. Discretized problem

By Theorem 1, it is sufficient for each type to satisfy the IC constraint with
all the points over a unidimensional set instead of the whole square. This

4 See Section 3.2.1 in Salanié (1997).
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result allows us to approximate the solution of the continuous problem by
discretizing the set of types. This section is devoted to establishing the discrete
problem and discussing its limitations.

Let Xn = {0, 1
n−1 ,

2
n−1 , . . . ,1}×{0, 1

n−1 ,
2

n−1 , . . . ,1} be the grid of n2 points
on [0,1]2. For a fixed (a,b) with a < 1 and b < 1, let F̃(a,b) := F(a,b) ∩Xn,
where F(a,b) is defined in (3). Because for points over the line x = 1 or y = 1,
the constraints with the points on the northeast cannot be written, we consider
equivalently

F̃(a,1) =
(
{(0,s) : 0 ≤ s ≤ 1}∪{(s,0) : 0 ≤ s < a}

)
∩Xn

F̃(1,b) =
(
{(0,s) : 0 ≤ s ≤ b}∪{(s,0) : 0 ≤ s < 1}

)
∩Xn

Thus, F̃(a,b) is the set of types with which (a,b) must satisfy an IC constraint.
We approximate the integral in the monopolist’s objective by the trape-

zoidal rule.5 Let w(i, j) be the associated weight for each point (ai,b j) ∈ Xn.
Additionally, denote qi, j := q(ai,b j) and Vi, j :=V (ai,b j). We are interested in
solving the following discretized problem:

max
{qi, j,Vi, j}

n

∑
i=1

n

∑
j=1

w(i, j)(v(qi, j,ai,b j)−Vi, j −C(qi, j))ρ(ai,b j)

s.t.

(ĨC) Vi, j −Vk,l ≥ v(qk,l,ai,b j)− v(qk,l,xk,yl) ∀ (xk,yl) ∈ F̃(ai,b j)

(IR) Vi, j ≥ 0
(M) qi, j ≤ qi+1, j , qi, j ≤ qi, j−1

(4)

Remarks:

1. In the original discretized problem, there are n4 −n2 (maybe nonlinear)
IC constraints. After our methodology, the number of IC constraints is
in the order n3.

2. If case condition (*) is verified, all IR constraints can be replaced by
V1,n = 0.

5 Note that we consider the discretization of the objective function of the continuous formulation
of the problem. We do not consider a discretized density function on the set of types.
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3. When the valuation function has the special multiplicative separable
form v(q,a,b) = ψ(q)+α(a,b)q+β (a,b), the IC constraints become
linear in qi, j. Therefore, since the IC constraints are linear in Vi, j (re-
gardless of v), if the objective function is strictly concave,6 there exists a
unique solution allowing us to rely on numerical approximations.

Asymptotic analysis

Due to discretization, it is impossible to ensure that all IC constraints are
fulfilled for each type (a,b) ∈ Xn. This is because there could be some points
between the isoquant passing through (a,b) and the closer to the left isoquant
curve intersecting F̃(a,b). Figure 2 illustrates this issue.

Figure 2: By discretization, IC constraints are not ensured with black points.

(a,b)

Nevertheless, we proceed by following Belloni et al. (2010),7 and prove that
the violations of the IC constraints (i.e., the terms for which these constraints
are not satisfied) uniformly converge to zero with finer discretizations, and the
sequence of optimal values converges to the optimal value of the continuous
problem.

For this purpose, denote (Qn,V n) to the solution of the discretized problem
(4). Since these functions are defined on Xn, we define the extensions Q̃n,Ṽ n :

6 This will be the case if ψ ′′−C′′ < 0
7 Belloni et al. (2010) considered a linear model including multiple agents and border constraints.

These constraints are related to the allocation treated as a probability since, in their model,
there are N buyers and J degrees of product quality.
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[0,1]2 → R by

Q̃n(x,y) := Qn(a,b) , Ṽ n(x,y) :=V n(a,b)

where (a,b) ∈ Xn is such that a ≤ x < a+ 1
n−1 and b− 1

n−1 < y ≤ b .
We then define δ ∗(Q̃n,Ṽ n) as the supremum (in absolute value) of the

violations of the IC constraints by the pair (Q̃n,Ṽ n).8 That is, although some
constraints are not fulfilled, we can be sure that for any (a,b),(a′,b′) ∈ [0,1]2:

Ṽ n(a,b)−Ṽ n(a′,b′)≥ v(Q̃n(a′,b′),a,b)− v(Q̃n(a′,b′),a′,b′)−δ ∗(Q̃n,Ṽ n)

The next proposition shows the asymptotic feasibility of the extensions (Q̃n,Ṽ n).
That is, all IC constraint violations uniformly converge to zero.

Proposition 4. We have δ ∗(Q̃n,Ṽ n)≤ O( 1
n−1).

The following proposition shows the asymptotic optimality of the numeri-
cal solutions. That is, the objective function value of the discretized problem
converges to the objective function value of the continuous problem as the
discretization becomes finer.

Proposition 5. Let OPTn be the optimal value of the discretized problem, and
let OPT ∗ be the optimal value of the continuous problem. Then, liminf

n→∞
OPTn ≥

OPT ∗ . Additionally, if lim
n→∞

Q̃n(a,b) and lim
n→∞

Ṽ n(a,b) exists for any (a,b) ∈
[0,1]2, then lim

n→∞
OPTn = OPT ∗ .

4. NUMERICAL SOLUTION: REGULATING A MONOPOLIST FIRM

Lewis & Sappington (1988b) studied the design of regulatory policy when the
regulator imperfectly knows both the costs and the demand functions of the
monopolist firm under regulation. This model was then reviewed by Armstrong
(1999) who observed that Lewis and Sappington’s solution for a particular

8 If type (a,b) does not satisfy the IC restriction with type (a′,b′) then Ṽ n(a,b)−Ṽ n(a′,b′)−
(v(Q̃n(a′,b′),a,b)− v(Q̃n(a′,b′),a′,b′))< 0. Thus, δ ∗(Q̃n,Ṽ n) is formally defined as

−δ ∗(Q̃n,Ṽ n) := inf{Ṽ n(a,b)−Ṽ n(a′,b′)− (v(Q̃n(a′,b′),a,b)− v(Q̃n(a′,b′),a′,b′))}

where the infimum is taken over all pairs (a,b),(a′,b′) ∈ [0,1]2.
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example was incorrect; however, he did not find the correct solution. Here, I
present the numerical solution of the problem and discuss a conjecture made
by Armstrong (1999) about the optimality of excluding a positive mass of
agents.

Lewis and Sappington’s model
In the framework of the regulation of a monopolistic company, Lewis &
Sappington (1988b) considered that the demand for the firm’s product q =
Q(p,a) and the costs of producing output q, C(q,b), involve the firm’s private
information parameters (a,b) distributed over Θ = [a,a]× [b,b] according to a
strictly positive density function f (a,b).

The regulator offers the firm a menu of unit prices p and a corresponding
subsidy t conforming to the firm’s type is revealed. The profit of the firm
of type (a,b) is pQ(p,a)−C(Q(p,a),b)+ t. The profit reservation level is
type independent and normalized at zero. It is assumed that the regulator can
ensure that the firm serves all demand at the established prices. The regulator’s
objective function is the expected consumer surplus net of the transfer to the
firm
∫ a

a

∫ b

b
{Π(Q(p(a,b),a),a)− p(a,b)Q(p(a,b),a)− t(a,b)} f (a,b)dbda (5)

where Π(Q,a) =
∫ Q

0 P(ξ ,a)dξ , and P(·) denotes the inverse demand curve.
The regulator’s problem is to design the menu of contracts (p(a,b), t(a,b))

to maximize (5) subject to individual rationality

p(a,b)Q(p(a,b),a)−C(Q(p(a,b),a),b)+ t(a,b)≥ 0

and incentive compatibility constraints

p(a,b)Q(p(a,b),a)−C(Q(p(a,b),a),b)+ t(a,b)≥
p(â, b̂)Q(p(â, b̂),a)−C(Q(p(â, b̂),a),b)+ t(â, b̂)

Lewis & Sappington derived a solution for the particular example

Q(p,a) = α − p+a , C(q,b) = K +(c0 +b)q (6)

with α,K and c0 positive constants and a uniform distribution over Θ =
[0,1]2. However, in Armstrong (1999), the author noted that Lewis and Sap-
pington’s solution for this example was incorrect, but without solving it cor-
rectly himself.
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Armstrong’s conjecture

Furthermore, Armstrong (1999) argued that excluding a positive mass of types
should be optimal, like in the nonlinear pricing setting where it is optimal for
a monopolist to exclude a positive mass of customers. However, due to the
change in the variables he used, the type set is not convex, and his exclusion
argument cannot strictly be applied. Armstrong also expressed the following:

“Nevertheless, I believe that the condition that the support be convex is
strongly sufficient and that it will be the usual case that exclusion is optimal...”

Numerical solution

Before solving the problem numerically, we introduce a change of variables to
fit the standard problem (1) from Section 2. By setting

v(p,a,b) = pQ(p,a)−C(Q(p,a),b)
H(p,a) = pQ(p,a)−Π(Q(p,a),a)
V (a,b) = v(p(a,b),a,b)+ t(a,b)

the regulator’s problem can be written as (notice that the new variable V is the
firm’s profit)

max
p(·),V (·)

∫ a

a

∫ b

b
{v(p(a,b),a,b)−H(p(a,b),a)−V (a,b)} f (a,b)dbda (RP)

subject to

(IR) V (a,b)≥ 0 ∀ (a,b) ∈ Θ

(IC) V (a,b)−V (â, b̂)≥ v(p(â, b̂),a,b)− v(p(â, b̂), â, b̂) ∀ (a,b),(â, b̂) ∈ Θ

We focus on solving the problem with Q(p,a) and C(q,b) as in (6) and the
uniform distribution of types over Θ = [0,1]2.

Since v(p,a,b) = (α +a− p)(p−c0 −b)−K, then vpa = vpb = 1. In this
case, p(·, ·) will be nondecreasing in a and b. Additionally, since −vpb

vpa
< 0,

from Proposition 1 we find that any isoprice curve has a negative slope at
any point and hence intersects the northwest boundary of the set of types.
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Following the same considerations as in Section 3, it will be sufficient that
each (a,b)−agent verifies the IC constraints with all the points over the set

F(a,b) := {(0,s) | b ≤ s ≤ 1}∪{(s,1) | 0 ≤ s ≤ a}

Note that the discretized problem has a unique solution: the multiplicative
separable form of v implies linearity of the IC constraints (see remark 3 on
page 117) and the objective function is strictly concave. Note also that the
signs of va and vb are endogenously determined; hence, condition (*) cannot
be verified and all the IR constraints must be considered.

We numerically solved the problem for the case of c0 = 1, α = 5, and K = 2
with n= 51 points over each direction. The numerical solution (pn(·, ·),V n(·, ·))
was obtained via Knitro/AMPL by using the active set algorithm. The optimal
value was OPTn = 4.21, and the maximum violation of the IC constraints (in
absolute value) was δ ∗ = 8.403×10−11. Figure 3 shows the graphs of pn(·, ·)
and V n(·, ·).

Figure 3: Graphs of optimal prices and firm’s profit for the case c0 = 1, α = 5, and
K = 2 with n = 51.
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From the solution, we calculated the optimal subsidies t(·, ·), the quantity
produced by the firm Q(p(·, ·), ·), and the difference between unit prices and
marginal costs p(·, ·)−Cq(q(·, ·), ·). The graphs of these functions are shown
in Figure 4.
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Figure 4: Graphs of optimal subsidies, production of the firm, and the difference
between unit prices and marginal costs for the case c0 = 1, α = 5, and K = 2 with
n = 51.
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Some insights from the numerical solution

This example gives rise to an optimization problem with linear constraints, and
it possesses a unique solution, making numerical methods for solving highly
efficient. Additionally, the solution for different values of c,α , and K presents
the same features. As a result, the following statements are considered reliable:

1. It seems that, at the optimum, all types (a,b) with a+b≥ 1 are bunching
at unit price c0 +1, and their subsidy is the fixed cost K. Additionally,
the unit price assigned to type (0,0) seems to be c0. In fact, I conjecture
the optimum price p to be p(a,b) = c0 + a+ b when a+ b ≤ 1 and
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p(a,b) = c0 +1 when a+b > 1.

2. At the optimum, the firm produces a positive quantity regardless of its
type.

3. In view of the numerical difference p−Cq, the regulator induces the
firm to price above marginal costs for almost all (a,b) types rather than
a = 0 or b = 1 (i.e., such types with the a priori lowest demand or such
types with the highest costs).9

4. The type of firm with the highest cost function receives zero profit.

5. The firm’s numerical profit V suggests that there is no exclusion.

Some additional conclusions could be made if our conjecture of optimal
unit prices were true. In this case, in the region of types (a,b) with a+b ≤ 1,
the isoprices are lines of negative slope. Given s ∈ [0,1], the adjusted marginal
cost along the isoprice of vertical intercept s is defined as

AMC(s) =

∫ s

0
Cq(Q(p(ã,s− ã), ã),s− ã) f (ã,s− ã)dã

∫ s

0
f (ã,s− ã)dã

+

∫ s

0
F(ã,s− ã)dã

∫ s

0
f (ã,s− ã)dã

where F(a,b) =
∫ b

0 f (a, b̃)db̃. Then, for all types (a,b) with a+b = s ≤ 1,
the optimal price equals the adjusted marginal cost. That is,

p(a,b) = AMC(s)

Lewis & Sappington (1988b) introduced the previous definition of AMC(s) as
the sum of the expected marginal costs given s and the bidimensional version of
the inverse hazard rate. They also provided the following interpretation of the
second term in AMC(s): “Intuitively, this term captures the optimal mark-up of
price above expected marginal cost. The mark-up balances the expected losses
from inefficiently low output with the expected gains from reduced information
rents that accrue to the firm because of its private knowledge.”

Baron & Myerson (1982) obtained a conclusion related to ’price equals
adjusted marginal cost’ in their analysis of a model where the regulator faces

9 In the model of Lewis & Sappington (1988a), the regulator is uncertain only about the position
of the demand curves. In that model, if C′′(q)≥ 0 (similar to here), setting prices at the level
of marginal costs for the reported demand is optimal (p =Cq).
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uncertainty solely about the firm’s cost function. According to their findings,
at the optimum, prices exceed marginal costs for all cost realizations except
the lowest one.

Moreover, as previously mentioned, when considering types (a,b) with
a+ b > 1, bunching is observed at the same price, and the same subsidy,
which is the firm’s fixed cost, is obtained. This subsidy feature in half of
the realizations aligns with the traditional policy regulation approach used in
situations without information asymmetry.

In any case, the optimal price is set above the realized marginal cost for
almost all types of firms, as clearly indicated by the numerical results.

About the optimality of exclusion

In screening problems with multi-dimensional types, the optimality of exclu-
sion refers to the Principal’s optimal contract design where a positive mass of
agents chooses not to participate. Armstrong (1996) first established this result
in the nonlinear pricing setting.

Although the optimality of exclusion is a generic property (that is, valid
for almost all parameter’s values), perhaps the most intriguing insight from
the numerical solution is the possibility that, in this regulation model, non-
exclusion of a positive mass of types should be optimal; this is contrary to
Armstrong’s conjecture stated previously.

Furthermore, in Barelli et al. (2014), the authors relaxed the strong con-
ditions from Armstrong (1996) (strict convexity and homogeneity of degree
one) and proved a more general result regarding the generic desirability of
exclusion. For the example we have analyzed, they considered prices to belong
to [c0 +1,α] to conclude that their result can be applied, and hence confirm
Armstrong’s conjecture. However, the numerical results indicate that prices do
not belong to [c0 +1,α]. Therefore, their theorem should not be applied.

Next, I will provide one technical argument explaining why Armstrong’s
Theorem regarding the desirability of exclusion, formulated in the context of
nonlinear pricing, could not be extended to this regulation model.

In nonlinear pricing, the customer’s exit option is qout = 0 and tout = 0.
Hence, the natural assumptions v(0,a,b) = 0 and C(0) = 0 imply that the
monopolist’s revenue v(0,a,b)−C(0)−V (a,b) is zero when V (a,b) = 0 (that
is, when type (a,b) is excluded). Then, the monopolist’s penalty for causing
some customers to exit the market is to not receive income from them.
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On the other hand, in the regulation model, the exit option of firm (a,b)
is the unit price pout and subsidy tout at which profit V (a,b) is zero. For
such a firm, in the previous example given by (6), the regulator’s benefit
is (α + a− c0 − b)Q(pout,a)− (Q(pout,a))2/2−K (in fact, if there is no
production, this amount is −K).

Therefore, in contrast with the monopolist, the regulator could face the
necessity of assuming a negative penalty when excluding a firm. Thus, Arm-
strong’s argument of comparing benefits (more income from customers still in
the market) versus penalties (zero income from customers excluded) might not
be applicable to this model.

In addition, based on the model formulation, it becomes apparent that
the regulator has no interest in excluding the firm. This situation may arise
if, for example, the monopolist firm is already operational and having zero
production is deemed undesirable for the economy. The concept of individual
rationality reflects that regardless of the characteristics of costs and demand
facing the firm, whether it is producing or not, the subsidy provided by the
regulator must be adjusted such that the firm’s profit is at least zero.

In a regulation model where the firm refrains from production when it
cannot make a positive profit and the regulator pays zero, an additional variable
is necessary, indicating the probability that the firm will be allowed to produce
(such as the r(·) variable in Baron & Myerson (1982) or Rochet (2009)). The
optimal value of this variable will indicate whether a type of firm is excluded.

Appendix A: Testing the method

In this appendix, we compare the numerical solution of problem (4) with the
analytical solution of the following three models from the literature. Laffont et
al. (1987) considered that a monopolist faces customers with linear demand
curves and is uncertain about both the slope and intercept of such linear
demand, leading to a linear-quadratic valuation from the customers v(q,a,b) =
aq−(1+b)q2/2. Basov (2001) proposed the Hamiltonian approach and solved
the generalization v(q,a,b) = aq− (1+b)qγ/γ with γ ≥ 2, for which demand
curves are concave. Araujo et al. (2022) analyzed a case of convex demand
curves, for which the customers’ valuation is v(q,a,b) = (c−b) log(aq+1).

Two criteria are presented for comparing our approximations. The first one
involves computing the average quadratic error (a.q.e.) between analytical
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quantity qexact and numerical quantity qnum, and between analytical and
numerical informational rent:

a.q.e.(qnum,qexact) :=
1
n2

n

∑
i, j=1

(qnum
i, j −qexact

i, j )2

a.q.e.(V num,V exact) :=
1
n2

n

∑
i, j=1

(V num
i, j −V exact

i, j )2

We also provide the distance between the profit of the analytical solution and
the profit of the numerical solution:

∣∣∣ profitnum−profitexact
∣∣∣.

The second criterion involves a visual comparison. Although it may not be
as formal as the first criterion, in practice, the numerical approximation helps
in formulating predictions about the functional form of the solution, such as the
participation set or the contour lines (i.e., how types are bunching). We provide
graphs of the quantity and the informational rent for both the numerical and
analytical solutions, along with contour lines and cross-sections.

Some graphs are included to determine whether a fixed type (ai,b j) (shown
in blue) satisfies the IC constraint with the other types in Xn. A green point is
drawn if such a restriction is fulfilled and a red point is drawn if it is not. Due
to numerical optimization, as well as the limitations of the discretization noted
in the remarks of subsection 3.1, it is not surprising that red points exist in
some graphs; however, the violations may be considered small. The value of
δ = δi, j in each of the graphs indicates the maximum value (in absolute value)
of the violation of IC constraints between (ai,b j) and the red points. That is,
for any tol > δi, j we have that ∀ (x,y) ∈ Xn:

V num(ai,b j)−V num(x,y)− (v(qnum(x,y),ai,b j)− v(qnum(x,y),x,y))>−tol

Furthermore, by defining δ ∗ = maxi, j{δi, j}, if tol >−δ ∗, a similar version
of the previous inequality is valid for any two points in the grid Xn. The value
of δ ∗ is also provided in each example.

Numerical solutions were performed via Knitro/AMPL using the Active
Set Algorithm. The optimization process stopped if one of the following
tolerances was achieved: maxit= 104, feastol= 10−15, xtol= 10−15,
and opttol= 10−15, where maxit is the maximum number of iterations,
feastol refers to feasibility tolerance, xtol is the relative change of deci-
sion variables and opttol is the optimality KKT stopping tolerance. In all
examples, xtol were achieved first.
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5.1. Example 1. Linear Demand

In Laffont et al. (1987), the authors have solved the monopolist’s problem
for the data

v(q,a,b) = aq− (1+b)
2

q2 , C(q) = 0 , f (a,b) = 1

The solutions q and T they found are:

q(a,b) =





0 , a ≤ 1
2

4a−2
4b+1

,
1
2
≤ a+2b

4b+1
≤ 3

5

3a−1
2+3b

,
3
5
≤ 2a+b

2+3b
≤ 1

T (q) =





q
2
− 3q2

8
, q ≤ 2

5

q
3
− q2

6
+

1
30

,
2
5
≤ q ≤ 1

Note that vq is linear in each a and b variable. Then, by Proposition 3, the
number of constraints can be reduced even further. Since the better type (1,0)
has no distortion with respect to the contract over complete information, we
must have vq(q(1,0),1,0) = 0 (marginal utility equals marginal cost), which
implies q(1,0) = 1. Then, Q = [0,1] because the output option is qout = 0.
Thus, −vqa

vqb
= 1

q ≥ 1. Therefore, for any (a,b), (â, b̂) with â > a, b̂ > b, it is

sufficient that b̂−b
â−a ≤ 1 to ensure that (a,b) ⪯ (â, b̂). Figure 5 illustrates the

difference in IC constraints considered.
The exact number of IC constraints is 1

2(3n3 − 3n2 − 4n+ 4) instead of
n4 −n2 as in the original problem. The problem was solved with n = 36. For
this value, 67970 IC constraints were considered whereas 1610350 were ruled
out.

Next, the numerical solution is compared with the analytical (exact) solu-
tion.
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Figure 5: The green points in both graphics represent the types with which the IC
constraint is required. The graphic on the left corresponds to the original formulation,
whereas the graphic on the right is after applying Proposition 3. The slope of the blue
line is 1.
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Comparing Informational Rent
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5.2. Example 2. Concave Demand

In Basov (2001), the author solved the original problem for the data

v(q,a,b) = aq− (c+b)
γ

qγ , C(q) = 0 , f (a,b) = 1

where c > 1
2 and γ ≥ 2 are constants. The solutions q and T he have found are:

q(a,b) =





0 , a ≤ 1
2

( 4a−2
4b+2c−1

) 1
γ−1

, (3+2c)a−2b ≤ 2c+1

( 3a−1
3b+2c

) 1
γ−1

, (3+2c)a−2b > 2c+1

T (q)=





q
2
− ( c

2 +
1
4)

γ
qγ , q ≤

( 2
3+2c

) 1
γ−1

1
6

( 2
3+2c

) 1
γ−1 − ( c

6 +
1
4)

γ

( 2
3+2c

) γ
γ−1

+
q
3
− c

3γ
qγ , q >

( 2
3+2c

) 1
γ−1

The discretized problem was solved for the case c = 1 and γ = 3 with
n = 30 points over each axis. For this value, 39092 incentive compatibility
constraints were considered, and 770008 were eliminated.
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Next, the numerical solution is compared with the analytical (exact) solu-
tion.

a.q.e.(qnum,qexact) = 4.5853×10−4

a.q.e.(V num,V exact) = 0.0384×10−4
∣∣∣ profitnum−profitexact

∣∣∣= 2.5717×10−3

δ ∗ = 7.82371×10−4
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5.3. Example 3. Convex Demand

In Araujo et al. (2022), the authors analyzed the monopolist’s problem for the
case

v(q,a,b) = (c−b) log(aq+1) , C(q) = λq , f (a,b) = 1
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where c ≥ 1 and λ ∈ (0,1) are given. In this case, the solution proposed is not
given in a closed form. To express the analytical solution, define

D(r) = λ r(1− r)
E(r) = λ (1− r)−λ r log(r)− cr(1− r)
F(r) = 2cr log(r)+ c(1− r)−λ log(r)

and let r ∈ ]0,1[ be the solution of

(2cr−λ ) log(r)+ c(1− r) = 0

Additionally, define

φ(r) =
−E(r)+

√
E(r)2 −4D(r)F(r)
2D(r)

, ∀ r ∈ ]r,1[

Finally, given (a,b) ∈ [0,1]2, q(a,b) is defined as follows:

• If b ≥ c− (cr)/a, let q(a,b) := 0.

• If b < c− (cr)/a, let r(a,b) ∈ ]r,1[ be the solution of

c−b
br

− c
ab

=
−E(r)+

√
E(r)2 −4D(r)F(r)
2D(r)

such that φ(r(a,b))> 0 and φ ′(r(a,b))> 0, and let q(a,b) := φ(r(a,b)).

Furthermore, the tariff as a function of r over ]r,1[ can be expressed as

T (r) =
∫ r

r
vq(φ(r̃), r̃,0)φ ′(r̃)dr̃

Agent type (a,b) has to transfer t(a,b) = T (r(a,b)) to the monopolist, which
determines V (a,b). In this way, the variables q and V are defined over [0,1]2.

On the other hand, the discretized problem was solved for the case c = 1
and λ = 0.4 with n = 34 points over each axis.

Next, the numerical solution is compared with the analytical (exact) solu-
tion.
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a.q.e.(qnum,qexact) = 2.6300×10−3

a.q.e.(V num,V exact) = 2.6064×10−5
∣∣∣ profitnum−profitexact

∣∣∣= 2.3191×10−2

δ ∗ = 5.77989×10−4
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Appendix B: Mathematical Proofs
Notes:
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• The expression “ (a,b) is IC with (â, b̂) ” means that

V (a,b)−V (â, b̂)≥ v(q(â, b̂),a,b)− v(q(â, b̂), â, b̂)

• The characteristic curve passing through (a,b), denoted by CC(a,b), is
the isoquant of q(·, ·) passing through (a,b). The reason for this name
will be clear after the proof of Proposition 1 below.

• With some nomenclature flexibility, we say that a characteristic curve
or isoquant is increasing, meaning that the curve has, at any point, a
positive slope.

Proof of Proposition 1. We explain the methodology used by Araujo et al.
(2022) to obtain the result.

Let (q(·, ·), t(·, ·)) be an incentive compatible contract, and let (x,y) ∈
[0,1]2 be a point of twice-differentiability. Then, (x,y) must solve the problem

max
[0,1]2

{v(q(·, ·),x,y)− t(·, ·)} (7)

by the first-order necessary conditions, we have

vq(q(x,y),x,y)qa(x,y) = ta(x,y)
vq(q(x,y),x,y)qb(x,y) = tb(x,y)

(8)

From the equations in (8), the cross derivatives tab and tba can be calculated.
Then, by using Schwarz’s integrability condition tab = tba, the following quasi-
linear PDE is derived

−vqb

vqa
qa +qb = 0 a.e. in [0,1]2 (9)

Define Γ0 = {(r,0) : r ∈ [0,1]}, let φ be a function defined over [0,1], and
consider the initial value problem

−vqb

vqa
qa +qb = 0

q|Γ0 = φ(r)
(10)

Following the method of characteristic curves to solve10 (10), there is a family
of plane characteristic curves (a(r,s),b(r,s)) defined as the solution of:

10 See Evans (1998) for a description of the method.
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as(r,s) =−vqb

vqa
(φ(r),a(r,s),b(r,s)) , a(r,0) = r

bs(r,s) = 1 , b(r,0) = 0
(11)

The meaning of characteristic curves is that, for a fix r ∈ [0,1], the curve
(a(r,s),b(r,s)) parameterized by s ∈ [0,s(r)] is a contour curve of q at level11

φ(r). These characteristic curves determine a reparameterization of the set of
types in terms of (r,s).

The applicability of the method of characteristics is assured, at least locally,
in view of ∣∣∣∣

ar(r,0) br(r,0)
as(r,0) bs(r,0)

∣∣∣∣=
∣∣∣∣∣

1 0
−vqb

vqa
1

∣∣∣∣∣ ̸= 0

That is, at any point the tangent vector of the initial curve Γ0 is not parallel with
the tangent vector of the characteristic curve. It is assumed that, in general,

∣∣∣∣
ar br
as bs

∣∣∣∣ ̸= 0

This guarantees that we can return to the original variables

a = a(r,s) , b = b(r,s)

such that q(a,b) = q(a(r,s),b(r,s)) = φ(r).
Therefore, the tangent vector of a contour curve at the point (a,b) =

(a(r,s),b(r,s)) is given by

(as(r,s),bs(r,s)) = (−vqb

vqa
(φ(r),a(r,s),b(r,s)),1)

= (−vqb

vqa
(q(a,b),a,b),1)

Proof of Proposition 2. Fix q ∈ Q; by Assumption 2, vq(q, ·,b) is strictly
increasing and vq(q, â, ·) is strictly decreasing, so â > a and b̂ < b imply
vq(q,a,b)< vq(q, â,b) and vq(q, â,b)< vq(q, â, b̂), respectively. Thus, vq(q,a,b)<
vq(q, â, b̂).

11 Such a function φ must be optimally determined, which endogenously defines isoquants of
q(·). This idea was developed in Araujo et al. (2022).
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Proof of Theorem 1. The proof is based on the following three lemmas:

Lemma 1. Let (a,b),(â, b̂) ∈ [0,1]2 be such that (a,b) is IC with (â, b̂). Then
(a,b) is IC with (x,y) , ∀ (x,y) ∈CC(â, b̂)

Lemma 2. Assume (q(·, ·),V (·, ·)) is such that qa ≥ 0 , qb ≤ 0 and for any
(a,b) ∈ [0,1]2:

Va(a,b) = va(q(a,b),a,b) ∧ Vb(a,b) = vb(q(a,b),a,b)

Then, fixed (a,b) ∈ [0,1]2, the constraints given in (2) are satisfied.

Lemma 3. Let (x,y),(â, b̂),(a,b) ∈ [0,1]2 be such that (a,b) is IC with (â, b̂)
and (â, b̂) is IC with (x,y). If (â, b̂)⪯ (a,b) and q(x,y)≤ q(â, b̂), then (a,b)
is IC with (x,y).

We return to the proof of Theorem 1. Fix any (a,b),(â, b̂) ∈ [0,1]2. Let us
prove that (a,b) is IC with (â, b̂).

If q(â, b̂) = qout (that is, if type (â, b̂) is excluded), we have V (â, b̂) = 0,
so from the IR constraint V (a,b)≥ 0, we can write

V (a,b)−V (â, b̂)≥ v(qout,a,b)− v(qout, â, b̂)

in view of v(qout,a,b) = v(qout, â, b̂) by Assumption 1. Therefore, (a,b) is
IC with (â, b̂).

If q(â, b̂) ̸= qout, since CC(â, b̂) is increasing, there are three possible
cases:
Case 1 CC(â, b̂) intersects F(a,b):
Let (x,y) be the point of intersection. Because (a,b) is IC with (x,y) and
(x,y) ∈CC(â, b̂), by Lemma 1, (a,b) is IC with (â, b̂).

Note that the previous case implies that the IC constraint is fulfilled with all
types in some small enough neighborhood of (a,b) because all the characteris-
tic curves passing through this neighborhood intersect F(a,b). Consequently,
there exist two intervals Ia =]a−ε,a+ε[ and Ib =]b−ε,b+ε[ for some small
enough ε > 0, such that the (a,b) type verifies the IC constraints with all types
over Ia ×{b} and {a}× Ib. That is, the agent type (a,b) has no incentive to
locally misrepresent its true type over each direction. Therefore, we have

V (a,b) = max
â∈Ia

{v(q(â,b),a,b)− t(â,b)}
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V (a,b) = max
b̂∈Ib

{v(q(a, b̂),a,b)− t(a, b̂)}

which implies

Va(a,b) = va(q(a,b),a,b) ∧ Vb(a,b) = vb(q(a,b),a,b) (12)

Since these relations hold for any point over [0,1]2 and we have assumed
qa ≥ 0 , qb ≤ 0, by the Lemma 2, we have that the IC constraints with all types
southeast of the given point (a,b) are fulfilled.

Case 2 CC(â, b̂) intersects {(1,s) : 0 ≤ s < b}:
Let (1, ŝ) with ŝ∈ [0,b[ be the point of intersection. Since this point is southeast
of (a,b), then (a,b) is IC with (1, ŝ) ∈CC(â, b̂). Then, by Lemma 1, (a,b) is
IC with (â, b̂).

Case 3 CC(â, b̂) intersects {(s,1) : 0 ≤ s ≤ a} (Figure 6 illustrates for this
case):
Since CC(â, b̂) is increasing, we must have â < a. Without the loss of
generality, we consider that12 b̂ > b. That is, (â, b̂) is northwest of (a,b).
Let (x1,1) ∈ CC(â, b̂) ∩ {(s,1) : 0 ≤ s ≤ a}, and let13 (x1,y1) ∈ {(x1,y) :
y ∈ R} ∩ conv{(â, b̂),(a,b)}. Thus, the point (x1,y1) is southeast of (â, b̂)
and northwest of (a,b). By monotonicity, we have q(â, b̂) ≤ q(x1,y1) and
by Proposition 2 (x1,y1) ⪯ (a,b). Since (x1,y1) is IC with (x1,1) (due to
(x1,1) ∈ F(x1,y1)), by Lemma 1, (x1,y1) is IC with (â, b̂). Then, by Lemma 3,
it will be sufficient that CC(x1,y1)∩F(a,b) ̸= /0 to conclude that (a,b) is IC with
(â, b̂). If that is not the case, i.e., CC(x1,y1)∩F(a,b) = /0, repeat the procedure
taking (x2,1) ∈ CC(x1,y1)∩{(s,1) : 0 ≤ s ≤ a} and (x2,y2) ∈ {(x2,y) : y ∈
R}∩conv{(x1,y1),(a,b)}. Similar to the above, we have q(x1,y1)≤ q(x2,y2),
(x2,y2)⪯ (a,b) and (x2,y2) is IC with (x1,y1). Then, by Lemma 3, it will be
sufficient that CC(x2,y2)∩F(a,b) ̸= /0 to conclude that (a,b) is IC with (x1,y1),
and therefore, by Lemma 3, (a,b) is IC with (â, b̂). If CC(x2,y2)∩F(a,b) = /0,
we set up the point (x3,y3), and so on. Note that d

dq

(
vqa
vqb

)
≥ 0 and d

da

(
vqa
vqb

)
≥ 0

12 Otherwise, replace (â, b̂) for any point in CC(â, b̂) to the northwest of (a,b).
13 The set {(x1,y) : y ∈ R}∩ conv{(â, b̂),(a,b)} is nonempty in view of â < x1 ≤ a.
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Figure 6: Illustration of Theorem 1 proof.
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That is, the slope of the characteristic curves at the border (r,1) is nondecreas-
ing which guarantees that, for large enough n, CC(xn,yn)∩F(a,b) ̸= /0 because
(xn,yn) will be close to (a,b) and CC(xn,yn) is increasing. Thus, applying
Lemma 3 n times, (a,b) is IC with (â, b̂).

Proof of Lemma 1. If (x,y) ∈ CC(â, b̂), then q(â, b̂) = q(x,y). Therefore, by
the taxation principle, t(â, b̂) = T (q(â, b̂)) = T (q(x,y)) = t(x,y). Because
(a,b) is IC with (â, b̂), we have

v(q(a,b),a,b)− t(a,b)≥ v(q(â, b̂),a,b)− t(â, b̂)
= v(q(x,y),a,b)− t(x,y)
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that is, (a,b) is IC with (x,y).

Proof of Lemma 2. Fix (â, b̂) ∈ [0,1]2 such that a < â and b > b̂. Define the
auxiliary function

f (x,y) :=V (x,y)− v(q(â, b̂),x,y) ∀ (x,y) ∈ [0, â]× [b̂,1]

The partial derivatives of f with respect to the first and second argument are:14

f1(x,y) =Va(x,y)− va(q(â, b̂),x,y)

= va(q(x,y),x,y)− va(q(â, b̂),x,y)

f2(x,y) =Vb(x,y)− vb(q(â, b̂),x,y)

= vb(q(x,y),x,y)− vb(q(â, b̂),x,y)

where we use the envelope conditions.
Given (x,y) ∈ [0, â]× [b̂,1], by the monotonicity conditions qa ≥ 0 and qb ≤ 0,
we have that q(x,y) ≤ q(â, b̂). From Assumption 2, va increases in the first
argument and vb decreases in the first argument. Then, va(q(x,y),x,y) ≤
va(q(â, b̂),x,y) and vb(q(x,y),x,y) ≥ vb(q(â, b̂),x,y). Hence, we have f1 ≤
0 and f2 ≥ 0. Finally, a < â implies f (a,b) ≥ f (â,b), and b > b̂ implies
f (â,b) ≥ f (â, b̂). Therefore, f (a,b) ≥ f (â, b̂). That is, (a,b) is IC with
(â, b̂).

Proof of Lemma 3. Since (a,b) is IC with (â, b̂) and (â, b̂) is IC with (x,y),
we have

V (a,b)−V (x,y)+v(q(x,y),x,y)≥ (13)

v(q(â, b̂),a,b)− v(q(â, b̂), â, b̂)+ v(q(x,y), â, b̂)

On the other hand, due to q(x,y)≤ q(â, b̂) and vq(q, â, b̂)≤ vq(q,a,b) ∀ q ∈ Q,
by integrating we have

∫ q(â,b̂)

q(x,y)
vq(q, â, b̂)dq ≤

∫ q(â,b̂)

q(x,y)
vq(q,a,b)dq

14 Recall that we denote Va and Vb to the partial derivatives of V with respect to the first and
second arguments, respectively, since V = V (a,b). Similarly, va and vb denote the partial
derivatives of v = v(q,a,b) with respect to the second and third argument.
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Then,

v(q(â, b̂),a,b)− v(q(â, b̂), â, b̂)+ v(q(x,y), â, b̂)≥ v(q(x,y),a,b) (14)

Therefore, from (13) and (14), (a,b) is IC with (x,y).

Proof of Proposition 3. Fix any q∈Q. Since vq(q, ·,b) is concave and vq(q, â, ·)
is convex:

vq(q, â,b)− vq(q,a,b)≥ vqa(q, â,b)(â−a)

vq(q, â, b̂)− vq(q, â,b)≥ vqb(q, â,b)(b̂−b)

then

vq(q, â, b̂)− vq(q,a,b)≥ vqa(q, â,b)(â−a)+ vqb(q, â,b)(b̂−b) (15)

In addition, if b̂−b
â−a ≤ −vqa(q,â,b)

vqb(q,â,b)
with â > a and vqb < 0 then

vqa(q, â,b)(â−a)+ vqb(q, â,b)(b̂−b)≥ 0 (16)

hence, from (15) and (16), vq(q, â, b̂)− vq(q,a,b) ≥ 0 for any q ∈ Q, that is
(a,b)⪯ (â, b̂).

Proof of Proposition 4. The proof is based on the two following lemmas.

Lemma 4. Given (a,b) ∈ Xn, ∀ (x,y) ∈ F(a,b), we have

Ṽ n(a,b)−Ṽ n(x,y)≥ v(Q̃n(x,y),a,b)− v(Q̃n(x,y),x,y)−O( 1
n−1)

That is, since (a,b) ∈ Xn verifies IC with all points in F̃(a,b) = F(a,b)∩Xn,
it satisfies a relaxed IC version with all points in the continuous set F(a,b)

with some tolerance that is asymptotically zero. The next lemma shows that
between any two points on grid Xn, the same relaxed IC version holds.

Lemma 5. Given (a,b),(â, b̂) ∈ Xn, we have

V n(a,b)−V n(â, b̂)≥ v(Qn(â, b̂),a,b)− v(Qn(â, b̂), â, b̂)−O( 1
n−1)
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We return to the proof of Proposition 4. Given (a,b),(a′,b′) ∈ [0,1]2, it
will be sufficient to prove that

Ṽ n(a,b)−Ṽ n(a′,b′)− (v(Q̃n(a′,b′),a,b)− v(Q̃n(a′,b′),a′,b′))≥−O( 1
n−1)

Let (â, b̂),(â′, b̂′) ∈ Xn be such that â ≤ a < â+ 1
n−1 , b̂− 1

n−1 < b ≤ b̂ and
â′ ≤ a′ < â′+ 1

n−1 , b̂′− 1
n−1 < b′ ≤ b̂′. Let q = Q̃n(a′,b′) = Qn(â′, b̂′). Since

Ṽ n(a,b) =V n(â, b̂) , Ṽ n(a′,b′) =V n(â′, b̂′) we have

Ṽ n(a,b)−Ṽ n(a′,b′)− (v(q,a,b)− v(q,a′,b′)) = (17)

V n(â, b̂)−V n(â′, b̂′)− (v(q, â, b̂)− v(q, â′, b̂′))

+ v(q, â, b̂)− v(q,a,b)+ v(q,a′,b′)− v(q, â′, b̂′)

Since (â, b̂),(â′, b̂′) ∈ Xn, by Lemma 5,

V n(â, b̂)−V n(â′, b̂′)− (v(q, â, b̂)− v(q, â′, b̂′))≥−O( 1
n−1) (18)

In addition, since v is differentiable, v(q, ·, ·) is Lipschitz over [0,1]2 (with
constant L), then

∣∣∣v(q, â, b̂)− v(q,a,b)
∣∣∣≤ L||(â, b̂)− (a,b)|| ≤ O( 1

n−1)

which implies
v(q, â, b̂)− v(q,a,b)≥−O( 1

n−1) (19)

Similarly,
∣∣∣v(q,a′,b′)− v(q, â′, b̂′)

∣∣∣≤ L||(a′,b′)− (â′, b̂′)|| ≤ O( 1
n−1)

which implies
v(q,a′,b′)− v(q, â′, b̂′)≥−O( 1

n−1) (20)

Therefore, from (17) using (18), (19) and (20) we obtain

Ṽ n(a,b)−Ṽ n(a′,b′)− (v(q,a,b)− v(q,a′,b′))≥−O( 1
n−1)

Journal of Mechanism and Institution Design 8(1), 2023

“jMID-vol8(1)-01” — 2023/12/21 — 17:49 — page 146 — #150



“p˙05” — 2023/12/21 — 16:11 — page 147 — #41

Braulio Calagua 147

Proof of Lemma 4. Let (x,y) ∈ F(a,b) be such that x = 1 (case y = 1 is analo-
gous), and let b̂ be such that b̂− 1

n−1 < y ≤ b̂. Since (Qn,V n) are the solutions
of problem (4), (a,b) satisfies IC with (1, b̂)

V n(a,b)−V n(1, b̂)≥ v(Qn(1, b̂),a,b)− v(Qn(1, b̂),1, b̂)

By definition, Q̃n(x,y) = Qn(1, b̂) and Ṽ n(x,y) = V n(1, b̂) . Additionally, in
view of (a,b) ∈ Xn, we have Ṽ n(a,b) =V n(a,b). Then,

Ṽ n(a,b)−Ṽ n(x,y)≥ v(Q̃n(x,y),a,b)− v(Q̃n(x,y),1, b̂) (21)

On the other hand, since v is Lipschitz,
∣∣∣v(Q̃n(x,y),1, b̂)− v(Q̃n(x,y),x,y)

∣∣∣≤ L||(1, b̂)− (x,y)||= O( 1
n−1)

Then,
−v(Q̃n(x,y),1, b̂)≥−v(Q̃n(x,y),x,y)−O( 1

n−1) (22)

Therefore, from (21) and (22),

Ṽ n(a,b)−Ṽ n(x,y)≥ v(Q̃n(x,y),a,b)− v(Q̃n(x,y),x,y)−O( 1
n−1)

Proof of Lemma 5. If CC(â, b̂)∩F(a,b) = (x,y), we apply Lemma 4 for (a,b)
with (x,y), and considering that Qn(â, b̂) = Qn(x,y) and t(x,y) = t(â, b̂), we
conclude.

Other cases are treated analogously as in the proof of Theorem 1.

Proof of Proposition 5. Let (Q,V ) denote the solution for the continuous prob-
lem, and let (Qn

,V n
) be their restriction on the grid Xn. If (Qn,V n) are the

solutions of the discretized problem and OPTn is the optimal value, we have

OPTn ≥
n

∑
i=1

n

∑
j=1

w(i, j)(v(Qn
i, j,ai,b j)−V n

i, j −C(Qn
i, j))ρ(ai,b j)

=
∫ 1

0

∫ 1

0
(v(Q(a,b),a,b)−V (a,b)−C(Q(a,b)))ρ(a,b)dadb−O(

1
n
)

= OPT ∗−O(
1
n
)
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Then, liminfn→∞ OPTn ≥ OPT ∗.
On the other hand, if ∃ limn→∞ Q̃n(a,b) and limn→∞ Ṽ n(a,b) for any

(a,b) ∈ [0,1]2, define

Q̂(a,b) := lim
n→∞

Q̃n(a,b) , V̂ (a,b) := lim
n→∞

Ṽ n(a,b)

By Proposition 4, (Q̂,V̂ ) is feasible. Hence

OPT ∗ ≥
∫ 1

0

∫ 1

0
(v(Q̂(a,b),a,b)−V̂ (a,b)−C(Q̂(a,b)))ρ(a,b)dadb

= lim
n→∞

∫ 1

0

∫ 1

0
(v(Q̃n(a,b),a,b)−Ṽ n(a,b)−C(Q̃n(a,b)))ρ(a,b)dadb

= lim
n→∞

n

∑
i=1

n

∑
j=1

w(i, j)(v(Q̃n
i, j,ai,b j)−Ṽ n

i, j −C(Q̃n
i, j))ρ(ai,b j)+O( 1

n−1)

= lim
n→∞

n

∑
i=1

n

∑
j=1

w(i, j)(v(Qn
i, j,ai,b j)−V n

i, j −C(Qn
i, j))ρ(ai,b j)+O( 1

n−1)

= lim
n→∞

(
OPTn +O( 1

n−1)
)

where equalities are true owing to the dominated convergence theorem (each
Q̃n and Ṽ n are bounded), by the finite approximation of the integral, by the
definition of Q̃n and Ṽ n, and because (Qn,V n) is the solution of the discretized
problem.
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